1
|
Wang ZQ, Yang Y, Zhang JY, Zeng X, Zhang CC. Global translational control by the transcriptional repressor TrcR in the filamentous cyanobacterium Anabaena sp. PCC 7120. Commun Biol 2023; 6:643. [PMID: 37322092 PMCID: PMC10272220 DOI: 10.1038/s42003-023-05012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Transcriptional and translational regulations are important mechanisms for cell adaptation to environmental conditions. In addition to house-keeping tRNAs, the genome of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena) has a long tRNA operon (trn operon) consisting of 26 genes present on a megaplasmid. The trn operon is repressed under standard culture conditions, but is activated under translational stress in the presence of antibiotics targeting translation. Using the toxic amino acid analog β-N-methylamino-L-alanine (BMAA) as a tool, we isolated and characterized several BMAA-resistance mutants from Anabaena, and identified one gene of unknown function, all0854, named as trcR, encoding a transcription factor belonging to the ribbon-helix-helix (RHH) family. We provide evidence that TrcR represses the expression of the trn operon and is thus the missing link between the trn operon and translational stress response. TrcR represses the expression of several other genes involved in translational control, and is required for maintaining translational fidelity. TrcR, as well as its binding sites, are highly conserved in cyanobacteria, and its functions represent an important mechanism for the coupling of the transcriptional and translational regulations in cyanobacteria.
Collapse
Affiliation(s)
- Zi-Qian Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
- Institute AMU-WUT, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Al Mamun AAM, Kissoon K, Kishida K, Shropshire WC, Hanson B, Christie PJ. IncFV plasmid pED208: Sequence analysis and evidence for translocation of maintenance/leading region proteins through diverse type IV secretion systems. Plasmid 2022; 123-124:102652. [PMID: 36228885 PMCID: PMC10018792 DOI: 10.1016/j.plasmid.2022.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
Two phylogenetically distantly-related IncF plasmids, F and pED208, serve as important models for mechanistic and structural studies of F-like type IV secretion systems (T4SSFs) and F pili. Here, we present the pED208 sequence and compare it to F and pUMNF18, the closest match to pED208 in the NCBI database. As expected, gene content of the three cargo regions varies extensively, although the maintenance/leading regions (MLRs) and transfer (Tra) regions also carry novel genes or motifs with predicted modulatory effects on plasmid stability, dissemination and host range. By use of a Cre recombinase assay for translocation (CRAfT), we recently reported that pED208-carrying donors translocate several products of the MLR (ParA, ParB1, ParB2, SSB, PsiB, PsiA) intercellularly through the T4SSF. Here, we extend these findings by reporting that pED208-carrying donors translocate 10 additional MLR proteins during conjugation. In contrast, two F plasmid-encoded toxin components of toxin-antitoxin (TA) modules, CcdB and SrnB, were not translocated at detectable levels through the T4SSF. Remarkably, most or all of the pED208-encoded MLR proteins and CcdB and SrnB were translocated through heterologous T4SSs encoded by IncN and IncP plasmids pKM101 and RP4, respectively. Together, our sequence analyses underscore the genomic diversity of the F plasmid superfamily, and our experimental data demonstrate the promiscuous nature of conjugation machines for protein translocation. Our findings raise intriguing questions about the nature of T4SS translocation signals and of the biological and evolutionary consequences of conjugative protein transfer.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| | - Kimberly Kissoon
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - William C Shropshire
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Blake Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| |
Collapse
|
3
|
Yui Eto K, Kwong SM, LaBreck PT, Crow JE, Traore DAK, Parahitiyawa N, Fairhurst HM, Merrell DS, Firth N, Bond CS, Ramsay JP. Evolving origin-of-transfer sequences on staphylococcal conjugative and mobilizable plasmids-who's mimicking whom? Nucleic Acids Res 2021; 49:5177-5188. [PMID: 33939800 PMCID: PMC8136818 DOI: 10.1093/nar/gkab303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022] Open
Abstract
In Staphylococcus aureus, most multiresistance plasmids lack conjugation or mobilization genes for horizontal transfer. However, most are mobilizable due to carriage of origin-of-transfer (oriT) sequences mimicking those of conjugative plasmids related to pWBG749. pWBG749-family plasmids have diverged to carry five distinct oriT subtypes and non-conjugative plasmids have been identified that contain mimics of each. The relaxasome accessory factor SmpO, encoded by each conjugative plasmid, determines specificity for its cognate oriT. Here we characterized the binding of SmpO proteins to each oriT. SmpO proteins predominantly formed tetramers in solution and bound 5′-GNNNNC-3′ sites within each oriT. Four of the five SmpO proteins specifically bound their cognate oriT. An F7K substitution in pWBG749 SmpO switched oriT-binding specificity in vitro. In vivo, the F7K substitution reduced but did not abolish self-transfer of pWBG749. Notably, the substitution broadened the oriT subtypes that were mobilized. Thus, this substitution represents a potential evolutionary intermediate with promiscuous DNA-binding specificity that could facilitate a switch between oriT specificities. Phylogenetic analysis suggests pWBG749-family plasmids have switched oriT specificity more than once during evolution. We hypothesize the convergent evolution of oriT specificity in distinct branches of the pWBG749-family phylogeny reflects indirect selection pressure to mobilize plasmids carrying non-cognate oriT-mimics.
Collapse
Affiliation(s)
- Karina Yui Eto
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.,Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Patrick T LaBreck
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, MD 20814, USA
| | - Jade E Crow
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Daouda A K Traore
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Faculty of Natural Sciences, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK.,Life Sciences Group, Institut Laue Langevin, Grenoble 38000, France.,Faculté des Sciences et Techniques, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako BP E423, Mali
| | | | | | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, MD 20814, USA
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Charles S Bond
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Joshua P Ramsay
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.,Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Miguel-Arribas A, Hao JA, Luque-Ortega JR, Ramachandran G, Val-Calvo J, Gago-Córdoba C, González-Álvarez D, Abia D, Alfonso C, Wu LJ, Meijer WJJ. The Bacillus subtilis Conjugative Plasmid pLS20 Encodes Two Ribbon-Helix-Helix Type Auxiliary Relaxosome Proteins That Are Essential for Conjugation. Front Microbiol 2017; 8:2138. [PMID: 29163424 PMCID: PMC5675868 DOI: 10.3389/fmicb.2017.02138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022] Open
Abstract
Bacterial conjugation is the process by which a conjugative element (CE) is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer (oriT), where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis. We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1LS20 and aux2LS20 , and which we show are essential for conjugation. Both Aux1LS20 and Aux2LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1LS20 and Aux2LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriTLS20 , although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1LS20 and/or Aux2LS20 are located upstream of almost 400 relaxase genes of the RelLS20 family (MOBL) of relaxases. Thus, Aux1LS20 and Aux2LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Jian-An Hao
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
- The Institute of Seawater Desalination and Multipurpose Utilization (SOA), Tianjin, China
| | | | - Gayetri Ramachandran
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Jorge Val-Calvo
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - César Gago-Córdoba
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Daniel González-Álvarez
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - David Abia
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Godziszewska J, Moncalián G, Cabezas M, Bartosik AA, de la Cruz F, Jagura-Burdzy G. Concerted action of NIC relaxase and auxiliary protein MobC in RA3 plasmid conjugation. Mol Microbiol 2016; 101:439-56. [PMID: 27101775 DOI: 10.1111/mmi.13401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 11/29/2022]
Abstract
Conjugative transfer of the broad-host-range RA3 plasmid, the archetype of the IncU group, relies on the relaxase NIC that belongs to the as yet uncharacterized MOBP4 subfamily. NIC contains the signature motifs of HUH relaxases involved in Tyr nucleophilic attack. However, it differs in the residue involved in His activation for cation coordination and was shown here to have altered divalent cation requirements. NIC is encoded in the mobC-nic operon preceded directly by oriT, where mobC encodes an auxiliary transfer protein with a dual function: autorepressor and stimulator of conjugative transfer. Here an interplay between MobC and NIC was demonstrated. MobC is required for efficient NIC cleavage of oriT in supercoiled DNA whereas NIC assists MobC in repression of the mobC-nic operon. A 7-bp arm of IR3 (IR3a) was identified as the binding site for NIC and the crucial nucleotides in IR3a for NIC recognition were defined. Fully active oriTRA3 was delineated to a 47-bp DNA segment encompassing a conserved cleavage site sequence, the NIC binding site IR3a and the MobC binding site OM . This highly efficient RA3 conjugative system with defined requirements for minimal oriT could find ample applications in biotechnology and computational biology where simple conjugative systems are needed.
Collapse
Affiliation(s)
- Jolanta Godziszewska
- Institute of Biochemistry and Biophysics PAS, Department of Microbial Biochemistry, 02-106 Warsaw, Poland.,Warsaw University of Life Sciences (WULS-SGGW), Faculty of Human Nutrition and Consumer Sciences, Laboratory of Food Chemistry, 02-776, Warsaw, Poland
| | - Gabriel Moncalián
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Matilde Cabezas
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Aneta A Bartosik
- Institute of Biochemistry and Biophysics PAS, Department of Microbial Biochemistry, 02-106 Warsaw, Poland
| | - Fernando de la Cruz
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics PAS, Department of Microbial Biochemistry, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 2014; 39:81-95. [PMID: 25154632 DOI: 10.1111/1574-6976.12085] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation is one of the main mechanisms for horizontal gene transfer. It constitutes a key element in the dissemination of antibiotic resistance and virulence genes to human pathogenic bacteria. DNA transfer is mediated by a membrane-associated macromolecular machinery called Type IV secretion system (T4SS). T4SSs are involved not only in bacterial conjugation but also in the transport of virulence factors by pathogenic bacteria. Thus, the search for specific inhibitors of different T4SS components opens a novel approach to restrict plasmid dissemination. This review highlights recent biochemical and structural findings that shed new light on the molecular mechanisms of DNA and protein transport by T4SS. Based on these data, a model for pilus biogenesis and substrate transfer in conjugative systems is proposed. This model provides a renewed view of the mechanism that might help to envisage new strategies to curb the threating expansion of antibiotic resistance.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Jorge Ripoll-Rozada
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Alejandro Peña
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| |
Collapse
|
7
|
Godziszewska J, Kulińska A, Jagura-Burdzy G. MobC of conjugative RA3 plasmid from IncU group autoregulates the expression of bicistronic mobC-nic operon and stimulates conjugative transfer. BMC Microbiol 2014; 14:235. [PMID: 25187417 PMCID: PMC4175270 DOI: 10.1186/s12866-014-0235-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022] Open
Abstract
Background The IncU conjugative transfer module represents highly efficient promiscuous system widespread among conjugative plasmids of different incompatibility groups. Despite its frequent occurrence the mechanisms of relaxosome formation/action are far from understood. Here we analyzed the putative transfer auxiliary protein MobC of the conjugative plasmid RA3 from the IncU incompatibility group. Results MobC is a protein of 176 amino acids encoded in the bicistronic operon mobC-nic adjacent to oriT. MobC is homologous to prokaryotic transcription factors of the ribbon-helix-helix (RHH) superfamily. Conserved LxxugxNlNQiaxxLn motif clusters MobC with the clade of conjugative transfer auxilliary proteins of MobP relaxases. MobC forms dimers in solution and autoregulates the expression of mobCp by binding to an imperfect palindromic sequence (OM) located between putative -35 and -10 motifs of the promoter. Medium-copy number test plasmid containing the oriT-mobCp region is mobilized with a high frequency by the RA3 conjugative system. The mutations introduced into OM that abolished MobC binding in vitro decreased 2-3 fold the frequency of mobilization of the test plasmids. The deletion of OM within the RA3 conjugative module had no effect on transfer if the mobC-nic operon was expressed from the heterologous promoter. If only nic was expressed from the heterologous promoter (no mobC) the conjugative transfer frequency of such plasmid was 1000-fold lower. Conclusion The MobC is an auxiliary transfer protein of dual function. It autoregulates the expression of mobC-nic operon while its presence significantly stimulates transfer efficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0235-1) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Wong JJW, Lu J, Glover JNM. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective. Mol Microbiol 2012; 85:602-17. [PMID: 22788760 DOI: 10.1111/j.1365-2958.2012.08131.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tra operon of the prototypical F plasmid and its relatives enables transfer of a copy of the plasmid to other bacterial cells via the process of conjugation. Tra proteins assemble to form the transferosome, the transmembrane pore through which the DNA is transferred, and the relaxosome, a complex of DNA-binding proteins at the origin of DNA transfer. F-like plasmid conjugation is characterized by a high degree of plasmid specificity in the interactions of tra components, and is tightly regulated at the transcriptional, translational and post-translational levels. Over the past decade, X-ray crystallography of conjugative components has yielded insights into both specificity and regulatory mechanisms. Conjugation is repressed by FinO, an RNA chaperone which increases the lifetime of the small RNA, FinP. Recent work has resulted in a detailed model of FinO/FinP interactions and the discovery of a family of FinO-like RNA chaperones. Relaxosome components include TraI, a relaxase/helicase, and TraM, which mediates signalling between the transferosome and relaxosome for transfer initiation. The structures of TraI and TraM bound to oriT DNA reveal the basis of specific recognition of DNA for their cognate plasmid. Specificity also exists in TraI and TraM interactions with the transferosome protein TraD.
Collapse
Affiliation(s)
- Joyce J W Wong
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | | | |
Collapse
|
9
|
Varsaki A, Lamb HK, Eleftheriadou O, Vandera E, Thompson P, Moncalián G, de la Cruz F, Hawkins AR, Drainas C. Interaction between relaxase MbeA and accessory protein MbeC of the conjugally mobilizable plasmid ColE1. FEBS Lett 2012; 586:675-9. [DOI: 10.1016/j.febslet.2012.01.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/24/2012] [Accepted: 01/27/2012] [Indexed: 02/01/2023]
|
10
|
Giusti MDLÁ, Pistorio M, Lozano MJ, Tejerizo GAT, Salas ME, Martini MC, López JL, Draghi WO, Del Papa MF, Pérez-Mendoza D, Sanjuán J, Lagares A. Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria. Plasmid 2012; 67:199-210. [PMID: 22233546 DOI: 10.1016/j.plasmid.2011.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 11/15/2022]
Abstract
Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own helper functions. The results present an as-yet-unclassified and seemingly ubiquitous conjugal system that provides a mechanistic support for the HGT between sympatric rhizobia of Medicago roots, and between other soil and rhizospheric bacteria.
Collapse
Affiliation(s)
- María de los Ángeles Giusti
- Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
de la Cruz F, Frost LS, Meyer RJ, Zechner EL. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 2010; 34:18-40. [PMID: 19919603 DOI: 10.1111/j.1574-6976.2009.00195.x] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation in Gram-negative bacteria is triggered by a signal that connects the relaxosome to the coupling protein (T4CP) and transferosome, a type IV secretion system. The relaxosome, a nucleoprotein complex formed at the origin of transfer (oriT), consists of a relaxase, directed to the nic site by auxiliary DNA-binding proteins. The nic site undergoes cleavage and religation during vegetative growth, but this is converted to a cleavage and unwinding reaction when a competent mating pair has formed. Here, we review the biochemistry of relaxosomes and ponder some of the remaining questions about the nature of the signal that begins the process.
Collapse
|
12
|
Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009; 73:775-808. [PMID: 19946141 PMCID: PMC2786583 DOI: 10.1128/mmbr.00023-09] [Citation(s) in RCA: 524] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.
Collapse
Affiliation(s)
- Cristina E. Alvarez-Martinez
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| |
Collapse
|
13
|
Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon-helix-helix DNA-binding fold. Proc Natl Acad Sci U S A 2009; 106:9643-8. [PMID: 19482939 DOI: 10.1073/pnas.0812199106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium tumefaciens VirC2 stimulates processing of single-stranded T-DNA that is translocated into plants to induce tumor formation, but how VirC2 functions is unclear. Here, we report the 1.7-A X-ray crystal structure of its trypsin-resistant C-terminal domain, VirC2(82-202), which reveals a form of the ribbon-helix-helix (RHH) DNA-binding fold contained within a single polypeptide chain. DNA-binding assays and mutagenesis indicate that VirC2 uses this RHH fold to bind double-stranded DNA but not single-stranded DNA. Mutations that severely affect VirC2 DNA binding are highly deleterious for both T-DNA transfer into yeast and the virulence of A. tumefaciens in different plants including Nicotiana glauca and Kalanchoe daigremontiana. These data suggest that VirC2 enhances T-DNA transfer and virulence through DNA binding with its RHH fold. The RHH fold of VirC2 is the first crystal structure representing a group of predicted RHH proteins that facilitate endonucleolytic processing of DNA for horizontal gene transfer.
Collapse
|
14
|
Analysis of ColE1 MbeC unveils an extended ribbon-helix-helix family of nicking accessory proteins. J Bacteriol 2008; 191:1446-55. [PMID: 19114496 DOI: 10.1128/jb.01342-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MbeC is a 13-kDa ColE1-encoded protein required for efficient mobilization of ColE1, a plasmid widely used in cloning vector technology. MbeC protein was purified and used for in vitro DNA binding, which showed that it binds specifically double-stranded DNA (dsDNA) containing the ColE1 oriT. Amino acid sequence comparison and secondary structure prediction imply that MbeC is related to the ribbon-helix-helix (RHH) protein family. Alignment with RHH members pointed to a conserved arginine (R13 in MbeC) that was mutated to alanine. The mutant MbeC(R13A) was unable to bind either single-stranded DNA or dsDNA. Limited proteolysis fragmented MbeC in two stable folding domains: the N-terminal domain, which contains the RHH motif, and the C-terminal domain, which comprises a signature shared by nicking accessory proteins. The results indicate that MbeC plays a similar role in conjugation as TraY and TrwA of plasmids F and R388, respectively. Thus, it appears that an extended, possibly universal mechanism of DNA conjugative processing exists, in which oriT-processing is carried out by relaxases assisted by homologous nicking accessory proteins. This mechanism seems to be shared by all major conjugative systems analyzed thus far.
Collapse
|
15
|
Yoshida H, Furuya N, Lin YJ, Güntert P, Komano T, Kainosho M. Structural basis of the role of the NikA ribbon-helix-helix domain in initiating bacterial conjugation. J Mol Biol 2008; 384:690-701. [PMID: 18929573 DOI: 10.1016/j.jmb.2008.09.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 11/26/2022]
Abstract
Conjugation is a fundamental process for the rapid evolution of bacteria, enabling them, for example, to adapt to various environmental conditions or to acquire multi-drug resistance. NikA is one of the relaxosomal proteins that initiate the intercellular transfer of the R64 conjugative plasmid with the P-type origin of transfer, oriT. The three-dimensional structure of the N-terminal 51 residue fragment of NikA, NikA(1-51), which binds to the 17-bp repeat A sequence in R64 oriT, was determined by NMR to be a homodimer composed of two identical ribbon-helix-helix (RHH) domains, which are commonly found in transcriptional repressors. The structure determination of NikA(1-51) was achieved using automated NOE assignment with CYANA, without measuring filtered NOESY experiments to distinguish between the intra- and intermolecular NOEs, and without any a priori assumption on the tertiary or quaternary structure of the protein. Mutational experiments revealed that the DNA-binding region of the NikA(1-51) dimer is an anti-parallel beta-sheet composed of one beta-strand from each of the N-terminal ends of the two domains. Various biochemical experiments have indicated that the full length NikA(1-109) exists as a homotetramer formed through an alpha-helical domain at the C-terminus, and that the anti-parallel beta-sheets of both dimeric domains bind to two homologous 5 bp internal repeats within repeat A. As a tetramer, the full length NikA(1-109) showed higher affinity to repeat A and bent the oriT duplex more strongly than NikA(1-51) did. Many RHH proteins are involved in specific DNA recognition and in protein-protein interactions. The discovery of the RHH fold in NikA suggests that NikA binds to oriT and interacts with the relaxase, NikB, which is unable to bind to the nick region in oriT without NikA.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji Tokyo 192-0397, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The ribbon-helix-helix (RHH) superfamily of transcription factors uses a conserved three-dimensional structural motif to bind to DNA in a sequence-specific manner. This functionally diverse protein superfamily regulates the transcription of genes that are involved in the uptake of metals, amino-acid biosynthesis, cell division, the control of plasmid copy number, the lytic cycle of bacteriophages and, perhaps, many other cellular processes. In this Analysis, the structures of different RHH transcription factors are compared in order to evaluate the sequence motifs that are required for RHH-domain folding and DNA binding, as well as to identify conserved protein-DNA interactions in this superfamily.
Collapse
Affiliation(s)
- Eric R Schreiter
- Department of Chemistry and Protein Research Center, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico 00931, Puerto Rico.
| | | |
Collapse
|
17
|
Marincs F, Manfield I, Stead J, Mcdowall K, Stockley P. Transcript analysis reveals an extended regulon and the importance of protein-protein co-operativity for the Escherichia coli methionine repressor. Biochem J 2006; 396:227-34. [PMID: 16515535 PMCID: PMC1462706 DOI: 10.1042/bj20060021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have used DNA arrays to investigate the effects of knocking out the methionine repressor gene, metJ, on the Escherichia coli transcriptome. We assayed the effects in the knockout strain of supplying wild-type or mutant MetJ repressors from an expression plasmid, thus establishing a rapid assay for in vivo effects of mutations characterized previously in vitro. Repression is largely restricted to known genes involved in the biosynthesis and uptake of methionine. However, we identified a number of additional genes that are significantly up-regulated in the absence of repressor. Sequence analysis of the 5' promoter regions of these genes identified plausible matches to met-box sequences for three of these, and subsequent electrophoretic mobility-shift assay analysis showed that for two such loci their repressor affinity is higher than or comparable with the known metB operator, suggesting that they are directly regulated. This can be rationalized for one of the loci, folE, by the metabolic role of its encoded enzyme; however, the links to the other regulated loci are unclear, suggesting both an extension to the known met regulon and additional complexity to the role of the repressor. The plasmid gene replacement system has been used to examine the importance of protein-protein co-operativity in operator saturation using the structurally characterized mutant repressor, Q44K. In vivo, there are detectable reductions in the levels of regulation observed, demonstrating the importance of balancing protein-protein and protein-DNA affinity.
Collapse
Affiliation(s)
- Ferenc Marincs
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Iain W. Manfield
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Jonathan A. Stead
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Kenneth J. Mcdowall
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Abstract
Nickel is an essential nutrient for selected microorganisms where it participates in a variety of cellular processes. Many microbes are capable of sensing cellular nickel ion concentrations and taking up this nutrient via nickel-specific permeases or ATP-binding cassette-type transport systems. The metal ion is specifically incorporated into nickel-dependent enzymes, often via complex assembly processes requiring accessory proteins and additional non-protein components, in some cases accompanied by nucleotide triphosphate hydrolysis. To date, nine nickel-containing enzymes are known: urease, NiFe-hydrogenase, carbon monoxide dehydrogenase, acetyl-CoA decarbonylase/synthase, methyl coenzyme M reductase, certain superoxide dismutases, some glyoxylases, aci-reductone dioxygenase, and methylenediurease. Seven of these enzymes have been structurally characterized, revealing distinct metallocenter environments in each case.
Collapse
Affiliation(s)
- Scott B Mulrooney
- Department of Microbiology and Molecular Genetics, 6193 Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
19
|
Yoburn JC, Deb S, Manfield IW, Stockley PG, Van Vranken DL. A biaryl peptide crosslink in a MetJ peptide model confers cooperative, nonspecific binding to DNA that ablates both repressor binding and in vitro transcription. Bioorg Med Chem 2003; 11:811-6. [PMID: 12614866 DOI: 10.1016/s0968-0896(02)00583-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The MetJ repressor is the archetypal example of the beta-ribbon-helix-helix DNA binding motif. A model of the MetJ beta-ribbon (residues 22-28) was prepared by forming a dityrosine crosslinked dimer from the heptapeptide KKYTVSI. Using SPR, the peptide dimer 2 was shown to bind to dsDNA under physiologically relevant conditions, whereas the monomeric peptide did not. The peptide dimer appeared to inhibit binding of the MetJ repressor to natural met operators. Based on the stoichiometry of binding, the binding of peptide dimer 2 seems both highly co-operative and to lack sequence specificity. Peptide binding also appears to prevent transcription in vitro.
Collapse
Affiliation(s)
- Joshua C Yoburn
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
F factor TraY, a ribbon-helix-helix DNA-binding protein, performs two roles in bacterial conjugation. TraY binds the F origin of transfer (oriT) to promote nicking of plasmid DNA prior to conjugative transfer. TraY also binds the P(Y) promoter to up-regulate tra gene expression. The two plasmid regions bound by TraY share limited sequence identity, yet TraY binds them with similar affinities. TraY recognition of the two sites was first probed using in vitro footprinting methods. Hydroxyl radical footprinting at both oriT and P(Y) sites indicated that bound TraY protected the DNA backbone bordering three adjacent DNA subsites. Analytical ultracentrifugation results for TraY:oligonucleotide complexes were consistent with two of these subsites being bound cooperatively, and the third being occupied at higher TraY concentrations. Methylation protection and interference footprinting identified several guanine bases contacted by or proximal to bound TraY, most located within these subsites. TraY affinity for variant oriT sequences with base substitutions at or near these guanine bases suggested that two of the three subsites correspond to high-affinity, cooperatively bound imperfect inverted GA(G/T)A repeats. Altering the spacing or orientation of these sites reduced binding. TraY mutant R73A failed to protect two symmetry-related oriT guanine bases in these repeats from methylation, identifying possible direct TraY-DNA contacts. The third subsite appears to be oriented as an imperfect direct repeat with its adjacent subsite, although base substitutions at this subsite did not reduce binding. Although unusual for ribbon-helix-helix proteins, this binding site arrangement occurs at both F TraY sites, consistent with it being functionally relevant.
Collapse
Affiliation(s)
- Pamela L Lum
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
21
|
He YY, Garvie CW, Elworthy S, Manfield IW, McNally T, Lawrenson ID, Phillips SEV, Stockley PG. Structural and functional studies of an intermediate on the pathway to operator binding by Escherichia coli MetJ. J Mol Biol 2002; 320:39-53. [PMID: 12079333 DOI: 10.1016/s0022-2836(02)00423-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the results of in vitro DNA-binding assays for a mutant protein (Q44K) of the E. coli methionine repressor, MetJ, as well as the crystal structure at 2.2 A resolution of the apo-mutant bound to a 10-mer oligonucleotide encompassing an 8 bp met-box sequence. The wild-type protein binds natural operators co-operatively with respect to protein concentration forming at least a dimer of repressor dimers along operator DNAs. The minimum operator length is thus 16 bp, each MetJ dimer interacting with a single met-box site. In contrast, the Q44K mutant protein can also bind stably as a single dimer to 8 bp target sites, in part due to additional contacts made to the phosphodiester backbone outside the 8 bp target via the K44 side-chains. Protein-protein co-operativity in the mutant is reduced relative to the wild-type allowing the properties of an intermediate on the pathway to operator site saturation to be examined for the first time. The crystal structure of the decamer complex shows a unique conformation for the protein bound to the single met-box site, possibly explaining the reduced protein-protein co-operativity. In both the extended and minimal DNA complexes formed, the mutant protein makes slightly different contacts to the edges of DNA base-pairs than the wild-type, even though the site of amino acid substitution is distal from the DNA-binding motif. Quantitative binding assays suggest that this is not due to artefacts caused by the crystallisation conditions but is most likely due to the relatively small contribution of such direct contacts to the overall binding energy of DNA-protein complex formation, which is dominated by sequence-dependent distortions of the DNA duplex and by the protein-protein contact between dimers.
Collapse
Affiliation(s)
- Yi-Yuan He
- Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chivers PT, Sauer RT. Regulation of high affinity nickel uptake in bacteria. Ni2+-Dependent interaction of NikR with wild-type and mutant operator sites. J Biol Chem 2000; 275:19735-41. [PMID: 10787413 DOI: 10.1074/jbc.m002232200] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli actively imports nickel via the ATP-dependent NikABCDE permease. NikR, a protein of the ribbon-helix-helix family of transcription factors, represses expression of the nikABCDE operon in the presence of excessive concentrations of intracellular nickel. Here, the NikR operator site is identified within the nikABCDE promoter by footprinting and mutational analyses. The operator consists of two dyad-symmetric 5'-GTATGA-3' recognition sequences separated by 16 base pairs. Mutations in the GTATGA sequences reduce NikR binding affinity in vitro and reduce repression of a P(nik)-lacZ fusion in vivo. Moreover, NikR is shown to be a direct sensor of nickel ions. Strong operator binding requires the continual presence of 20-50 micrometer nickel, indicating the presence of a low affinity nickel-binding site, and NikR dimers also contain two high affinity nickel-binding sites. In addition to both GTATGA sites and nickel, high affinity operator binding also requires the C-terminal domain of NikR.
Collapse
Affiliation(s)
- P T Chivers
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
23
|
Stockwell D, Lelianova V, Thompson T, Dempsey WB. Transcription of the transfer genes traY and traM of the antibiotic resistance plasmid R100-1 is linked. Plasmid 2000; 43:35-48. [PMID: 10610818 DOI: 10.1006/plas.1999.1435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three separate traY deletion mutants of R100-1 were prepared by allele replacement. These mutants retained the ability to transfer at a level 100 times greater than R100 and 1/50 that of the parental R100-1. The mutants were complemented to normal R100-1 transfer levels by pDSP06, a multicopy traY clone. Comparison of transcripts initiated at the traY promoter, P(Y), by primer extension experiments showed that there was no detectable P(Y) activity in R100 and that the level of P(Y) activity in the traY deletion mutants was lower than that in R100-1. Similar measurements performed on RNA from a set of previously described traM deletion mutants showed that those traM deletion mutants that produced more traM and finM (M) transcripts than the parental R100-1 also produced more traY transcripts than R100-1 and that those traM mutants that produced fewer M transcripts than R100-1 also produced fewer traY transcripts than R100-1. We conclude that in R100, TraY regulates P(Y) activity and that transcripts originating in traM affect P(Y) activity.
Collapse
Affiliation(s)
- D Stockwell
- Veterans Affairs Medical Center and University of Texas Southwestern Medical Center, Dallas, Texas, 75216, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Escherichia coli NikR, a repressor with homologs in other bacteria and archaea, was identified as a potential new member of the ribbon-helix-helix (beta-alpha-alpha) family of transcription factors in profile based sequence searches and in structure prediction experiments. Biophysical and biochemical characterization of the N-terminal domain of NikR show that it has many features expected of a beta-alpha-alpha protein including alpha-helical content, dimeric solution form, concentration dependent thermal stability, and ability to bind DNA in sequence-specific manner. Mutation of a residue predicted to be important for DNA-binding reduces operator affinity but does not affect the secondary structure or stability of the protein.
Collapse
Affiliation(s)
- P T Chivers
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
25
|
Lum PL, Schildbach JF. Specific DNA recognition by F Factor TraY involves beta-sheet residues. J Biol Chem 1999; 274:19644-8. [PMID: 10391902 DOI: 10.1074/jbc.274.28.19644] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The F Factor TraY protein is a sequence-specific DNA-binding protein required for efficient conjugal transfer. Genetic and biochemical studies indicate that TraY has two functional roles in conjugation. TraY binds to the PY promoter to up-regulate transcription of tra genes. TraY also binds to the plasmid origin of transfer (oriT), serving as an accessory protein in the nicking of F Factor in preparation for transfer. TraY is thought to belong to the ribbon-helix-helix family of transcription factors. These proteins contact DNA using residues of an antiparallel beta-sheet. We engineered and characterized six TraY mutants each having a single potential beta-sheet DNA contact residue replaced with Ala. Most TraY mutants had significantly reduced affinity for the TraY oriT binding site while possessing near wild-type stability and nonspecific DNA recognition. These results indicate that TraY beta-sheet residues participate in DNA recognition, and support inclusion of TraY in the ribbon-helix-helix family.
Collapse
Affiliation(s)
- P L Lum
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
26
|
Moncalián G, Valle M, Valpuesta JM, de la Cruz F. IHF protein inhibits cleavage but not assembly of plasmid R388 relaxosomes. Mol Microbiol 1999; 31:1643-52. [PMID: 10209739 DOI: 10.1046/j.1365-2958.1999.01288.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Relaxosomes are specific nucleoprotein structures involved in DNA-processing reactions during bacterial conjugation. In this work, we present evidence indicating that plasmid R388 relaxosomes are composed of origin of transfer (oriT) DNA plus three proteins TrwC relaxase, TrwA nic-cleavage accessory protein and integration host factor (IHF), which acts as a regulatory protein. Protein IHF bound to two sites (ihfA and ihfB) in R388 oriT, as shown by gel retardation and DNase I footprinting analysis. IHF binding in vitro was found to inhibit nic-cleavage, but not TrwC binding to supercoiled DNA. However, no differences in the frequency of R388 conjugation were found between IHF- and IHF+ donor strains. In contrast, examination of plasmid DNA obtained from IHF- strains revealed that R388 was obtained mostly in relaxed form from these strains, whereas it was mostly supercoiled in IHF+ strains. Thus, IHF could have an inhibitory role in the nic-cleavage reaction in vivo. It can be speculated that triggering of conjugative DNA processing during R388 conjugation can be mediated by IHF release from oriT.
Collapse
Affiliation(s)
- G Moncalián
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | | | |
Collapse
|
27
|
Acebo P, García de Lacoba M, Rivas G, Andreu JM, Espinosa M, del Solar G. Structural features of the plasmid pMV158-encoded transcriptional repressor CopG, a protein sharing similarities with both helix-turn-helix and beta-sheet DNA binding proteins. Proteins 1998; 32:248-61. [PMID: 9714164 DOI: 10.1002/(sici)1097-0134(19980801)32:2<248::aid-prot11>3.0.co;2-d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The small transcriptional repressor CopG protein (45 amino acids) encoded by the streptococcal plasmid pMV158 was purified to near homogeneity. Gel filtration chromatography and analytical ultracentrifugation showed that the native protein is a spherical dimer of identical subunits. Circular dichroism measurements of CopG indicated a consensus average content of more than 50% alpha-helix and 10-35% beta-strand and turns, which is compatible with the predicted secondary structure of the protein. CopG exhibited a prolonged intracellular half-life, but deletions in regions other than the C-terminal affected the global structure of the protein, severely reducing the half-lives of the CopG variants. This indicates that CopG has a compact structure, perhaps constituted by a single domain. Molecular modeling of CopG showed a good fitting between the helix-turn-helix motifs of well-known repressor proteins and a bihelical unit of CopG. However, modeling of CopG with ribbon-helix-helix class of DNA binding proteins also exhibited an excellent fit. Eleven out of the 12 replicons belonging to the pMV158 plasmid family could also encode Cop proteins, which share features with both helix-turn-helix and beta-sheet DNA binding proteins.
Collapse
Affiliation(s)
- P Acebo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientifícas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Taki K, Abo T, Ohtsubo E. Regulatory mechanisms in expression of the traY-I operon of sex factor plasmid R100: involvement of traJ and traY gene products. Genes Cells 1998; 3:331-45. [PMID: 9734780 DOI: 10.1046/j.1365-2443.1998.00194.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The plasmid R100 encodes tra genes essential for conjugal DNA transfer in Escherichia coli. Genetic evidence suggests that the traJ gene encodes a positive regulator for the traY-I operon, which includes almost all the tra genes located downstream of traJ. The molecular mechanism of regulation by TraJ, however, is not yet understood. traY is the most proximal gene in the traY-I operon. TraY promotes DNA transfer by binding to a site, sbyA, near the origin of transfer. TraY is suggested to have another role in regulation of the traY-I operon, since it binds to two other sites, named sbyB and sbyC, located in the region preceding traY-I. RESULTS Using a traY-lacZ fusion gene, we showed that the traY-I operon was expressed only in the presence of traJ. The TraJ-dependent expression of traY-I required the E. coli arcA gene, which encodes a host factor required for conjugation. TraJ-dependent transcription occurred from a promoter (named pY) located upstream of traY-I. The isolated TraJ protein was found to bind to a dyad symmetry sequence, named sbj (specific binding site of TraJ), which existed in the intergenic region between traJ and traY-I. We also demonstrated that TraY repressed the TraJ-dependent expression of traY-I at the TraY binding sites, sbyB and sbyC, which overlapped with pY. CONCLUSIONS TraJ is a protein which binds to the sbj site in the region upstream of the promoter pY and positively regulates expression of the traY-I operon in the presence of the E. coli arcA gene. Since sbj is located 93bp upstream of pY in the intergenic region between traJ and traY-I, TraJ presumably contacts with a transcription apparatus to promote transcription from pY. TraY, which is known to activate the initiation of conjugal DNA transfer, has a new role in the transcriptional autoregulation of traY-I expression. At levels which are sufficient to initiate conjugal DNA transfer, TraY represses traY-I transcription in the presence of TraJ.
Collapse
Affiliation(s)
- K Taki
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Japan
| | | | | |
Collapse
|
29
|
Schildbach JF, Robinson CR, Sauer RT. Biophysical characterization of the TraY protein of Escherichia coli F factor. J Biol Chem 1998; 273:1329-33. [PMID: 9430665 DOI: 10.1074/jbc.273.3.1329] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The TraY protein is required for efficient bacterial conjugation by Escherichia coli F factor. TraY has two functional roles: participating in the "relaxosome," a protein-DNA complex that nicks one strand of the F factor plasmid, and up-regulating transcription from the traYI promoter. The traY gene was cloned, and the TraY protein was expressed, purified, and characterized. TraY has a mixed alpha-helix and beta-sheet secondary structure as judged by its circular dichroism spectrum, is monomeric, and undergoes reversible urea denaturation with delta Gu = 6 kcal/mol at 25 degrees C. The kinetics of protein unfolding and refolding, as measured by changes in fluorescence, are complex, suggesting the presence of intermediates or of heterogeneity in the folding reaction. TraY has been classified as a member of the ribbon-helix-helix family of transcription factors but is unusual in appearing to have tandem repeats of the beta alpha alpha motif in the same polypeptide chain. The data presented here show that folding and assembly of the functional (beta alpha alpha)2 unit occurs as an intramolecular reaction and not by cross-folding between different polypeptide chains.
Collapse
Affiliation(s)
- J F Schildbach
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | |
Collapse
|
30
|
Zatyka M, Thomas CM. Control of genes for conjugative transfer of plasmids and other mobile elements. FEMS Microbiol Rev 1998; 21:291-319. [PMID: 25508777 DOI: 10.1111/j.1574-6976.1998.tb00355.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Conjugative transfer is a primary means of spread of mobile genetic elements (plasmids and transposons) between bacteria.It leads to the dissemination and evolution of the genes (such as those conferring resistance to antibiotics) which are carried by the plasmid. Expression of the plasmid genes needed for conjugative transfer is tightly regulated so as to minimise the burden on the host. For plasmids such as those belonging to the IncP group this results in downregulation of the transfer genes once all bacteria have a functional conjugative apparatus. For F-like plasmids (apart from F itself which is a derepressed mutant) tight control results in very few bacteria having a conjugative apparatus. Chance encounters between the rare transfer-proficient bacteria and a potential recipient initiate a cascade of transfer which can continue until all potential recipients have acquired the plasmid. Other systems express their transfer genes in response to specific stimuli. For the pheromone-responsive plasmids of Enterococcus it is small peptide signals from potential recipients which trigger the conjugative transfer genes. For the Ti plasmids of Agrobacterium it is the presence of wounded plants which are susceptible to infection which stimulates T-DNA transfer to plants. Transfer and integration of T-DNA induces production of opines which the plasmid-positive bacteria can utilise. They multiply and when they reach an appropriate density their plasmid transfer system is switched on to allow transfer of the Ti plasmid to other bacteria. Finally some conjugative transfer systems are induced by the antibiotics to which the elements confer resistance. Understanding these control circuits may help to modify management of microbial communities where plasmid transfer is either desirable or undesirable. z 1998 Published by Elsevier Science B.V.
Collapse
Affiliation(s)
- M Zatyka
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
31
|
Moncalián G, Grandoso G, Llosa M, de la Cruz F. oriT-processing and regulatory roles of TrwA protein in plasmid R388 conjugation. J Mol Biol 1997; 270:188-200. [PMID: 9236121 DOI: 10.1006/jmbi.1997.1082] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
TrwA protein was purified from an overproducing Escherichia coli strain and characterized as a 53 kDa tetrameric DNA-binding protein. Gel shift assays showed that TrwA bound specifically to the oriT sequence of plasmid R388. DNAse I footprinting analysis defined two DNA regions within oriT (sites A and B) that were protected by TrwA. At low TrwA concentrations only region A was protected (K(D) = 4 x 10(-8) M) while region B required higher TrwA concentrations (K(D) = 4 x 10(-7) M). As a result of its binding to oriT, TrwA was found to perform two biochemical activities related to its role in R388 conjugation. First, TrwA binding to oriT resulted in transcriptional repression of the trwABC operon as indicated by its effect on the beta-galactosidase activity of transcriptional fusions in trwB and trwC, and by direct measurement of the trwA mRNA levels by hybridization. This result was further confirmed by the fact that TrwA overexpression resulted in lowered conjugation frequencies. Second, TrwA enhanced the relaxation activity of TrwC in vitro. This effect was correlated to a 10(5)-fold increase in the frequency of conjugation in vivo and was shown to be independent of the regulation of transcription. Thus, TrwA shows functional similarities to protein TraY of F-like plasmids, that could be correlated to a structural similarity in their DNA-binding motifs.
Collapse
Affiliation(s)
- G Moncalián
- Departamento de Biologia Molecular, Universidad de Cantabria, Santander, Spain
| | | | | | | |
Collapse
|
32
|
Abstract
We have examined the effect of the F plasmid TraY protein on tra gene expression in vivo. Expression was assayed as alkaline phosphatase activity in cells containing a traY phi(traA'-'phoA)hyb operon under traY promoter control. Amber mutations in traY significantly reduced alkaline phosphatase activity. Since nonsense polarity effects were minimal, if they occurred at all, these data provide the first direct evidence that TraY regulates tra gene expression.
Collapse
Affiliation(s)
- P M Silverman
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA.
| | | |
Collapse
|
33
|
Magnuson R, Lehnherr H, Mukhopadhyay G, Yarmolinsky MB. Autoregulation of the plasmid addiction operon of bacteriophage P1. J Biol Chem 1996; 271:18705-10. [PMID: 8702525 DOI: 10.1074/jbc.271.31.18705] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The P1 plasmid addiction operon increases the apparent stability of a plasmid that carries it by killing plasmid-free (cured) segregants. The operon consists of a gene encoding an endotoxin responsible for death on curing (doc), preceded by a gene encoding a relatively unstable antidote that can prevent host death (phd). When the copy number of the operon was increased, expression of a lacZ reporter fused to the promoter of the operon decreased, indicating that expression of the operon was stabilized by an autoregulatory circuit. Transcription of the lacZ reporter was repressed about 10-fold when phd, without doc, was expressed from an exogenous promoter. DNase I footprinting showed that Phd binds a perfect 10-base pair palindromic DNA sequence and, at higher concentrations, an adjacent, imperfect palindrome. The palindromic sites are located between the -10 region of the putative promoter and the start codon of phd. Electrophoretic mobility of DNA containing the promoter region was retarded in the presence of Phd and further retarded in the presence of Phd and Doc. When doc was co-expressed with phd, repression of the lacZ fusion was enhanced more than 100-fold. Thus, both products of the addiction operon participate in its autoregulation.
Collapse
Affiliation(s)
- R Magnuson
- Laboratory of Biochemistry, NCI, National Institutes of Health, Bethesda, Maryland 20892-4225, USA
| | | | | | | |
Collapse
|
34
|
Nelson WC, Matson SW. The F plasmid traY gene product binds DNA as a monomer or a dimer: structural and functional implications. Mol Microbiol 1996; 20:1179-87. [PMID: 8809770 DOI: 10.1111/j.1365-2958.1996.tb02638.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The F factor traY gene product (TraYp) is a site-specific DNA-binding protein involved in initiation of DNA transfer during bacterial conjugation. The sequence of TraYp exhibits a unique direct-repeat structure predicted to have a ribbon-helix-helix DNA-binding motif in each repeat unit. The stoichiometry of TraYp binding to DNA was determined to further support the hypothesis that TraYp is a member of the ribbon-helix-helix family of DNA-binding proteins. A glutathione-S-transferase-traY fusion protein was purified and shown to possess almost wild-type DNA-binding activity. DNA-binding experiments were performed in which the DNA ligand was incubated with either the fusion protein, the wild-type protein, or both. The results indicate that TraYp can bind DNA as a monomer or a dimer. Thus a TraYp monomer folds into a stable three-dimensional structure similar to that of a dimer of the ribbon-helix-helix proteins Arc or Mnt. A homology model of a TraYp monomer has been constructed using the co-crystal structure of Arc bound to DNA as a template to provide additional support for this conclusion. In addition, we have shown that an origin of the transfer-deletion mutant lacking approximately half of the TraYp-binding site can only be bound by a monomer of TraYp. The functional implications of this result are discussed.
Collapse
Affiliation(s)
- W C Nelson
- Department of Biology CB#3280, University of North Carolina at Chapel Hill 27599-3280, USA
| | | |
Collapse
|
35
|
Cooper A, McAlpine A, Stockley PG. Calorimetric studies of the energetics of protein-DNA interactions in the E. coli methionine repressor (MetJ) system. FEBS Lett 1994; 348:41-5. [PMID: 8026581 DOI: 10.1016/0014-5793(94)00579-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Calorimetric measurements of binding of a specific DNA fragment and S-adenosyl methionine (SAM) co-repressor molecules to the E. coli methionine repressor (MetJ) show significant differences in the energetics of binary and ternary protein-DNA complexes. Formation of the MetJ:SAM:DNA ternary complex is significantly more exothermic (delta H congruent to -99 kJ.mol-1) than either MetJ:DNA or MetJ:SAM binary complexes alone (delta H congruent to -10 kJ.mol-1 each). The protein is also significantly more stable to unfolding (delta Tm congruent to 5.4 degrees C) when bound to DNA. These observations suggest that binding of SAM to the protein-DNA complex leads to a significant reduction in dynamic flexibility of the ternary complex, with considerable entropy-enthalpy compensation, not necessarily involving any overall conformational change.
Collapse
Affiliation(s)
- A Cooper
- Department of Chemistry, Glasgow University, Scotland, UK
| | | | | |
Collapse
|
36
|
Frost LS, Ippen-Ihler K, Skurray RA. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 1994; 58:162-210. [PMID: 7915817 PMCID: PMC372961 DOI: 10.1128/mr.58.2.162-210.1994] [Citation(s) in RCA: 275] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial conjugation results in the transfer of DNA of either plasmid or chromosomal origin between microorganisms. Transfer begins at a defined point in the DNA sequence, usually called the origin of transfer (oriT). The capacity of conjugative DNA transfer is a property of self-transmissible plasmids and conjugative transposons, which will mobilize other plasmids and DNA sequences that include a compatible oriT locus. This review will concentrate on the genes required for bacterial conjugation that are encoded within the transfer region (or regions) of conjugative plasmids. One of the best-defined conjugation systems is that of the F plasmid, which has been the paradigm for conjugation systems since it was discovered nearly 50 years ago. The F transfer region (over 33 kb) contains about 40 genes, arranged contiguously. These are involved in the synthesis of pili, extracellular filaments which establish contact between donor and recipient cells; mating-pair stabilization; prevention of mating between similar donor cells in a process termed surface exclusions; DNA nicking and transfer during conjugation; and the regulation of expression of these functions. This review is a compendium of the products and other features found in the F transfer region as well as a discussion of their role in conjugation. While the genetics of F transfer have been described extensively, the mechanism of conjugation has proved elusive, in large part because of the low levels of expression of the pilus and the numerous envelope components essential for F plasmid transfer. The advent of molecular genetic techniques has, however, resulted in considerable recent progress. This summary of the known properties of the F transfer region is provided in the hope that it will form a useful basis for future comparison with other conjugation systems.
Collapse
Affiliation(s)
- L S Frost
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
37
|
Abstract
F plasmid traY protein binding to wild-type or deleted regions containing the TraY-binding site, sbyA, was studied in vitro. The principal DNA-protein complex was formed with DNA segments including the sbyA site defined by footprinting and (with lesser affinity) with truncated segments that retained the leftward two-thirds of sbyA. This located the major sequence determinants for TraY binding between bp 204 and 227 on the oriT map. For all sequences tested, bound TraY induced bending of approximately 50 to 55 degrees, and centred between bp 214 and 221. Thermodynamic and mobility analyses indicated that two TraY protomers bind to sbyA. At higher TraY concentrations, additional TraY bound to the left of the sbyA in a region previously shown to bind IHF (site IHF A). TraY binding to this additional site (sbyC) was inhibited by IHF. Sequence similarities shared by sbyA, sbyB, and sbyC may include the critical base pairs for TraY binding.
Collapse
Affiliation(s)
- Y Luo
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340
| | | | | |
Collapse
|
38
|
Laget MP, Callebaut I, de Launoit Y, Stehelin D, Mornon JP. Predicted common structural features of DNA-binding domains from Ets, Myb and HMG transcription factors. Nucleic Acids Res 1993; 21:5987-96. [PMID: 8290361 PMCID: PMC310485 DOI: 10.1093/nar/21.25.5987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Ets family of transcription factors shares a 85 amino acid domain, named the ETS domain, which appears responsible for their DNA binding activity. This domain did not show any clear similarity with already known DNA binding motifs. Hydrophobic Cluster Analysis (HCA), a sensitive method able to detect protein structural relationships even at low sequence identity, was chosen in order to compare the ETS domain with other conventional DNA binding motifs. HCA analysis combined with known three-dimensional NMR data, suggests that the ETS domain may be structurally related to the Myb DNA binding domain and possibly to the HMG one. Indeed, the ETS domain is likely to contain two helix-loop-helix motifs.
Collapse
Affiliation(s)
- M P Laget
- Unité d'Oncologie Moléculaire, CNRS URA 1160, Institut Pasteur, Lille, France
| | | | | | | | | |
Collapse
|
39
|
Nelson WC, Morton BS, Lahue EE, Matson SW. Characterization of the Escherichia coli F factor traY gene product and its binding sites. J Bacteriol 1993; 175:2221-8. [PMID: 8468282 PMCID: PMC204507 DOI: 10.1128/jb.175.8.2221-2228.1993] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The traY gene product (TraYp) from the Escherichia coli F factor has previously been purified and shown to bind a DNA fragment containing the F plasmid oriT region (E. E. Lahue and S. W. Matson, J. Bacteriol. 172:1385-1391, 1990). To determine the precise nucleotide sequence bound by TraYp, DNase I footprinting was performed. The TraYp-binding site is near, but not coincident with, the site that is nicked to initiate conjugative DNA transfer. In addition, a second TraYp binding site, which is coincident with the mRNA start site at the traYI promoter, is described. The Kd for each binding site was determined by a gel mobility shift assay. TraYp exhibits a fivefold higher affinity for the oriT binding site compared with the traYI promoter binding site. Hydrodynamic studies were performed to show that TraYp is a monomer in solution under the conditions used in DNA binding assays. Early genetic experiments implicated the traY gene product in the site- and strand-specific endonuclease activity that nicks at oriT (R. Everett and N. Willetts, J. Mol. Biol. 136:129-150, 1980; S. McIntire and N. Willetts, Mol. Gen. Genet. 178:165-172, 1980). As this activity has recently been ascribed to helicase I, it was of interest to see whether TraYp had any effect on this reaction. Addition of TraYp to nicking reactions catalyzed by helicase I showed no effect on the rate or efficiency of oriT nicking. Roles for TraYp in conjugative DNA transfer and a possible mode of binding to DNA are discussed.
Collapse
Affiliation(s)
- W C Nelson
- Department of Biology, University of North Carolina, Chapel Hill 27599
| | | | | | | |
Collapse
|
40
|
Somers WS, Phillips SE. Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by beta-strands. Nature 1992; 359:387-93. [PMID: 1406951 DOI: 10.1038/359387a0] [Citation(s) in RCA: 237] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The crystal structure of the met repressor-operator complex shows two dimeric repressor molecules bound to adjacent sites 8 base pairs apart on an 18-base-pair DNA fragment. Sequence specificity is achieved by insertion of double-stranded antiparallel protein beta-ribbons into the major groove of B-form DNA, with direct hydrogen-bonding between amino-acid side chains and the base pairs. The repressor also recognizes sequence-dependent distortion or flexibility of the operator phosphate backbone, conferring specificity even for inaccessible base pairs.
Collapse
Affiliation(s)
- W S Somers
- Department of Biochemistry and Molecular Biology, University of Leeds, UK
| | | |
Collapse
|
41
|
Stormo GD, Yoshioka M. Specificity of the Mnt protein determined by binding to randomized operators. Proc Natl Acad Sci U S A 1991; 88:5699-703. [PMID: 2062848 PMCID: PMC51945 DOI: 10.1073/pnas.88.13.5699] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The relative binding affinities of Mnt protein from bacteriophage P22 are determined for each possible base pair at position 17 of the operator. These are determined from the partitioning of randomized operators into bound and unbound fractions; quantitation is provided by restriction enzyme analysis. Mnt protein is found to have an unusual specificity at this position: a C.G base pair (the wild-type operator) has the highest affinity, a G.C base pair has the lowest affinity, and both orientations of A.T base pairs are intermediate and nearly equivalent. A specific binding constant and specific binding free energy are defined and shown to be directly related to the information content of the operator sequences bound to the protein, taking into account the quantitative differences in binding affinities.
Collapse
Affiliation(s)
- G D Stormo
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | |
Collapse
|
42
|
Silverman PM, Wickersham E, Harris R. Regulation of the F plasmid traY promoter in Escherichia coli by host and plasmid factors. J Mol Biol 1991; 218:119-28. [PMID: 2002497 DOI: 10.1016/0022-2836(91)90878-a] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
F plasmid DNA transfer (tra) gene expression in Escherichia coli is regulated by chromosome- and F-encoded gene products. To study the relationship among these regulatory factors, we constructed low-copy plasmids containing a phi(traY'-'lacZ)hyb gene that couples beta-galactosidase and Lac permease synthesis to the F plasmid traY promoter. Wild-type transformants maintained high levels of beta-galactosidase over a broad range of culture densities. Primer extension analysis of tra mRNA from F'lac and phi(traY'-'lacZ)hyb strains indicated very similar, though not identical, transcription initiation sites. Moreover, phi(traY'-'lacZ)hyb gene expression required both TraJ and SfrA, as does tra gene expression in F+ strains. beta-Galactosidase activity was reduced approximately 30-fold in the absence of TraJ, which could be supplied in cis or in trans. In a two-plasmid system in which TraJ was supplied in trans by a lac-traJ operon fusion, phi(traY'-'lacZ)hyb expression was a linear, saturable function of traJ expression. Enzyme activity was reduced approximately tenfold in sfrA mutants. That reduction could not be attributed to an effect on the TraJ level. Several other cellular or environmental variables had only a modest effect on phi(traY'-'lacZ)hyb expression. Hyperexpression was observed at high cell density (twofold) and in anaerobic cultures (1.2- to 1.5-fold). In contrast, expression was reduced twofold in integration host factor mutants.
Collapse
Affiliation(s)
- P M Silverman
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | | | |
Collapse
|
43
|
Abstract
Restriction-modification systems must be regulated to avoid autorestriction and death of the host cell. An open reading frame (ORF) in the PvuII restriction-modification system appears to code for a regulatory protein from a previously unrecognized family. First, interruptions of this ORF result in a nonrestricting phenotype. Second, this ORF can restore restriction competence to such interrupted mutants in trans. Third, the predicted amino acid sequence of this ORF resembles those of known DNA-binding proteins and includes a probable helix-turn-helix motif. A survey of unattributed ORFs in 15 other type II restriction-modification systems revealed three that closely resemble the PvuII ORF. All four members of this putative regulatory gene family have a common position relative to the endonuclease genes, suggesting a common regulatory mechanism.
Collapse
|
44
|
|
45
|
Abstract
Transcription of bacteriophage Mu occurs in a regulatory cascade consisting of three phases: early, middle, and late. The 1.2-kb middle transcript is initiated at Pm and encodes the C protein, the activator of late transcription. A plasmid containing a Pm-lacZ operon fusion was constructed. beta-Galactosidase expression from the plasmid increased 23-fold after Mu prophage induction. Infection of plasmid-containing cells with lambda phages carrying different segment of the Mu early region localized the Pm-lacZ transactivation function to the region containing open reading frames E16 and E17. Deletion and linker insertion analyses of plasmids containing this region identified E17 as the transactivator; therefore we call this gene mor, for middle operon regulator. Expression of mor under the control of a T7 promoter and T7 RNA polymerase resulted in the production of a single polypeptide of 17 kDa as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Insertion of a linker into mor substantially reduced the ability of Mu to form plaques. When growth of the mor mutant was assayed in liquid, lysis was delayed by about 50 min and the burst size was approximately one-fifth that of wild-type Mu. The mor requirement for plaque formation and normal growth kinetics was abolished when C protein was provided in trans, indicating that the primary function of Mor is to provide sufficient C for late gene expression. Comparison of the predicted amino acid sequence of Mor with other proteins revealed that Mor and C share substantial amino acid sequence homology.
Collapse
Affiliation(s)
- K Mathee
- Department of Microbiology and Immunology, University of Tennesse-Memphis 38163
| | | |
Collapse
|
46
|
Rojo F, Salas M. Short N-terminal deletions in the phage phi 29 transcriptional activator protein impair its DNA-binding ability. Gene 1990; 96:75-81. [PMID: 2125015 DOI: 10.1016/0378-1119(90)90343-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The expression of Bacillus subtilis phage phi 29 late genes from the A3 promoter requires the viral protein p4. This protein is a transcriptional activator which binds to a region of the A3 promoter located between nucleotides -56 to -102, relative to the transcription start point. Mutants at the N terminus of protein p4 have been constructed and their function investigated. The binding of these deletion mutants to the late A3 promoter has been analyzed by gel retardation and DNase I footprinting assays. The results indicate that the N terminus of protein p4 could be involved in its binding to the A3 promoter, suggesting that it may not be a typical Cro-like helix-turn-helix DNA-binding protein.
Collapse
Affiliation(s)
- F Rojo
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
47
|
Breg JN, van Opheusden JH, Burgering MJ, Boelens R, Kaptein R. Structure of Arc repressor in solution: evidence for a family of beta-sheet DNA-binding proteins. Nature 1990; 346:586-9. [PMID: 2377232 DOI: 10.1038/346586a0] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Arc repressor, which is involved in the switch between lysis and lysogeny of Salmonella bacteriophage P22, does not belong to any of the known classes of DNA-binding proteins. Mutagenesis studies show that the DNA-binding region is located in the 15 N-terminal amino-acid residues. We have now determined the three-dimensional structure of the Arc dimer from an extensive set of interproton-distance data obtained from 1H NMR spectroscopy. A priori, intra- and inter-monomer nuclear Overhauser effects (NOEs) cannot be distinguished for a symmetric dimer. But by using the homology with the Escherichia coli Met repressor we could interpret the NOEs unambiguously in an iterative structure refinement procedure. The final structure satisfies a large set of NOE constraints (1,352 for the dimer). It shows a strongly intertwined dimer, in which residues 8-14 of different monomers form an antiparallel beta-sheet. A model for the Arc repressor-operator complex can account for all available biochemical and genetic data. In this model two Arc dimers bind with their beta-sheet regions in successive major grooves on one side of the DNA helix, similar to the Met repressor interaction. Thus, Arc and Met repressors are members of the same family of proteins, which contain an antiparallel beta-sheet as the DNA-binding motif.
Collapse
Affiliation(s)
- J N Breg
- Department of Chemistry, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|