1
|
He L, Piper A, Meilleur F, Myles DAA, Hernandez R, Brown DT, Heller WT. The structure of Sindbis virus produced from vertebrate and invertebrate hosts as determined by small-angle neutron scattering. J Virol 2010; 84:5270-6. [PMID: 20219936 PMCID: PMC2863847 DOI: 10.1128/jvi.00044-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 02/25/2010] [Indexed: 01/14/2023] Open
Abstract
The complex natural cycle of vectored viruses that transition between host species, such as between insects and mammals, makes understanding the full life cycle of the virus an incredibly complex problem. Sindbis virus, an arbovirus and prototypic alphavirus having an inner protein shell and an outer glycoprotein coat separated by a lipid membrane, is one example of a vectored virus that transitions between vertebrate and insect hosts. While evidence of host-specific differences in Sindbis virus has been observed, no work has been performed to characterize the impact of the host species on the structure of the virus. Here, we report the first study of the structural differences between Sindbis viruses grown in mammalian and insect cells, which were determined by small-angle neutron scattering (SANS), a nondestructive technique that did not decrease the infectivity of the Sindbis virus particles studied. The scattering data and modeling showed that, while the radial position of the lipid bilayer did not change significantly, it was possible to conclude that it did have significantly more cholesterol when the virus was grown in mammalian cells. Additionally, the outer protein coat was found to be more extended in the mammalian Sindbis virus. The SANS data also demonstrated that the RNA and nucleocapsid protein share a closer interaction in the mammalian-cell-grown virus than in the virus from insect cells.
Collapse
Affiliation(s)
- Lilin He
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Amanda Piper
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Flora Meilleur
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Dean A. A. Myles
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Raquel Hernandez
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Dennis T. Brown
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - William T. Heller
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
2
|
Paredes AM, Ferreira D, Horton M, Saad A, Tsuruta H, Johnston R, Klimstra W, Ryman K, Hernandez R, Chiu W, Brown DT. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion. Virology 2004; 324:373-86. [PMID: 15207623 DOI: 10.1016/j.virol.2004.03.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 03/29/2004] [Indexed: 01/12/2023]
Abstract
Alphaviruses have the ability to induce cell-cell fusion after exposure to acid pH. This observation has served as an article of proof that these membrane-containing viruses infect cells by fusion of the virus membrane with a host cell membrane upon exposure to acid pH after incorporation into a cell endosome. We have investigated the requirements for the induction of virus-mediated, low pH-induced cell-cell fusion and cell-virus fusion. We have correlated the pH requirements for this process to structural changes they produce in the virus by electron cryo-microscopy. We found that exposure to acid pH was required to establish conditions for membrane fusion but that membrane fusion did not occur until return to neutral pH. Electron cryo-microscopy revealed dramatic changes in the structure of the virion as it was moved to acid pH and then returned to neutral pH. None of these treatments resulted in the disassembly of the virus protein icosahedral shell that is a requisite for the process of virus membrane-cell membrane fusion. The appearance of a prominent protruding structure upon exposure to acid pH and its disappearance upon return to neutral pH suggested that the production of a "pore"-like structure at the fivefold axis may facilitate cell penetration as has been proposed for polio (J. Virol. 74 (2000) 1342) and human rhino virus (Mol. Cell 10 (2002) 317). This transient structural change also provided an explanation for how membrane fusion occurs after return to neutral pH. Examination of virus-cell complexes at neutral pH supported the contention that infection occurs at the cell surface at neutral pH by the production of a virus structure that breaches the plasma membrane bilayer. These data suggest an alternative route of infection for Sindbis virus that occurs by a process that does not involve membrane fusion and does not require disassembly of the virus protein shell.
Collapse
Affiliation(s)
- Angel M Paredes
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Haag L, Garoff H, Xing L, Hammar L, Kan ST, Cheng R. Acid-induced movements in the glycoprotein shell of an alphavirus turn the spikes into membrane fusion mode. EMBO J 2002; 21:4402-10. [PMID: 12198142 PMCID: PMC126182 DOI: 10.1093/emboj/cdf442] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the icosahedral (T = 4) Semliki Forest virus, the envelope protomers, i.e. E1-E2 heterodimers, make one-to-one interactions with capsid proteins below the viral lipid bilayer, transverse the membrane and form an external glycoprotein shell with projections. The shell is organized by protomer domains interacting as hexamers and pentamers around shell openings at icosahedral 2- and 5-fold axes, respectively, and the projections by other domains associating as trimers at 3- and quasi 3-fold axes. We show here, using cryo- electron microscopy, that low pH, as occurs in the endosomes during virus uptake, results in the relaxation of protomer interactions around the 2- and the 5-fold axes in the shell, and movement of protomers towards 3- and quasi 3-fold axes in a way that reciprocally relocates their putative E1 and E2 domains. This seemed to be facilitated by a trimerization of transmembrane segments at the same axes. The alterations observed help to explain several key features of the spike-mediated membrane fusion reaction, including shell dissolution, heterodimer dissociation, fusion peptide exposure and E1 homotrimerization.
Collapse
Affiliation(s)
- Lars Haag
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| | - Henrik Garoff
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| | - Li Xing
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| | - Lena Hammar
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| | - Sin-Tau Kan
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| | - R.Holland Cheng
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| |
Collapse
|
4
|
Phinney BS, Blackburn K, Brown DT. The surface conformation of Sindbis virus glycoproteins E1 and E2 at neutral and low pH, as determined by mass spectrometry-based mapping. J Virol 2000; 74:5667-78. [PMID: 10823875 PMCID: PMC112055 DOI: 10.1128/jvi.74.12.5667-5678.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sindbis virus contains two membrane glycoproteins, E1 and E2, which are organized into 80 trimers of heterodimers (spikes). These trimers form a precise T=4 icosahedral protein lattice on the surface of the virus. Very little is known about the organization of the E1 and E2 glycoproteins within the spike trimer. To gain a better understanding of how the proteins E1 and E2 are arranged in the virus membrane, we have used the techniques of limited proteolysis and amino acid chemical modification in combination with mass spectrometry. We have determined that at neutral pH the E1 protein regions that are accessible to proteases include domains 1-21 (region encompassing amino acids 1 to 21), 161-176, and 212-220, while the E2 regions that are accessible include domains 31-84, 134-148, 158-186, 231-260, 299-314, and 324-337. When Sindbis virus is exposed to low pH, E2 amino acid domains 99-102 and 262-309 became exposed while other domains became inaccessible. Many new E1 regions became accessible after exposure to low pH, including region 86-91, which is in the putative fusion domain of E1 of Semliki Forest virus (SFV) (M. C. Kielian et al., J. Cell Biol. 134:863-872, 1996). E1 273-287 and region 145-158 were also exposed at low pH. These data support a model for the structure of the alphavirus spike in which the E1 glycoproteins are centrally located as trimers which are surrounded and protected by the E2 glycoprotein. These data improve our understanding of the structure of the virus membrane and have implications for understanding the protein conformational changes which accompany the process of virus-cell membrane fusion.
Collapse
Affiliation(s)
- B S Phinney
- Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
5
|
Tsuruta H, Reddy VS, Wikoff WR, Johnson JE. Imaging RNA and dynamic protein segments with low-resolution virus crystallography: experimental design, data processing and implications of electron density maps. J Mol Biol 1998; 284:1439-52. [PMID: 9878362 DOI: 10.1006/jmbi.1998.2231] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single crystal diffraction data were collected from virus crystals in the resolution range of 270 to 14 A using a synchrotron X-ray source and a small-angle scattering instrument adapted for single crystal measurements. Reflections were measured from single crystals of the capsid of the double-stranded DNA bacteriophage HK97 and synthetic Flock House virus-like particles (sFHV). The quality of the low-resolution measurements was confirmed by excellent scaling statistics for both data sets. The sFHV amplitudes between 270 and 90 A resolution were closely similar to independently measured solution scattering data, and to data calculated from the Fourier transform of a uniform density sphere of 315 A diameter. A rotation function computed with the sFHV data between 70 and 20 A resolution was readily interpretable. A uniform density sphere model was used to compute phases for measured amplitudes between 270 and 68 A resolution. The calculated phases were refined and extended to 14 A resolution with real space averaging employing an external mask shape defined by the high-resolution structure. The resulting electron density map displayed regions interpretable as loosely ordered RNA that connected ordered RNA segments seen in a published 3.0 A resolution map. The published high-resolution electron density map lacked data inside 15 A resolution and the interior of the particle in that map appeared hollow. Difference electron density maps corresponding to bulk RNA were computed by subtracting the contribution of the protein shell, based on the available high-resolution atomic model, from either the cryo-electron microscopy density or the low-resolution X-ray density. Features of the RNA were closely similar in the cryo-electron microscopy and X-ray maps, demonstrating the consistency of the two imaging methods. Electron density maps computed at 14 and 6 A resolution with the X-ray amplitudes showed that RNA contributed little to the scattering beyond 14 A resolution.
Collapse
Affiliation(s)
- H Tsuruta
- SSRL/SLAC, Stanford University, Stanford, CA, 94309-0210, USA
| | | | | | | |
Collapse
|
6
|
Mrkic B, Kempf C. The fragmentation of incoming Semliki Forest virus nucleocapsids in mosquito (Aedes albopictus) cells might be coupled to virion uncoating. Arch Virol 1996; 141:1805-21. [PMID: 8920817 DOI: 10.1007/bf01718196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The fate of Semliki Forest virus (SFV) nucleocapsid, especially the capsid protein (C-protein), was investigated during the early stages of a productive infection in mosquito Aedes albopictus cells. Infection of the cells resulted in a time dependent accumulation of a C-protein derived fragment. This fragmentation of incoming viral nucleocapsid was prevented by NH4Cl, an agent generally used to elevate the pH in acidic intracellular compartments, suggesting that a low intravesicular pH is required for this process. Density gradient analysis of the postnuclear cell lysate demonstrated that the fragmentation was associated with a cellular compartment showing a density of 1.14 +/- 0.02 g/ml. This cellular compartment was devoid from a lysosomal marker enzyme and represented the timely preceding cellular fraction through which SFV passed before encountering a lysosomal fraction. Furthermore, the intracellular distribution of the viral, 3H-uridine-labeled RNA suggested that the same fraction might represent a key cellular compartment in which the separation of the viral RNA from the viral structural proteins is primed. In conclusion, these data lead to the suggestion that the fragmentation of incoming SFV nucleocapsids in Aedes albopictus cells might be the part of the mechanism leading to the release of viral RNA into the cytosol during early stages of productive infection.
Collapse
Affiliation(s)
- B Mrkic
- Institute of Biochemistry, University of Bern, Switzerland
| | | |
Collapse
|
7
|
Affiliation(s)
- A Helenius
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
8
|
Fuller SD, Berriman JA, Butcher SJ, Gowen BE. Low pH induces swiveling of the glycoprotein heterodimers in the Semliki Forest virus spike complex. Cell 1995; 81:715-25. [PMID: 7774013 DOI: 10.1016/0092-8674(95)90533-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Time-resolved cryoelectron microscopy reveals the first step in the conformational changes that enable membrane fusion in Semliki Forest virus. The neutral pH structure reveals a central cavity within the spike complex, plate-like extensions forming a layer above the membrane, and the paths of the paired transmembrane domains connecting the trimeric spikes and pentamer-hexamer clustered capsid subunits. Low pH treatment results in centrifugal movement of E2, the receptor-binding subunit, centripetal movement of E1 to narrow the central cavity initiating the formation of an E1 trimer, and the extension of the E1 fusion sequence toward the target membrane.
Collapse
Affiliation(s)
- S D Fuller
- Structural Biology Programme, European Molecular Biology Laboratory, Heidelberg Federal Republic of Germany
| | | | | | | |
Collapse
|
9
|
Cheng RH, Kuhn RJ, Olson NH, Rossmann MG, Choi HK, Smith TJ, Baker TS. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 1995; 80:621-30. [PMID: 7867069 PMCID: PMC4167723 DOI: 10.1016/0092-8674(95)90516-2] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alphaviruses are a group of icosahedral, positive-strand RNA, enveloped viruses. The membrane bilayer, which surrounds the approximately 400 A diameter nucleocapsid, is penetrated by 80 spikes arranged in a T = 4 lattice. Each spike is a trimer of heterodimers consisting of glycoproteins E1 and E2. Cryoelectron microscopy and image reconstruction of Ross River virus showed that the T = 4 quaternary structure of the nucleocapsid consists of pentamer and hexamer clusters of the capsid protein, but not dimers, as have been observed in several crystallographic studies. The E1-E2 heterodimers form one-to-one associations with the nucleocapsid monomers across the lipid bilayer. Knowledge of the atomic structure of the capsid protein and our reconstruction allows us to identify capsid-protein residues that interact with the RNA, the glycoproteins, and adjacent capsid-proteins.
Collapse
Affiliation(s)
- R H Cheng
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- M Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
11
|
Abstract
The alphaviruses are a genus of 26 enveloped viruses that cause disease in humans and domestic animals. Mosquitoes or other hematophagous arthropods serve as vectors for these viruses. The complete sequences of the +/- 11.7-kb plus-strand RNA genomes of eight alphaviruses have been determined, and partial sequences are known for several others; this has made possible evolutionary comparisons between different alphaviruses as well as comparisons of this group of viruses with other animal and plant viruses. Full-length cDNA clones from which infectious RNA can be recovered have been constructed for four alphaviruses; these clones have facilitated many molecular genetic studies as well as the development of these viruses as expression vectors. From these and studies involving biochemical approaches, many details of the replication cycle of the alphaviruses are known. The interactions of the viruses with host cells and host organisms have been exclusively studied, and the molecular basis of virulence and recovery from viral infection have been addressed in a large number of recent papers. The structure of the viruses has been determined to about 2.5 nm, making them the best-characterized enveloped virus to date. Because of the wealth of data that has appeared, these viruses represent a well-characterized system that tell us much about the evolution of RNA viruses, their replication, and their interactions with their hosts. This review summarizes our current knowledge of this group of viruses.
Collapse
Affiliation(s)
- J H Strauss
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
12
|
Affiliation(s)
- M Lanzrein
- Department of Biochemistry, Norwegian Radium Hospital, Montebello, Oslo
| | | | | |
Collapse
|
13
|
Abstract
In a virus particle, the genome is highly condensed and protected by proteins and membrane bilayers. Before it can be replicated in a new host cell, uncoating must take place. Recent studies on enveloped and nonenveloped animal viruses indicate that uncoating occurs through complex, multistep processes triggered by virus-host-cell interactions.
Collapse
Affiliation(s)
- U F Greber
- Dept of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | | | | |
Collapse
|
14
|
Abstract
The mechanism by which Semliki Forest virus nucleocapsids are uncoated was analyzed in living cells and in vitro. In BHK-21 cells, uncoating occurred with virtually complete efficiency within 1 to 2 min after the nucleocapsids entered the cytoplasm. It was inhibited by monensin, which blocks nucleocapsid penetration from endosomes. As previously shown for Sindbis virus (G. Wengler and G. Wengler, Virology 134:435-442, 1984), the capsid proteins from incoming nucleocapsids became associated with ribosomes. The ribosome-bound capsid proteins were distributed throughout the cytoplasm, while the viral RNA remained associated with vacuolar membranes. Using purified nucleocapsids and ribosomes in vitro, we established that ribosomes alone were sufficient for uncoating. Their role was to release the capsid proteins from nucleocapsids and irreversibly sequester them, in a process independent of energy and translation. The process was stoichiometric rather than catalytic, with a maximum of three to six capsid proteins bound to each ribosome. More than 80% of the capsid proteins could thus be removed from the viral RNA, resulting in the formation of nucleocapsid remnants whose sedimentation coefficients progressively decreased from 140S to 80S as uncoating proceeded.
Collapse
Affiliation(s)
- I Singh
- Department of Biology, Yale University, New Haven, Connecticut
| | | |
Collapse
|
15
|
Wengler G, Würkner D, Wengler G. Identification of a sequence element in the alphavirus core protein which mediates interaction of cores with ribosomes and the disassembly of cores. Virology 1992; 191:880-8. [PMID: 1333127 DOI: 10.1016/0042-6822(92)90263-o] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Early in infection core protein is transferred from alphavirus cores to ribosomes (Wengler and Wengler, 1984, Virology 134, 435-442) and it has been suggested that ribosome binding is a property of alphavirus core protein which is involved in core disassembly. Here we describe in vitro analyses of this transfer. Sindbis virus cores, incubated with ribosomes either in a reticulocyte lysate or in buffer, are disassembled with a concomitant transfer of core protein to the large ribosomal subunit. Preincubation of ribosomes with core protein blocks disassembly. Limited proteolysis of Sindbis virus core releases the carboxy-terminal core protein domain as a soluble fragment (Strong and Harrison, 1990, J. Virol. 64, 3992-3994). Trypsin- or proteinase Lys-C-released fragments contain the amino-terminal residue met (106) or gln (94), respectively. The fragment generated by proteinase Lys-C binds to ribosomes and interferes with core disassembly whereas the slightly shorter tryptic fragment has none of these activities. These and further analyses indicate that a conserved sequence element which surrounds amino acid met (106) of SIN CP, the so-called RBSc element, leads to binding of core protein to ribosomes and thereby to core disassembly. Implications of the experiments for regulation of assembly of alphavirus cores and for the core protein-induced resistance to viral multiplication observed in plant virus systems are discussed.
Collapse
Affiliation(s)
- G Wengler
- Institut für Virologie, Justus-Liebig-Universität Giessen, Germany
| | | | | |
Collapse
|