1
|
Susorov D, Mikhailova T, Ivanov A, Sokolova E, Alkalaeva E. Stabilization of eukaryotic ribosomal termination complexes by deacylated tRNA. Nucleic Acids Res 2015; 43:3332-43. [PMID: 25753665 PMCID: PMC4381076 DOI: 10.1093/nar/gkv171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/21/2015] [Indexed: 01/12/2023] Open
Abstract
Stabilization of the ribosomal complexes plays an important role in translational control. Mechanisms of ribosome stabilization have been studied in detail for initiation and elongation of eukaryotic translation, but almost nothing is known about stabilization of eukaryotic termination ribosomal complexes. Here, we present one of the mechanisms of fine-tuning of the translation termination process in eukaryotes. We show that certain deacylated tRNAs, remaining in the E site of the ribosome at the end of the elongation cycle, increase the stability of the termination and posttermination complexes. Moreover, only the part of eRF1 recognizing the stop codon is stabilized in the A site of the ribosome, and the stabilization is not dependent on the hydrolysis of peptidyl-tRNA. The determinants, defining this property of the tRNA, reside in the acceptor stem. It was demonstrated by site-directed mutagenesis of tRNAVal and construction of a mini-helix structure identical to the acceptor stem of tRNA. The mechanism of this stabilization is different from the fixation of the unrotated state of the ribosome by CCA end of tRNA or by cycloheximide in the E site. Our data allow to reveal the possible functions of the isodecoder tRNAs in eukaryotes.
Collapse
Affiliation(s)
- Denis Susorov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Tatiana Mikhailova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander Ivanov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Elizaveta Sokolova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Orioli A, Pascali C, Quartararo J, Diebel KW, Praz V, Romascano D, Percudani R, van Dyk LF, Hernandez N, Teichmann M, Dieci G. Widespread occurrence of non-canonical transcription termination by human RNA polymerase III. Nucleic Acids Res 2011; 39:5499-512. [PMID: 21421562 PMCID: PMC3141230 DOI: 10.1093/nar/gkr074] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human RNA polymerase (Pol) III-transcribed genes are thought to share a simple termination signal constituted by four or more consecutive thymidine residues in the coding DNA strand, just downstream of the RNA 3′-end sequence. We found that a large set of human tRNA genes (tDNAs) do not display any T≥4 stretch within 50 bp of 3′-flanking region. In vitro analysis of tDNAs with a distanced T≥4 revealed the existence of non-canonical terminators resembling degenerate T≥5 elements, which ensure significant termination but at the same time allow for the production of Pol III read-through pre-tRNAs with unusually long 3′ trailers. A panel of such non-canonical signals was found to direct transcription termination of unusual Pol III-synthesized viral pre-miRNA transcripts in gammaherpesvirus 68-infected cells. Genome-wide location analysis revealed that human Pol III tends to trespass into the 3′-flanking regions of tDNAs, as expected from extensive terminator read-through. The widespread occurrence of partial termination suggests that the Pol III primary transcriptome in mammals is unexpectedly enriched in 3′-trailer sequences with the potential to contribute novel functional ncRNAs.
Collapse
Affiliation(s)
- Andrea Orioli
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Yan H, Zareen N, Levinger L. Naturally occurring mutations in human mitochondrial pre-tRNASer(UCN) can affect the transfer ribonuclease Z cleavage site, processing kinetics, and substrate secondary structure. J Biol Chem 2005; 281:3926-35. [PMID: 16361254 DOI: 10.1074/jbc.m509822200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tRNAs are transcribed as precursors with a 5' end leader and a 3' end trailer. The 5' end leader is processed by RNase P, and in most organisms in all three kingdoms, transfer ribonuclease (tRNase) Z can endonucleolytically remove the 3' end trailer. Long ((L)) and short ((S)) forms of the tRNase Z gene are present in the human genome. tRNase Z(L) processes a nuclear-encoded pre-tRNA approximately 1600-fold more efficiently than tRNase Z(S) and is predicted to have a strong mitochondrial transport signal. tRNase Z(L) could, thus, process both nuclear- and mitochondrially encoded pre-tRNAs. More than 150 pathogenesis-associated mutations have been found in the mitochondrial genome, most of them in the 22 mitochondrially encoded tRNAs. All the mutations investigated in human mitochondrial tRNA(Ser(UCN)) affect processing efficiency, and some affect the cleavage site and secondary structure. These changes could affect tRNase Z processing of mutant pre-tRNAs, perhaps contributing to mitochondrial disease.
Collapse
Affiliation(s)
- Hua Yan
- York College of The City University of New York, Jamaica, 11451, USA
| | | | | |
Collapse
|
4
|
Nashimoto M, Nashimoto C, Tamura M, Kaspar RL, Ochi K. The inhibitory effect of the autoantigen La on in vitro 3' processing of mammalian precursor tRNAs. J Mol Biol 2001; 312:975-84. [PMID: 11580243 DOI: 10.1006/jmbi.2001.5026] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can remove a 3' trailer from various precursor (pre)-tRNAs. We investigated what effect the autoantigen La has on 3' processing, since the La protein is known to bind to a 3'-terminal uridine tract of pre-tRNAs. We tested sixteen different pre-tRNA(Arg) substrates containing various 3' trailers with or without a 5' leader sequence for in vitro processing by pig 3' tRNase, and for gel-retardation in the presence or absence of human La protein. The R-TUUU series consists of four pre-tRNAs containing 6, 8, 11 and 15 nt 3' trailers ending with UUU and no 5' leader, while the R-TAGC series consists of the same four pre-tRNAs as R-TUUU except that the terminal sequence is AGC. The R-6LTUUU and R-6LTAGC series are derived from R-TUUU and R-TAGC, respectively, by adding a 6 nt 5' leader. La differentially inhibited their processing and bound to the pre-tRNAs; the 50 % inhibitory concentrations for the R-TUUU, R-TAGC, R-6LTUUU, and R-6LTAGC series were 82 to >850, >850, 2 to 292 and 573 to 785 nM, respectively, and the dissociation constants were 10 to 840, >850, 3 to 203 and 155 to 520 nM, respectively. These results indicate that both the terminal sequence UUU and the 5' leader contribute to more severe inhibition of 3' processing via tighter interaction with La. With respect to the R-TUUU and R-6LTUUU series, on the whole, the La inhibition was enhanced as the 3' trailer lengths decreased. Taken together, our results suggest that the La protein sterically hinders 3' tRNase from binding a pre-tRNA molecule probably near the cleavage site.
Collapse
Affiliation(s)
- M Nashimoto
- National Food Research Institute, Genetic Engineering Laboratory, Tsukuba, Ibaraki, 305-8642, Japan.
| | | | | | | | | |
Collapse
|
5
|
Mohan A, Levinger L. The effects of matrices of paired substitutions in mid-acceptor stem on Drosophila tRNA(His) structure and end-processing. J Mol Biol 2000; 303:605-16. [PMID: 11054295 DOI: 10.1006/jmbi.2000.4162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
End-maturation reactions, in which the 5' end leader and 3' end trailer of precursor tRNA are removed by RNase P and 3'-tRNase, respectively, are early, essential steps in eukaryotic precursor tRNA processing. End-processing enzymes may be expected to contact the acceptor stem of tRNA due to its proximity to both cleavage sites. We constructed matrices of pair-wise substitutions in mid-acceptor stem at nt 3/70 and 4/69 of Drosophila tRNA(His) and analyzed their ability to be processed by Drosophila RNase P and 3'-tRNase. In accord with our earlier study of D/T loop processing matrices, we find that tRNA end processing enzymes respond to sequence changes differently. More processing defects were observed with 3'-tRNase than with RNase P, and substitutions at 4/69 reduced processing more than those at 3/70. We evaluated tRNA folding using structure probing nucleases and investigated the contribution of K(M) and V(Max) to the processing efficiency of selected variants. In one substitution (C3A), mis-folding correlates with processing defects. In another (C69A), a disruption of structure appears to be transmitted laterally to both ends of the acceptor stem. Poor processing of C69A by RNase P is due entirely to a reduction in V(Max), but for 3'-tRNase, it is due to an increase in K(M).
Collapse
Affiliation(s)
- A Mohan
- Natural Sciences/Biology, York College of The City University of New York, New York, Jamaica, 11451, USA
| | | |
Collapse
|
6
|
Nashimoto M, Wesemann DR, Geary S, Tamura M, Kaspar RL. Long 5' leaders inhibit removal of a 3' trailer from a precursor tRNA by mammalian tRNA 3' processing endoribonuclease. Nucleic Acids Res 1999; 27:2770-6. [PMID: 10373595 PMCID: PMC148487 DOI: 10.1093/nar/27.13.2770] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can remove a 3' trailer from various pre-tRNAs without 5' leader nucleotides. To examine how 5[prime] leader sequences affect 3' processing efficiency, we performed in vitro 3' processing reactions with purified pig 3' tRNase and pre-tRNAArgs containing a 13-nt 3' trailer and a 5[prime] leader of various lengths. The 3' processing was slightly stimulated by 5[prime] leaders containing up to 7 nt, whereas leaders of 9 nt or longer severely inhibited the reaction. Structure probing indicated that the 5' leader sequences had little effect on pre-tRNA folding. Similar results were obtained using pre-tRNA(Val)s containing a 5' leader of various lengths. We also investigated whether 3'tRNase can remove 3' trailers that are stably base-paired with 5' leaders to form an extended acceptor stem. Even such small 5' leaders as 3 and 6 nt, when base-paired with a 3' trailer, severely hindered removal of the 3' trailer by 3' tRNase.
Collapse
Affiliation(s)
- M Nashimoto
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | |
Collapse
|
7
|
Nashimoto M, Tamura M, Kaspar RL. Selection of cleavage site by mammalian tRNA 3' processing endoribonuclease. J Mol Biol 1999; 287:727-40. [PMID: 10191141 DOI: 10.1006/jmbi.1999.2639] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) removes 3' trailers from pre-tRNAs by cleaving the RNA immediately downstream of the discriminator nucleotide. Although 3' tRNase can recognize and cleave any target RNA that forms a pre-tRNA-like complex with another RNA, in some cases cleavage occurs at multiple sites near the discriminator. We investigated what features of pre-tRNA determine the cleavage site using various pre-tRNAArg variants and purified pig enzyme. Because the T stem-loop and the acceptor stem plus a 3' trailer are sufficient for recognition by 3' tRNase, we constructed variants that had additions and/or deletions of base-pairs in the T stem and/or the acceptor stem. Pre-tRNAs lacking one and two acceptor stem base-pairs were cleaved one and two nucleotides and two and three nucleotides, respectively, downstream of the discriminator. On the other hand, pre-tRNA variants containing extra acceptor stem base-pairs were cleaved only after the discriminator. The cleavage site was shifted to one and two nucleotides downstream of the discriminator by deleting one base-pair from the T stem, but was not changed by additional base-pairs in the T stem. Pre-tRNA variants that contained an eight base-pair acceptor stem plus a six base-pair T stem, an eight base-pair acceptor stem plus a four base-pair T stem, or a six base-pair acceptor stem plus a six base-pair T stem were all cleaved after the original nucleotide. In general, pre-tRNA variants containing a total of more than 11 bp in the acceptor stem and the T stem were cleaved only after the discriminator, and pre-tRNA variants with a total of N bp (N is less than 12) were cleaved 12-N and 13-N nt downstream of the discriminator. Cleavage efficiency of the variants decreased depending on the degree of structural changes from the authentic pre-tRNA. This suggests that the numbers of base-pairs of both the acceptor stem and the T stem are important for recognition and cleavage by 3' tRNase.
Collapse
Affiliation(s)
- M Nashimoto
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| | | | | |
Collapse
|
8
|
Akashi K, Takenaka M, Yamaoka S, Suyama Y, Fukuzawa H, Ohyama K. Coexistence of nuclear DNA-encoded tRNAVal(AAC) and mitochondrial DNA-encoded tRNAVal(UAC) in mitochondria of a liverwort Marchantia polymorpha. Nucleic Acids Res 1998; 26:2168-72. [PMID: 9547276 PMCID: PMC147542 DOI: 10.1093/nar/26.9.2168] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The liverwort Marchantia polymorpha mitochondrial DNA encodes almost all tRNAs required for mitochondrial translation except for the isoleucine (AUU, AUC) and threonine (ACA, ACG) codons, while the missing tRNAs are supplied in part by the nucleus and imported in mitochondria. In this paper, we report a finding of two radically different nuclear tRNAVal(AAC) genes and import of the corresponding tRNA isoacceptors in M.polymorpha mitochondria. This finding is surprising since the mtDNA encodes the gene for tRNAVal(UAC), which alone was considered sufficient for translating all four valine codons GUN by the U/N wobble mechanism. The present results suggest for the first time that the import of ncDNA-encoded tRNAs may result in decoding overlaps in plant mitochondria. The coexistence of nuclear DNA-encoded tRNAVal(AAC) and mitochondrial DNA-encoded tRNAVal(UAC) in liverwort mitochondria and the significance for the decoding mechanism as well as evolution of tRNA import are discussed.
Collapse
MESH Headings
- Biological Transport
- Cell Compartmentation
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Genes, Plant
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- K Akashi
- Laboratory of Plant Molecular Biology, Division of Applied Life Science, The Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Shearman JD, Pointon JJ, Merryweather-Clarke AT, Stone C, Horsley SW, Kearney L, Rosenberg WM, Robson KJ. Rapid mapping of markers applying vectorette technology to YAC fragmentation allows easy assembly of a high-density STS bacterial clone contig spanning the markers D6S1260-D6S1918. Mamm Genome 1998; 9:220-5. [PMID: 9501306 DOI: 10.1007/s003359900729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have generated a detailed physical map of the 6p21.3/p22.1 boundary, using a combination of yeast artificial chromosome (YAC) fragmentation and high-resolution sequence tagged site (STS) content mapping. YACs from the CEPH, St. Louis, and ICRF libraries have been used to construct a 4.5-Mb contig spanning the markers D6S306 to D6S1571. YAC insert sizes were determined by pulsed field gel electrophoresis (PFGE). Chimerism of YACs was determined by fluorescent in situ hybridization (FISH), and their integrity was determined by fingerprinting with Alu-PCR. We have identified 10 new CA repeat loci in this region as well as over 50 novel STSs, several tRNA genes, a new histone H2B gene and the phospholipase D gene. Using these new markers, we have rapidly generated a bacterial clone contig of over 250 kb, spanning the markers D6S1260 to D6S1918 (WI-3111) with STSs spaced on average every 6 kb.
Collapse
Affiliation(s)
- J D Shearman
- MRC Molecular Haematology Unit, Institute of Molecular Medicine, Headington, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hampel A. The hairpin ribozyme: discovery, two-dimensional model, and development for gene therapy. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:1-39. [PMID: 9308362 DOI: 10.1016/s0079-6603(08)60032-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review chronicles the discovery of the hairpin ribozyme, its characterization, and determination of the two-dimensional structure, culminating with its use for human gene therapy as an AIDS therapeutic. The minimal sequence constituting the hairpin ribozyme catalytic domain was identified from a small plant viral satellite RNA. Biochemical characterization showed it to be among the most efficient of all known ribozymes. Mutagenesis determined that the two-dimensional structure had four helices, consisting of 17 Watson-Crick base pairs and one A:G pair for a total of 18 bp. The helices were interspersed with five single-stranded loops. Helices 1 and 2 were located between the ribozyme and substrate, allowing the ribozyme to recognize the substrate. The substrate had a sequence preference of BN*GUC where * is the site of cleavage and N*GUC the substrate loop between these two helices. By using sequences of this type, it was possible to design the ribozyme to base pair with the substrate and cleave heterologous RNA substrates-leading to design of the hairpin ribozyme for gene therapy. The HIV-1 sequence was searched for suitable target sites, and ribozymes were designed, optimized, catalytically characterized, and tested in vivo against HIV-1 targets. Two ribozymes had excellent in vitro catalytic parameters and inhibited in vivo expression of viral proteins by 3-4 logs in tissue culture cells. Viral replication was inhibited as well. They have been developed as human AIDS therapeutics, and will likely be the first ribozymes to be tested as human drugs in clinical trials.
Collapse
Affiliation(s)
- A Hampel
- Department of Biological Sciences, Northern Illinois University, DeKalb 60115, USA
| |
Collapse
|
11
|
Bentley KL, Li WL, VannBerg FO, Choi JY, Yu J, Kao FT, Ruaño G. Detailed analysis of a 17q21 microdissection library by sequence bioinformatics and isolation of region-specific clones. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:353-365. [PMID: 9580249 DOI: 10.1007/bf02674282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A region-specific microdissection library originating from human chromosome 17q21, was constructed using the MboI linker-adaptor microcloning technique. DNA sequencing of 241 microclones resulted in the identification of 74 novel coding sequences, paralogs of known genes, and known, but previously unmapped, genes or expressed sequence tags that were "virtually" mapped to chromosome 17q21. By pooling the microclones as multiplexed hybridization probes, and by virtue of their origin on 17q21, we were able to identify approximately 150 P1 clones from the human Reference Library Data Base P1 Library that potentially map to chromosome 17q21. Verification of the 17q21 location of 16 P1 clones was accomplished by PCR analysis with STS primer pairs to known 17q21 genes or by FISH. Our results demonstrate the substantial advantage of combining the sequence analysis of microclones with multiplex hybridization strategies for gene discovery and mapping specific gene rich regions of the genome.
Collapse
Affiliation(s)
- K L Bentley
- Genaissance Pharmaceuticals, Inc., New Haven, Connecticut 06511, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Nashimoto M. Distribution of both lengths and 5' terminal nucleotides of mammalian pre-tRNA 3' trailers reflects properties of 3' processing endoribonuclease. Nucleic Acids Res 1997; 25:1148-54. [PMID: 9092623 PMCID: PMC146555 DOI: 10.1093/nar/25.6.1148] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian tRNA 3'processing endoribonuclease (3'tRNase) removes 3'extra nucleotides after the discriminator from tRNA precursors. Here I examined how the length of a 3'trailer and the nucleotides on each side of the cleavage site affected 3'processing efficiency. I performed in vitro 3'processing reactions of pre-tRNAArgs with various 3'trailers or various discriminator nucleotides using 3'tRNase purified from mouse FM3A cells or pig liver. On the whole, the efficiency of pre- tRNAArg3'processing by mammalian 3'tRNase decreased as the 3'trailer became longer, except in the case of a 3'trailer composed of CC, CCA or CCA plus 1 or 2 nucleotides, which was not able to be removed at all. The distribution of 3'trailer lengths deduced from mammalian nuclear tRNA genomic sequences reflects this property of 3'tRNase. The cleavage efficiency of pre-tRNAArgs varied depending on the 5'end nucleotide of a 3'trailer in the order G approximately A > U > C. This effect of the 5'end nucleotide was independent of the discriminator nucleotides. The distribution of the 5'end nucleotides of mammalian pre-tRNA 3'trailers reflects this differential 3'processing efficiency.
Collapse
Affiliation(s)
- M Nashimoto
- Life Science Research Laboratory, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227, Japan.
| |
Collapse
|
13
|
Dammann R, Pfeifer GP. Lack of gene- and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes. Mol Cell Biol 1997; 17:219-29. [PMID: 8972202 PMCID: PMC231746 DOI: 10.1128/mcb.17.1.219] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UV light induces DNA lesions which are removed by nucleotide excision repair. Genes transcribed by RNA polymerase II are repaired faster than the flanking chromatin, and the transcribed strand is repaired faster than the coding strand. Transcription-coupled repair is not seen in RNA polymerase I-transcribed human rRNA genes. Since repair of genes transcribed by RNA polymerase III has not been analyzed before, we investigated DNA repair of tRNA genes after irradiation of human fibroblasts with UVC. We studied the repair of UV-induced cyclobutane pyrimidine dimers at nucleotide resolution by ligation-mediated PCR. A single-copy gene encoding selenocysteine tRNA, a tRNA valine gene, and their flanking sequences were analyzed. Protein-DNA footprinting showed that both genes were occupied by regulatory factors in vivo, and Northern blotting and nuclear run-on analysis of the tRNA indicated that these genes were actively transcribed. We found that both genes were repaired slower than RNA polymerase II-transcribed genes. No major difference between repair of the transcribed and the coding DNA strands was detected. Transcribed sequences of the tRNA genes were not repaired faster than flanking sequences. Indeed, several sequence positions in the 5' flanking region of the tRNA(Val) gene were repaired more efficiently than the gene itself. These results indicate that unlike RNA polymerase II, RNA polymerase III has no stimulatory effect on DNA repair. Since tRNA genes are covered by the regulatory factor TFIIIC and RNA polymerase III, these proteins may actually inhibit the DNA's accessibility to repair enzymes.
Collapse
Affiliation(s)
- R Dammann
- Department of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | |
Collapse
|
14
|
Papadimitriou A, Gross HJ. Pre-tRNA 3'-processing in Saccharomyces cerevisiae. Purification and characterization of exo- and endoribonucleases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:747-59. [PMID: 9022706 DOI: 10.1111/j.1432-1033.1996.0747r.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated ribonucleases from Saccharomyces cerevisiae which are active in pre-tRNA 3'-processing in vitro. Two pre-tRNA 3'-exonucleases with molecular masses of 33 and 60 kDa, two pre-tRNA 3'-endonucleases with molecular masses of 45 kDa/60 kDa and 55 kDa and 70-kDa 3'-pre-tRNase were purified from yeast whole cell extracts by several successive chromatographic purification steps. The purified exonucleases are non-processive 3'-exonucleases that catalyze the exonucleolytic processing of 3'-trailer sequences of pre-tRNAs to produce mature tRNAs. The 45-kDa/60-kDa 3'-endonuclease is tRNA-specific and catalyzes the processing of pre-tRNAs in a single endonucleolytic step. Two isoenzymes of this activity (p45 and p60) were identified by chromatography. The second endonuclease, p55, is dependent on monovalent ions and cleaves about three nucleotides downstream the mature 3'-end. All of the purified 3'-pre-tRNases accept homologous as well as heterologous pre-tRNA substrates. Pre-tRNAs carrying a 5'-leader are processed with almost the same efficiency as those lacking this 5'-leader. Mature tRNAs carrying the CCA 3'-sequence and tRNA pseudogene products carrying mutations in the mature domain are processed by the 3'-exonucleases, not by the 3'-endonucleases. The specific endonuclease p45/p60 discriminates between UUUOH as a 3'-flank, which is cleaved, and the CCA 3'-end of mature tRNAs, which is not cleaved. This study suggests that several 3'-pre-tRNases are active on tRNA precursors in vitro and might therefore in pre-tRNA 3'-processing in yeast, partly in a cooperative manner.
Collapse
Affiliation(s)
- A Papadimitriou
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Würzburg, Germany
| | | |
Collapse
|
15
|
Urban C, Smith KN, Beier H. Nucleotide sequences of nuclear tRNA(Cys) genes from Nicotiana and Arabidopsis and expression in HeLa cell extract. PLANT MOLECULAR BIOLOGY 1996; 32:549-52. [PMID: 8980505 DOI: 10.1007/bf00019108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have recently characterized Nicotiana cytoplasmic (cyt) tRNA(GCA)Cys as a novel UGA suppressor tRNA. Here we have isolated its corresponding (NtC1) and a variant (NtC2) gene from a genomic library of Nicotiana rustica. Both tRNA(Cys) genes are efficiently transcribed in HeLa cell nuclear extract and yield mature cyt tRNAs(Cys). Sequence analysis of the upstream region of the RAD51 single-copy gene of the Arabidopsis thaliana genome revealed a cluster of three tRNA(Cys) genes which have the same polarity and comprise highly similar flanking sequences. Of the three Arabidopsis tRNA(Cys) genes only one (i.e. AtC2) appears to code for a functional gene which exhibits an almost identical nucleotide sequence to NtC1. These are the first sequenced nuclear tDNAs(Cys) of plant origin.
Collapse
Affiliation(s)
- C Urban
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Würzburg, Germany
| | | | | |
Collapse
|
16
|
Kaçar Y, Beier H, Gross HJ. The presence of tRNA pseudogenes in mammalia and plants and their absence in yeast may account for different specificities of pre-tRNA processing enzymes. Gene X 1995; 156:129-32. [PMID: 7737506 DOI: 10.1016/0378-1119(95)00079-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Six of 13 cloned members of the human tRNA(Val) gene family code for tRNA(Val) pseudogenes, of which all but one are transcribed efficiently in HeLa cell extracts. Due to single or multiple mismatches in stem regions, the corresponding pre-tRNAs are resistant against the action of human 5'- and 3'-processing enzymes and are thus prevented from being converted to mature tRNAs. Surprisingly, all of them are accurately and efficiently processed to mature-sized tRNA in yeast nuclear extract. This is in agreement with corresponding studies of plant pre-tRNAs which are not processed in wheat germ extract but are rapidly processed in yeast extract. These observations imply that the yeast pre-tRNA 5'- and 3'-maturases do not monitor the three-dimensional structure of their substrates as stringently as mammalian and plant enzymes, possibly because tRNA pseudogenes do not occur in yeast.
Collapse
Affiliation(s)
- Y Kaçar
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | | | |
Collapse
|
17
|
Stange-Thomann N, Thomann HU, Lloyd AJ, Lyman H, Söll D. A point mutation in Euglena gracilis chloroplast tRNA(Glu) uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci U S A 1994; 91:7947-51. [PMID: 8058739 PMCID: PMC44521 DOI: 10.1073/pnas.91.17.7947] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The universal precursor of tetrapyrrole pigments (e.g., chlorophylls and hemes) is 5-aminolevulinic acid (ALA), which in Euglena gracilis chloroplasts is derived via the two-step C5 pathway from glutamate charged to tRNA(Glu). The first enzyme in this pathway, Glu-tRNA reductase (GluTR) catalyzes the reduction of glutamyl-tRNA(Glu) (Glu-tRNA) to glutamate 1-semialdehyde (GSA) with the release of the uncharged tRNA(Glu). The second enzyme, GSA-2,1-aminomutase, converts GSA to ALA. tRNA(Glu) is a specific cofactor for the NADPH-dependent reduction by GluTR, an enzyme that recognizes the tRNA in a sequence-specific manner. This RNA is the normal tRNA(Glu), a dual-function molecule participating both in protein and in ALA and, hence, chlorophyll biosynthesis. A chlorophyll-deficient mutant of E. gracilis (Y9ZNalL) does not synthesize ALA from glutamate, although it contains GluTR and GSA-2,1-aminomutase activity. The tRNA(Glu) isolated from the mutant can still be acylated with glutamate in vitro and in vivo. Furthermore, it supports chloroplast protein synthesis; however, it is a poor substrate for GluTR. Sequence analysis of the tRNA and of its gene revealed a C56-->U mutation in the resulting gene product. C56 is therefore an important identity element for GluTR. Thus, a point mutation in the T loop of tRNA uncouples protein from chlorophyll biosynthesis.
Collapse
Affiliation(s)
- N Stange-Thomann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | | | | | | | | |
Collapse
|
18
|
Teichmann T, Urban C, Beier H. The tRNA(Ser)-isoacceptors and their genes in Nicotiana rustica: genome organization, expression in vitro and sequence analyses. PLANT MOLECULAR BIOLOGY 1994; 24:889-901. [PMID: 8204826 DOI: 10.1007/bf00014443] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The existence of six serine codons results in a complex pattern of tRNA(Ser) isoacceptors in organisms and organelles. According to the original wobble hypothesis, a minimum of three isoacceptors should be sufficient to read the six serine codons. We have isolated five cytoplasmic tRNAs(Ser) from leaves of Nicotiana rustica. Their nucleotide sequences identify them as four different isoacceptors with the anticodons cm5UGA, CGA, IGA and GCU. For tRNA(Ser) with IGA anticodon, two species have been detected which vary only by one nucleotide in the long extra arm. The first three isoacceptors recognize codons of the type UCN whereas the fourth isoacceptor reads the two serine codons AGC and AGU. The tRNA(Ser) sequences were used to design appropriate primers for the amplification of Nicotiana nuclear tRNA(Ser) genes by the polymerase chain reaction (PCR). A total number of eight tRNA(Ser) genes differing in the coding region were thus identified. Selected PCR DNA fragments were then employed as probes for the isolation of the corresponding genes from a nuclear DNA library of N. rustica. Sequence analyses revealed that five of the isolated seven clones contained tRNA(Ser) genes which are identical in sequence with the five cytoplasmic tRNAs(Ser) mentioned above. None of them contains an intervening sequence. This is the first time that all putative cellular tRNA(Ser) isoacceptors and their corresponding genes have been characterized in an eukaryotic organism. Most of the tRNA(Ser) genes are functional as deduced from in vitro transcription and processing studies. Two of the genes yield pre-tRNAs(Ser) which are not or poorly converted to mature tRNA in a plant extract. The approximate tRNA(Ser) gene number was estimated by hybridization of specific DNA probes to Eco RI-cleaved Nicotiana nuclear DNA. The overall hybridization pattern indicates that members of each particular tRNA(Ser) gene family do not appear to be clustered but distributed randomly throughout the Nicotiana genome.
Collapse
Affiliation(s)
- T Teichmann
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | | | |
Collapse
|
19
|
Pirtle IL, Chang YN, Lee MM, Yi HF, Wang SY, McBride OW, Pirtle RM. A human DNA segment encompassing leucine and methionine tRNA pseudogenes localized on chromosome 6. Gene 1993; 136:157-66. [PMID: 8293999 DOI: 10.1016/0378-1119(93)90459-g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A human genomic clone, designated LHtlm8, that strongly hybridized to a mammalian leucine tRNA(IAG) probe, was found to encompass a pair of tRNA pseudogenes that are transcribed in a homologous cell extract. A leucine tRNA(AAG) pseudogene (TRLP1) is 2.1-kb upstream and of opposite polarity to a methionine elongator tRNA(CAU) pseudogene (TRMEP1). TRLP1 has three nucleotide variations (97% identity) from its cognate leucine tRNA(IAG), while TRMEP1 has a 78% identity with its cognate tRNA. Similar to a number of other eukaryotic tRNA pseudogenes, presumptive precursor tRNA transcripts are generated from the two pseudogenes in vitro, but possibly due to their aberrant and unstable secondary and tertiary structures, no detectable mature tRNA products are observed. The two tRNA pseudogenes are encompassed within a 9.6-kb EcoRI fragment that has been assigned to the chromosomal locus, 6pter-q13, by Southern blot hybridization of human-rodent somatic cell hybrid DNAs with probes derived from the cloned tRNA pseudogenes and flanking sequences. A 4.4-kb EcoRI fragment also harbored in clone LHtlm8 was mapped to human chromosome 11, suggesting that the two EcoRI fragments were inadvertantly ligated together during construction of the genomic library.
Collapse
Affiliation(s)
- I L Pirtle
- Department of Biological Sciences, University of North Texas, Denton 76203
| | | | | | | | | | | | | |
Collapse
|
20
|
Fuchs T, Beier D, Beier H. The tRNA(Tyr) multigene family of Nicotiana rustica: genome organization, sequence analyses and expression in vitro. PLANT MOLECULAR BIOLOGY 1992; 20:869-78. [PMID: 1463826 DOI: 10.1007/bf00027158] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Tobacco tRNA(Tyr) genes are mainly organized as a dispersed multigene family as shown by hybridization with a tRNA(Tyr)-specific probe to Southern blots of Eco RI-digested DNA. A Nicotiana genomic library was prepared by Eco RI digestion of nuclear DNA, ligation of the fragments into the vector lambda gtWES.lambda B and in vitro packaging. The phage library was screened with a 5'-labelled synthetic oligonucleotide complementary to nucleotides 18 to 37 of cytoplasmic tobacco tRNA(Tyr). Eleven hybridizing Eco RI fragments ranging in size from 1.7 to 7.5 kb were isolated from recombinant lambda phage and subcloned into pUC19 plasmid. Four of the sequenced tRNA(Tyr) genes code for the known tobacco tRNA1(Tyr) (G psi A) and seven code for tRNA2(Tyr) (G psi A). The two tRNA species differ in one nucleotide pair at the basis of the T psi C stem. Only one tRNA(Tyr) gene (pNtY5) contains a point mutation (T54-->A54). Comparison of the intervening sequences reveals that they differ considerably in length and sequence. Maturation of intron-containing pre-tRNAs was studied in HeLa and wheat germ extracts. All pre-tRNAs(Tyr)--with one exception--are processed and spliced in both extracts. The tRNA(Tyr) gene encoded by pNtY5 is transcribed efficiently in HeLa extract but processing of the pre-tRNA is impaired.
Collapse
Affiliation(s)
- T Fuchs
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, FRG
| | | | | |
Collapse
|
21
|
Kaçar Y, Thomann HU, Gross HJ. The first human genes for tRNA(ArgICG), tRNA(GlyUCC), and tRNA(ThrIGU) and more tRNA(Val) pseudogenes: expression and pre-tRNA maturation in HeLa cell-free extracts. DNA Cell Biol 1992; 11:781-90. [PMID: 1457046 DOI: 10.1089/dna.1992.11.781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A functional tRNA(Val) gene, which codes for the major tRNA(ValIAC) isoacceptor species, and three new tRNA(Val) pseudogenes have been isolated from human genomic DNA. Two tRNA(Val) pseudogenes and a tRNA(Val) variant gene were found to be associated with tRNA genes encoding tRNA(ArgICG), tRNA(GlyUCC), and tRNA(ThrIGU), respectively, on distinct DNA fragments. All tRNA genes, including the pseudogenes, are actively transcribed in HeLa nuclear extract. Pre-tRNAs of tRNA(Val), tRNA(Arg), tRNA(Thr), and tRNA(Gly) genes are correctly processed to mature-sized tRNAs, whereas the three tRNA(Val) pseudogenes yield stable pre-tRNAs in vitro. These findings reveal that, together with the three known pseudogenes, half of the members of the human tRNA(Val) gene family are pseudogenes, all of which are active in homologous nuclear extracts in vitro and presumably also in vivo.
Collapse
Affiliation(s)
- Y Kaçar
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | | | |
Collapse
|
22
|
Beier D, Beier H. Expression of variant nuclear Arabidopsis tRNA(Ser) genes and pre-tRNA maturation differ in HeLa, yeast and wheat germ extracts. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:201-8. [PMID: 1603062 DOI: 10.1007/bf00587580] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have recently identified a tRNA gene cluster in the Arabidopsis nuclear genome. One tRNA(Ser) (AGA) gene and two tRNA(Tyr) (GTA) genes occur in tandem arrangement on a 1.5 kb unit that is amplified about 20-fold at a single chromosomal site. Here we have studied the in vitro expression of seven individually cloned tRNA(Ser) genes (pAtS1 to pAtS7) derived from this cluster. Five out of the seven tRNA(Ser) genes contain point mutations in the coding region which have in part adverse effects on the expression of these genes in different cell-free systems: (i) C10 and A62 in plant tRNA(Ser) genes, which correspond to G10 and C62, respectively, in all known vertebrate tRNA genes, result in a reduced transcription efficiency in HeLa but not in yeast extract. This indicates that yeast RNA polymerase III tolerates nucleotide substitutions at positions 10 [5' internal control region (ICR)] and 62 (3' ICR), whereas the vertebrate RNA polymerase III requires a more stringent consensus sequence. (ii) Processing of a pre-tRNA(Ser) with a mismatch in the aminoacyl stem is impaired in HeLa, yeast and wheat germ extracts, however, a mismatch in the anticodon stem is deleterious for HeLa and wheat germ but not for yeast processing enzymes. The unexpectedly high number of potential tRNA(Ser) pseudogenes in the cluster - quite in contrast to the tRNA(Ser) genes which mainly code for functional tRNAs - suggested that tRNA(Ser) (AGA) genes also occur elsewhere in the genome. We present evidence that single copies of tRNA(Ser) (AGA) genes do indeed exist outside the tRNA gene cluster.
Collapse
Affiliation(s)
- D Beier
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, FRG
| | | |
Collapse
|
23
|
Wilhelm ML, Keith G, Fix C, Wilhelm FX. Pleiotropic effect of a point mutation in the yeast SUP4-o tRNA gene: in vivo pre-tRNA processing in S. cerevisiae. Nucleic Acids Res 1992; 20:791-6. [PMID: 1542574 PMCID: PMC312019 DOI: 10.1093/nar/20.4.791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The expression of mutant tyrosine-inserting ochre suppressor SUP4-o tRNA genes in vivo in S. cerevisiae was examined as a basis for further studies of tRNA transcription and processing. In vivo yeast precursor tRNAs have been identified by filter hybridization and primer extension analysis. We have previously shown that a mutant SUP4-o tRNA gene with a C52----A52 transversion at positive 52 (C52----A52(+IVS) allele) was transcribed but that the primary transcript was not processed correctly. We show here that 5' and 3' end processing as well as splicing are defective for this mutant but that the 5' end processing is restored when the intron is removed from the gene by oligonucleotide directed mutagenesis (C52----A52(-IVS) allele). Our results imply that the C52----A52 transversion by itself cannot account for the lack of susceptibility to RNase P cleavage but that the overall tertiary structure of the mutant tRNA precursor is destabilized by the intron/anticodon stem. A second consequence of the C52----A52 transversion is to prevent complete maturation of the tRNA precursor at its 3' end since intermediates containing incompletely processed 3' trailers accumulate in the yeast cells transformed with the C52----A52(-IVS) allele. A correct structure of the T stem might therefore define a structural feature required for the recognition of the 3' processing activity.
Collapse
Affiliation(s)
- M L Wilhelm
- Institut de Biologie Moléculaire, CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
24
|
Hofmann J, Schumann G, Borschet G, Gösseringer R, Bach M, Bertling WM, Marschalek R, Dingermann T. Transfer RNA genes from Dictyostelium discoideum are frequently associated with repetitive elements and contain consensus boxes in their 5' and 3'-flanking regions. J Mol Biol 1991; 222:537-52. [PMID: 1660925 DOI: 10.1016/0022-2836(91)90495-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A total of 68 different tRNA genes from the cellular slime mold Dictyostelium discoideum have been isolated and characterized. Although these tRNA genes show features common to typical nuclear tRNA genes from other organisms, several unique characteristics are apparent: (1) the 5'-proximal flanking region is very similar for most of the tRNA genes; (2) more than 80% of the tRNA genes contain an "ex-B motif" within their 3'-flanking region, which strongly resembles characteristics of the consensus sequence of a T-stem/T-loop region (B-box) of a tRNA gene; (3) probably more than 50% of the tRNA genes in certain D. discoideum strains are associated with a retrotransposon, termed DRE (Dictyostelium repetitive element), or with a transposon, termed Tdd-3 (Transposon Dictyostelium discoideum). DRE always occurs 50 (+/- 3) nucleotides upstream and Tdd-3 always occurs 100 (+/- 20) nucleotides downstream from the tRNA gene. D. discoideum tRNA genes are organized in multicopy gene families consisting of 5 to 20 individual genes. Members of a particular gene family are identical within the mature tRNA coding region while flanking sequences are idiosyncratic.
Collapse
Affiliation(s)
- J Hofmann
- Institut für Biochemie, Medizinische Fakultät Universität Erlangen-Nürnberg, F.R.G
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chee MS, Rizos H, Henderson BR, Baker R, Stewart TS. Subfamilies of serine tRNA genes in the bovine genome. MOLECULAR & GENERAL GENETICS : MGG 1991; 231:106-12. [PMID: 1753940 DOI: 10.1007/bf00293828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A bovine tRNA gene cluster has been characterized and the sequences of four tDNAs determined. Two of the tDNAs could encode tRNA(SerIGA), one tRNA(SerUGA), and the fourth tRNA(GlnCUG). The three serine tDNAs representing the UCN codon isoacceptor family are almost identical. However, the sequence of the tDNA(SerTGA) differs from a previously sequenced bovine tDNA(SerTGA) at 12 positions (ca. 14%). This finding suggests that in the bovine genome, two subfamilies of genes might encode tRNA(SerUGA). It also raises the possibility that new genes for a specific UCN isoacceptor might arise from the genes of a different isoacceptor, and could explain previously observed differences between species in the anticodons of coevolving pairs of tRNAs(SerUCN). The gene cluster also contains complete and partial copies, and fragments, of the BCS (bovine consensus sequence) SINE (short interspersed nuclear element) family, six examples of which were sequenced. Some of these elements occur in close proximity to two of the serine tDNAs.
Collapse
Affiliation(s)
- M S Chee
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | |
Collapse
|
26
|
Mans RM, Pleij CW, Bosch L. tRNA-like structures. Structure, function and evolutionary significance. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 201:303-24. [PMID: 1935928 DOI: 10.1111/j.1432-1033.1991.tb16288.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R M Mans
- Department of Biochemistry, State University of Leiden, The Netherlands
| | | | | |
Collapse
|
27
|
Sprinzl M, Dank N, Nock S, Schön A. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 1991; 19 Suppl:2127-71. [PMID: 2041802 PMCID: PMC331350 DOI: 10.1093/nar/19.suppl.2127] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- M Sprinzl
- Laboratorium für Biochemie, Universität Bayreuth, FRG
| | | | | | | |
Collapse
|
28
|
Schmutzler C, Gross HJ. Genes, variant genes, and pseudogenes of the human tRNA(Val) gene family are differentially expressed in HeLa cells and in human placenta. Nucleic Acids Res 1990; 18:5001-8. [PMID: 2402432 PMCID: PMC332105 DOI: 10.1093/nar/18.17.5001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pre-tRNAs(Val) were identified in unfractionated tRNA preparations from HeLa cells and human placenta and their 5' leader structures were deduced from the nucleotide sequences of the corresponding cDNAs. Several of these precursors can be assigned to nine out of the eleven members of the human tRNA(Val) gene family characterized so far, which demonstrates that these gene loci are actively transcribed in vivo. Among the expressed genes there are (a) genes for the two known tRNA(Val) isoacceptor species from human placenta, (b) gene variants that exhibit sequence alterations as compared to conventional genes, and (c) pseudogenes that produce processing-deficient precursors which are not matured to tRNAs. The transcription products of several yet unknown tRNA(Val) genes have also been detected. Furthermore, different expression patterns are observed in the two cell types studied. These data allow for the first time an insight into the in vivo expression of a human tRNA gene family.
Collapse
Affiliation(s)
- C Schmutzler
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, FRG
| | | |
Collapse
|