1
|
Multilevel autoregulation of λ repressor protein CI by DNA looping in vitro. Proc Natl Acad Sci U S A 2011; 108:14807-12. [PMID: 21873207 DOI: 10.1073/pnas.1111221108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prophage state of bacteriophage λ is extremely stable and is maintained by a highly regulated level of λ repressor protein, CI, which represses lytic functions. CI regulates its own synthesis in a lysogen by activating and repressing its promoter, P(RM). CI participates in long-range interactions involving two regions of widely separated operator sites by generating a loop in the intervening DNA. We investigated the roles of each individual site under conditions that permitted DNA loop formation by using in vitro transcription assays for the first time on supercoiled DNA that mimics in vivo situation. We confirmed that DNA loops generated by oligomerization of CI bound to its operators influence the autoactivation and autorepression of P(RM) regulation. We additionally report that different configurations of DNA loops are central to this regulation--one configuration further enhances autoactivation and another is essential for autorepression of P(RM).
Collapse
|
2
|
Joh RI, Weitz JS. To lyse or not to lyse: transient-mediated stochastic fate determination in cells infected by bacteriophages. PLoS Comput Biol 2011; 7:e1002006. [PMID: 21423715 PMCID: PMC3053317 DOI: 10.1371/journal.pcbi.1002006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/22/2010] [Indexed: 01/04/2023] Open
Abstract
Cell fate determination is usually described as the result of the stochastic dynamics of gene regulatory networks (GRNs) reaching one of multiple steady-states each of which corresponds to a specific decision. However, the fate of a cell is determined in finite time suggesting the importance of transient dynamics in cellular decision making. Here we consider cellular decision making as resulting from first passage processes of regulatory proteins and examine the effect of transient dynamics within the initial lysis-lysogeny switch of phage λ. Importantly, the fate of an infected cell depends, in part, on the number of coinfecting phages. Using a quantitative model of the phage λ GRN, we find that changes in the likelihood of lysis and lysogeny can be driven by changes in phage co-infection number regardless of whether or not there exists steady-state bistability within the GRN. Furthermore, two GRNs which yield qualitatively distinct steady state behaviors as a function of phage infection number can show similar transient responses, sufficient for alternative cell fate determination. We compare our model results to a recent experimental study of cell fate determination in single cell assays of multiply infected bacteria. Whereas the experimental study proposed a “quasi-independent” hypothesis for cell fate determination consistent with an observed data collapse, we demonstrate that observed cell fate results are compatible with an alternative form of data collapse consistent with a partial gene dosage compensation mechanism. We show that including partial gene dosage compensation at the mRNA level in our stochastic model of fate determination leads to the same data collapse observed in the single cell study. Our findings elucidate the importance of transient gene regulatory dynamics in fate determination, and present a novel alternative hypothesis to explain single-cell level heterogeneity within the phage λ lysis-lysogeny decision switch. Multicellular organisms, single-celled organisms, and even viruses can exhibit alternative responses to various internal and environmental conditions. At the cellular level, alternative fate determination is usually described as the result of the inherent bistability of gene regulatory networks (GRNs). However, the fate of a cell is determined in finite time suggesting the importance of transient dynamics to cellular decision making. Here, we present a quantitative gene regulatory model of how bacteriophages determine the fate of an infected bacterium. We find that increasing the number of infecting phages increases the chance of quiescent (i.e., lysogeny) vs. productive (i.e. lysis) viral growth, in agreement with prior studies. However, unlike previous theoretical studies, the bias in cell fate is a result of the transient divergence of stochastic gene expression dynamics. We compare and contrast our theoretical model with recent observations of cell fate measured at the single-cell level within multiply-infected cells. Predicted heterogeneity in cell fate is shown to agree with data when including a previously unidentified gene dosage compensation mechanism, which represents an alternative hypothesis to how multiple phages interact in influencing cell fate. Together, our results suggest the importance of quantitative details of transient gene regulation in driving stochastic fate determination.
Collapse
Affiliation(s)
- Richard I. Joh
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Joshua S. Weitz
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
3
|
DNA looping provides stability and robustness to the bacteriophage lambda switch. Proc Natl Acad Sci U S A 2009; 106:8101-6. [PMID: 19416825 DOI: 10.1073/pnas.0810399106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bistable gene regulatory switch controlling the transition from lysogeny to lysis in bacteriophage lambda presents a unique challenge to quantitative modeling. Despite extensive characterization of this regulatory network, the origin of the extreme stability of the lysogenic state remains unclear. We have constructed a stochastic model for this switch. Using Forward Flux Sampling simulations, we show that this model predicts an extremely low rate of spontaneous prophage induction in a recA mutant, in agreement with experimental observations. In our model, the DNA loop formed by octamerization of CI bound to the O(L) and O(R) operator regions is crucial for stability, allowing the lysogenic state to remain stable even when a large fraction of the total CI is depleted by nonspecific binding to genomic DNA. DNA looping also ensures that the switch is robust to mutations in the order of the O(R) binding sites. Our results suggest that DNA looping can provide a mechanism to maintain a stable lysogenic state in the face of a range of challenges including noisy gene expression, nonspecific DNA binding, and operator site mutations.
Collapse
|
4
|
Michalowski CB, Little JW. Positive autoregulation of cI is a dispensable feature of the phage lambda gene regulatory circuitry. J Bacteriol 2005; 187:6430-42. [PMID: 16159777 PMCID: PMC1236637 DOI: 10.1128/jb.187.18.6430-6442.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 06/24/2005] [Indexed: 11/20/2022] Open
Abstract
Complex gene regulatory circuits contain many features that are likely to contribute to their operation. It is unclear, however, whether all these features are necessary for proper circuit behavior or whether certain ones are refinements that make the circuit work better but are dispensable for qualitatively normal behavior. We have addressed this question using the phage lambda regulatory circuit, which can persist in two stable states, the lytic state and the lysogenic state. In the lysogenic state, the CI repressor positively regulates its own expression by stimulating transcription from the P(RM) promoter. We tested whether this feature is an essential part of the regulatory circuitry. Several phages with a cI mutation preventing positive autoregulation and an up mutation in the P(RM) promoter showed near-normal behavior. We conclude that positive autoregulation is not necessary for proper operation of the lambda circuitry and speculate that it serves a partially redundant function of stabilizing a bistable circuit, a form of redundancy we term "circuit-level redundancy." We discuss our findings in the context of a two-stage model for evolution and elaboration of regulatory circuits from simpler to more complex forms.
Collapse
Affiliation(s)
- Christine B Michalowski
- Department of Biochemistry and Molecular Biophysics, Life Sciences South Bldg., 1007 E. Lowell St., University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
5
|
Roy S, Semsey S, Liu M, Gussin GN, Adhya S. GalR represses galP1 by inhibiting the rate-determining open complex formation through RNA polymerase contact: a GalR negative control mutant. J Mol Biol 2005; 344:609-18. [PMID: 15533432 DOI: 10.1016/j.jmb.2004.09.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/23/2004] [Accepted: 09/23/2004] [Indexed: 11/19/2022]
Abstract
GalR represses the galP1 promoter by a DNA looping-independent mechanism. Equilibrium binding of GalR and RNA polymerase to DNA, and real-time kinetics of base-pair distortion (isomerization) showed that the equilibrium dissociation constant of RNA polymerase-P1 closed complexes is largely unaffected in the presence of saturating GalR, indicating that mutual antagonism (steric hindrance) of the regulator and the RNA polymerase does not occur at this promoter. In fluorescence kinetics with 2-AP labeled P1 DNA, GalR inhibited the slower of the two-step base-pair distortion process. We isolated a negative control GalR mutant, S29R, which while bound to the operator DNA was incapable of repression of P1. Based on these results and previous demonstration that repression requires the C-terminal domain of the alpha subunit (alpha-CTD) of RNA polymerase, we propose that GalR establishes contact with alpha-CTD at the last resolved isomerization intermediate, forming a kinetic trap.
Collapse
Affiliation(s)
- Siddhartha Roy
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
6
|
Santillán M, Mackey MC. Why the lysogenic state of phage lambda is so stable: a mathematical modeling approach. Biophys J 2004; 86:75-84. [PMID: 14695251 PMCID: PMC1303838 DOI: 10.1016/s0006-3495(04)74085-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 09/16/2003] [Indexed: 10/21/2022] Open
Abstract
We develop a mathematical model of the phage lambda lysis/lysogeny switch, taking into account recent experimental evidence demonstrating enhanced cooperativity between the left and right operator regions. Model parameters are estimated from available experimental data. The model is shown to have a single stable steady state for these estimated parameter values, and this steady state corresponds to the lysogenic state. When the CI degradation rate (gammacI) is slightly increased from its normal value (gammacI approximately 0.0 min(-1)), two additional steady states appear (through a saddle-node bifurcation) in addition to the lysogenic state. One of these new steady states is stable and corresponds to the lytic state. The other steady state is an (unstable) saddle node. The coexistence these two globally stable steady states (the lytic and lysogenic states) is maintained with further increases of gammacI until gammacI approximately 0.35 min(-1), when the lysogenic steady state and the saddle node collide and vanish (through a reverse saddle node bifurcation) leaving only the lytic state surviving. These results allow us to understand the high degree of stability of the lysogenic state because, normally, it is the only steady state. Further implications of these results for the stability of the phage lambda switch are discussed, as well as possible experimental tests of the model.
Collapse
Affiliation(s)
- Moisés Santillán
- Centre for Nonlinear Dynamics, McGill University, H3G 1Y6 Montreal, Quebec, Canada.
| | | |
Collapse
|
7
|
Abstract
Frequently, in nature, defective promoters can be resurrected by activator proteins in response to cellular demands. The activators bind to nearby DNA sites for action. Various protein-protein and DNA-protein contacts involving activators, RNA polymerase, and different segments of DNA in and around a defective promoter form a DNA-multiprotein complex (cage) which enhances transcription.
Collapse
Affiliation(s)
- S Adhya
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
8
|
Hoggett JG, Brierley I. Kinetics of activation of the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein. Biochem J 1992; 287 ( Pt 3):937-41. [PMID: 1445251 PMCID: PMC1133097 DOI: 10.1042/bj2870937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The activation of transcription initiation from the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein (CRP) has been investigated using a fluorescence abortive initiation assay. The effect of the cyclic-AMP/CRP complex on the linear P4 promoter was to increase the initial binding (KB) of RNA polymerase to the promoter by about a factor of 10, but the rate of isomerization of closed to open complex (kf) was unaffected. One molecule of CRP per promoter was required for activation, and the concentration of cyclic AMP producing half-maximal stimulation was about 7-8 microM. Supercoiling caused a 2-3-fold increase in the rate of isomerization of the CRP-activated promoter, but weakened the initial binding of polymerase by about one order of magnitude. The unactivated supercoiled promoter was too weak to allow reliable assessment of kinetic parameters against the high background rate originating from the rest of the plasmid.
Collapse
Affiliation(s)
- J G Hoggett
- Department of Biology, University of York, Heslington, U.K
| | | |
Collapse
|
9
|
Hershberger PA, deHaseth PL. RNA polymerase bound to the PR promoter of bacteriophage lambda inhibits open complex formation at the divergently transcribed PRM promoter. Implications for an indirect mechanism of transcriptional activation by lambda repressor. J Mol Biol 1991; 222:479-94. [PMID: 1836235 DOI: 10.1016/0022-2836(91)90491-n] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We demonstrate that RNA polymerase bound at the PR promoter of bacteriophage lambda can repress transcription initiation from the divergently transcribed PRM promoter in vitro. Using abortive initiation and run-off transcription experiments we show that inactivating mutations introduced into either the -10 or -35 regions of PR result in a significant increase in the rate of formation of transcriptionally competent complexes at the PRM promoter. This is due primarily to an increase in the rate constant for the isomerization of closed to open complexes. Gel shift and DNase I footprinting experiments were employed to further define the mechanism by which PR sequences mediate PRM repression. From these assays we were able to conclude that the formation of an open complex at the PR promoter did not exclude RNA polymerase from binding at PRM. Rather, initiation at PRM was impaired because closed complexes must isomerize in the presence of an open complex already situated at the PR promoter. Extensive evidence has been obtained previously indicating that lambda repressor activates transcription directly by contacting RNA polymerase situated at the PRM promoter. Results presented here raise the possibility that an additional mechanism could be operative, whereby lambda repressor indirectly activates PRM transcription by excluding RNA polymerase from the PR promoter.
Collapse
Affiliation(s)
- P A Hershberger
- Department of Biochemistry School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | |
Collapse
|
10
|
Abstract
Oligonucleotide-directed mutagenesis was used to complete a collection of mutations in the -35 and -10 hexamers of the ant promoter of Salmonella phage P22. The effects of all 36 single-base-pair substitutions on promoter strength in vivo were measured in strains carrying the mutant promoters fused to an ant-lacZ gene on a single-copy prophage. The results of these assays show that certain consensus base pairs are more important than others; in general, the least-critical positions are among the most poorly conserved. Some mutations within the hexamers have smaller effects on promoter strength than certain mutations outside the hexamers in this and other promoters. Several different patterns of base pair preferences are observed. These hierarchies of base pair preferences correlate well (but not perfectly) with the hierarchies defined by the frequency distribution of base pairs at each position among wild-type promoters. The hierarchies observed in the ant promoter also agree well with most of the available information on base pair preferences in other promoters.
Collapse
|
11
|
Brown S, Ferm J, Woody S, Gussin G. Selection for mutations in the PR promoter of bacteriophage lambda. Nucleic Acids Res 1990; 18:5961-7. [PMID: 2146590 PMCID: PMC332391 DOI: 10.1093/nar/18.20.5961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Insertion of DNA containing PR, the early rightward promoter of bacteriophage lambda, is lethal to M13-derived vectors when the promoter directs transcription (using the '+' strand as template) toward the M13 origin of replication (ori). Lethality can be relieved by mutation of PR, repression of the promoter by the lambda cl repressor, or by insertion of a strong transcription terminator between PR and ori. We have used selection for plaque formation in the absence of repressor to isolate 14 different mutations at 8 sites in PR. This method of isolating promoter mutants in vivo is applicable generally to strong promoters whose activity is regulated either positively or negatively.
Collapse
Affiliation(s)
- S Brown
- Department of Biology, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
12
|
Hwang JJ, Gussin GN. Interactions between Escherichia coli RNA polymerase and lambda repressor. Mutations in PRM affect repression of PR. J Mol Biol 1988; 200:735-9. [PMID: 3045326 DOI: 10.1016/0022-2836(88)90484-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rightward operator, OR, of bacteriophage lambda is part of a complex regulatory region that includes PRM, the promoter for repressor synthesis by a prophage, the rightward early promoter PR, and three repressor-binding sites, OR1, OR2 and OR3. By binding to OR2, repressor blocks transcription from PR and simultaneously stimulates the formation of open complexes between RNA polymerase and PRM. In this letter, we describe a test of the hypothesis that the interaction between RNA polymerase bound at PRM and repressor bound at OR2 increases the apparent affinity of repressor for OR. One implication of this hypothesis is that the amount of repressor required for repression of PR should be inversely correlated with PRM promoter strength. This is indeed the case. The amount of repressor required for 50% repression of PR is decreased by prmup-1, an "up" mutation of PRM, and is increased by prm- mutations. An unexpected finding is that in addition to their effect on the apparent affinity of repressor for OR, mutations in the -35 region of PRM alter the shape of repressor-titration curves. We propose that these mutations alter the interaction between RNA polymerase bound at PRM and repressor bound at OR2 in such a way that cooperativity in the binding of repressor to OR1 and OR2 is also disrupted.
Collapse
Affiliation(s)
- J J Hwang
- Department of Biology, University of Iowa, Iowa City 52242
| | | |
Collapse
|