1
|
Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet 2020; 16:e1008330. [PMID: 32324744 PMCID: PMC7200024 DOI: 10.1371/journal.pgen.1008330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 05/05/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
The tRNA isopentenyltransferases (IPTases), which add an isopentenyl group to N6 of A37 (i6A37) of certain tRNAs, are among a minority of enzymes that modify cytosolic and mitochondrial tRNAs. Pathogenic mutations to the human IPTase, TRIT1, that decrease i6A37 levels, cause mitochondrial insufficiency that leads to neurodevelopmental disease. We show that TRIT1 encodes an amino-terminal mitochondrial targeting sequence (MTS) that directs mitochondrial import and modification of mitochondrial-tRNAs. Full understanding of IPTase function must consider the tRNAs selected for modification, which vary among species, and in their cytosol and mitochondria. Selection is principally via recognition of the tRNA A36-A37-A38 sequence. An exception is unmodified tRNATrpCCA-A37-A38 in Saccharomyces cerevisiae, whereas tRNATrpCCA is readily modified in Schizosaccharomyces pombe, indicating variable IPTase recognition systems and suggesting that additional exceptions may account for some of the tRNA-i6A37 paucity in higher eukaryotes. Yet TRIT1 had not been characterized for restrictive type substrate-specific recognition. We used i6A37-dependent tRNA-mediated suppression and i6A37-sensitive northern blotting to examine IPTase activities in S. pombe and S. cerevisiae lacking endogenous IPTases on a diversity of tRNA-A36-A37-A38 substrates. Point mutations to the TRIT1 MTS that decrease human mitochondrial import, decrease modification of mitochondrial but not cytosolic tRNAs in both yeasts. TRIT1 exhibits clear substrate-specific restriction against a cytosolic-tRNATrpCCA-A37-A38. Additional data suggest that position 32 of tRNATrpCCA is a conditional determinant for substrate-specific i6A37 modification by the restrictive IPTases, Mod5 and TRIT1. The cumulative biochemical and phylogenetic sequence analyses provide new insights into IPTase activities and determinants of tRNA-i6A37 profiles in cytosol and mitochondria.
Collapse
Affiliation(s)
- Abdul Khalique
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandy Mattijssen
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander F. Haddad
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
- Commissioned Corps, United States Public Health Service, Rockville, Maryland, United States of America
| |
Collapse
|
2
|
Cheung S, Manhas S, Measday V. Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob DNA 2018; 9:14. [PMID: 29713390 PMCID: PMC5911963 DOI: 10.1186/s13100-018-0119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Retrotransposons are genetic elements that are similar in structure and life cycle to retroviruses by replicating via an RNA intermediate and inserting into a host genome. The Saccharomyces cerevisiae (S. cerevisiae) Ty1-5 elements are long terminal repeat (LTR) retrotransposons that are members of the Ty1-copia (Pseudoviridae) or Ty3-gypsy (Metaviridae) families. Four of the five S. cerevisiae Ty elements are inserted into the genome upstream of RNA Polymerase (Pol) III-transcribed genes such as transfer RNA (tRNA) genes. This particular genomic locus provides a safe environment for Ty element insertion without disruption of the host genome and is a targeting strategy used by retrotransposons that insert into compact genomes of hosts such as S. cerevisiae and the social amoeba Dictyostelium. The mechanism by which Ty1 targeting is achieved has been recently solved due to the discovery of an interaction between Ty1 Integrase (IN) and RNA Pol III subunits. We describe the methods used to identify the Ty1-IN interaction with Pol III and the Ty1 targeting consequences if the interaction is perturbed. The details of Ty1 targeting are just beginning to emerge and many unexplored areas remain including consideration of the 3-dimensional shape of genome. We present a variety of other retrotransposon families that insert adjacent to Pol III-transcribed genes and the mechanism by which the host machinery has been hijacked to accomplish this targeting strategy. Finally, we discuss why retrotransposons selected Pol III-transcribed genes as a target during evolution and how retrotransposons have shaped genome architecture.
Collapse
Affiliation(s)
- Stephanie Cheung
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Savrina Manhas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Room 325-2205 East Mall, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
3
|
Spaller T, Kling E, Glöckner G, Hillmann F, Winckler T. Convergent evolution of tRNA gene targeting preferences in compact genomes. Mob DNA 2016; 7:17. [PMID: 27583033 PMCID: PMC5006619 DOI: 10.1186/s13100-016-0073-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022] Open
Abstract
Background In gene-dense genomes, mobile elements are confronted with highly selective pressure to amplify without causing excessive damage to the host. The targeting of tRNA genes as potentially safe integration sites has been developed by retrotransposons in various organisms such as the social amoeba Dictyostelium discoideum and the yeast Saccharomyces cerevisiae. In D. discoideum, tRNA gene-targeting retrotransposons have expanded to approximately 3 % of the genome. Recently obtained genome sequences of species representing the evolutionary history of social amoebae enabled us to determine whether the targeting of tRNA genes is a generally successful strategy for mobile elements to colonize compact genomes. Results During the evolution of dictyostelids, different retrotransposon types independently developed the targeting of tRNA genes at least six times. DGLT-A elements are long terminal repeat (LTR) retrotransposons that display integration preferences ~15 bp upstream of tRNA gene-coding regions reminiscent of the yeast Ty3 element. Skipper elements are chromoviruses that have developed two subgroups: one has canonical chromo domains that may favor integration in centromeric regions, whereas the other has diverged chromo domains and is found ~100 bp downstream of tRNA genes. The integration of D. discoideum non-LTR retrotransposons ~50 bp upstream (TRE5 elements) and ~100 bp downstream (TRE3 elements) of tRNA genes, respectively, likely emerged at the root of dictyostelid evolution. We identified two novel non-LTR retrotransposons unrelated to TREs: one with a TRE5-like integration behavior and the other with preference ~4 bp upstream of tRNA genes. Conclusions Dictyostelid retrotransposons demonstrate convergent evolution of tRNA gene targeting as a probable means to colonize the compact genomes of their hosts without being excessively mutagenic. However, high copy numbers of tRNA gene-associated retrotransposons, such as those observed in D. discoideum, are an exception, suggesting that the targeting of tRNA genes does not necessarily favor the amplification of position-specific integrating elements to high copy numbers under the repressive conditions that prevail in most host cells. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0073-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Spaller
- Institute of Pharmacy, Department of Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, Jena, 07743 Germany
| | - Eva Kling
- Institute of Pharmacy, Department of Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, Jena, 07743 Germany
| | - Gernot Glöckner
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Berlin, Germany ; Institute for Freshwater Ecology and Inland Fisheries, IGB, Berlin, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Thomas Winckler
- Institute of Pharmacy, Department of Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, Jena, 07743 Germany
| |
Collapse
|
4
|
Abstract
Long terminal repeat (LTR) retrotransposons constitute significant fractions of many eukaryotic genomes. Two ancient families are Ty1/Copia (Pseudoviridae) and Ty3/Gypsy (Metaviridae). The Ty3/Gypsy family probably gave rise to retroviruses based on the domain order, similarity of sequences, and the envelopes encoded by some members. The Ty3 element of Saccharomyces cerevisiae is one of the most completely characterized elements at the molecular level. Ty3 is induced in mating cells by pheromone stimulation of the mitogen-activated protein kinase pathway as cells accumulate in G1. The two Ty3 open reading frames are translated into Gag3 and Gag3-Pol3 polyprotein precursors. In haploid mating cells Gag3 and Gag3-Pol3 are assembled together with Ty3 genomic RNA into immature virus-like particles in cellular foci containing RNA processing body proteins. Virus-like particle Gag3 is then processed by Ty3 protease into capsid, spacer, and nucleocapsid, and Gag3-Pol3 into those proteins and additionally, protease, reverse transcriptase, and integrase. After haploid cells mate and become diploid, genomic RNA is reverse transcribed into cDNA. Ty3 integration complexes interact with components of the RNA polymerase III transcription complex resulting in Ty3 integration precisely at the transcription start site. Ty3 activation during mating enables proliferation of Ty3 between genomes and has intriguing parallels with metazoan retrotransposon activation in germ cell lineages. Identification of nuclear pore, DNA replication, transcription, and repair host factors that affect retrotransposition has provided insights into how hosts and retrotransposons interact to balance genome stability and plasticity.
Collapse
|
5
|
Smaldino PJ, Read DF, Pratt-Hyatt M, Hopper AK, Engelke DR. The cytoplasmic and nuclear populations of the eukaryote tRNA-isopentenyl transferase have distinct functions with implications in human cancer. Gene 2014; 556:13-8. [PMID: 25261850 DOI: 10.1016/j.gene.2014.09.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022]
Abstract
Mod5 is the yeast tRNA isopentenyl transferase, an enzyme that is conserved from bacteria to humans. Mod5 is primarily cytoplasmic where it modifies the A37 position of a few tRNAs, and the yeast enzyme has been shown capable of forming heritable, amyloid-like aggregates that confer a selective advantage in the presence of specific antifungal agents. A subpopulation of Mod5 is also found associated with nuclear tRNA genes, where it contributes tRNA-gene mediated (tgm) silencing of local transcription by RNA polymerase II. The tgm-silencing function of Mod5 has been observed in yeast and a Mod5-deletion in yeast can be complemented by the plant and human tRNA isopentenyl transferases, but not the bacterial enzymes, possibly due to the lack of an extended C-terminal domain found in eukaryotes. In light of this additional nuclear role for Mod5 we discuss the proposed role of the human homologue of Mod5, TRIT1, as a tumor suppressor protein.
Collapse
Affiliation(s)
- P J Smaldino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - D F Read
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - M Pratt-Hyatt
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; The Great Plains Laboratory, 11813W. 77th St. Lenexa KS 66214, USA
| | - A K Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - D R Engelke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Abstract
Transposable elements (TEs) have a unique ability to mobilize to new genomic locations, and the major advance of second-generation DNA sequencing has provided insights into the dynamic relationship between TEs and their hosts. It now is clear that TEs have adopted diverse strategies - such as specific integration sites or patterns of activity - to thrive in host environments that are replete with mechanisms, such as small RNAs or epigenetic marks, that combat TE amplification. Emerging evidence suggests that TE mobilization might sometimes benefit host genomes by enhancing genetic diversity, although TEs are also implicated in diseases such as cancer. Here, we discuss recent findings about how, where and when TEs insert in diverse organisms.
Collapse
Affiliation(s)
- Henry L. Levin
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA, Tel. 301-402-4281, Fax. 301-496-4491,
| | - John V. Moran
- Departments of Human Genetics and Internal Medicine, and Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109-6518, USA, Tel. 734-615-4046, Fax. 734-763-3784,
| |
Collapse
|
7
|
Siol O, Spaller T, Schiefner J, Winckler T. Genetically tagged TRE5-A retrotransposons reveal high amplification rates and authentic target site preference in the Dictyostelium discoideum genome. Nucleic Acids Res 2011; 39:6608-19. [PMID: 21525131 PMCID: PMC3159450 DOI: 10.1093/nar/gkr261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/21/2011] [Accepted: 04/06/2011] [Indexed: 11/14/2022] Open
Abstract
Retrotransposons contribute significantly to the evolution of eukaryotic genomes. They replicate by producing DNA copies of their own RNA, which are integrated at new locations in the host cell genome. In the gene-dense genome of the social amoeba Dictyostelium discoideum, retrotransposon TRE5-A avoids insertional mutagenesis by targeting the transcription factor (TF) IIIC/IIIB complex and integrating ∼ 50 bp upstream of tRNA genes. We generated synthetic TRE5-A retrotransposons (TRE5-A(bsr)) that were tagged with a selection marker that conferred resistance to blasticidin after a complete retrotransposition cycle. We found that the TRE5-A(bsr) elements were efficiently mobilized in trans by proteins expressed from the endogenous TRE5-A population found in D. discoideum cells. ORF1 protein translated from TRE5-A(bsr) elements significantly enhanced retrotransposition. We observed that the 5' untranslated region of TRE5-A could be replaced by an unrelated promoter, whereas the 3' untranslated region of TRE5-A was essential for retrotransposition. A predicted secondary structure in the RNA of the 3' untranslated region of TRE5-A may be involved in the retrotransposition process. The TRE5-A(bsr) elements were capable of identifying authentic integration targets in vivo, including formerly unnoticed, putative binding sites for TFIIIC on the extrachromosomal DNA element that carries the ribosomal RNA genes.
Collapse
Affiliation(s)
| | | | | | - Thomas Winckler
- Department of Pharmaceutical Biology, School of Biology and Pharmacy, Institute of Pharmacy, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| |
Collapse
|
8
|
Winckler T, Schiefner J, Spaller T, Siol O. Dictyostelium transfer RNA gene-targeting retrotransposons: Studying mobile element-host interactions in a compact genome. Mob Genet Elements 2011; 1:145-150. [PMID: 22016864 DOI: 10.4161/mge.1.2.17369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 11/19/2022] Open
Abstract
The model species of social amoebae, Dictyostelium discoideum, has a compact genome consisting of about two thirds protein-coding regions, with intergenic regions that are rarely larger than 1,000 bp. We hypothesize that the haploid state of D. discoideum cells provides defense against the amplification of mobile elements whose transposition activities would otherwise lead to the accumulation of heterozygous, potentially lethal mutations in diploid populations. We further speculate that complex transposon clusters found on D. discoideum chromosomes do not a priori result from integration preferences of these transposons, but that the clusters instead result from negative selection against cells harboring insertional mutations in genes. D. discoideum cells contain a fraction of retrotransposons that are found in the close vicinity of tRNA genes. Growing evidence suggests that these retrotransposons use active recognition mechanisms to determine suitable integration sites. However, the question remains whether these retrotransposons also cause insertional mutagenesis of genes, resulting in their enrichment at tRNA genes, which are relatively safe sites in euchromatic regions. Recently developed in vivo retrotransposition assays will allow a detailed, genome-wide analysis of de novo integration events in the D. discoideum genome.
Collapse
Affiliation(s)
- Thomas Winckler
- Universität Jena; Institut für Pharmazie; Lehrstuhl für Pharmazeutische Biologie; Jena, Germany
| | | | | | | |
Collapse
|
9
|
Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A. The expanding RNA polymerase III transcriptome. Trends Genet 2007; 23:614-22. [PMID: 17977614 DOI: 10.1016/j.tig.2007.09.001] [Citation(s) in RCA: 376] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 11/19/2022]
Abstract
The role of RNA polymerase (Pol) III in eukaryotic transcription is commonly thought of as being restricted to a small set of highly expressed, housekeeping non-protein-coding (nc)RNA genes. Recent studies, however, have remarkably expanded the set of known Pol III-synthesized ncRNAs, suggesting that gene-specific Pol III regulation is more common than previously appreciated. Newly identified Pol III transcripts include small nucleolar RNAs, microRNAs, short interspersed nuclear element-encoded or tRNA-derived RNAs and novel classes of ncRNA that can display significant sequence complementarity to protein-coding genes and might thus regulate their expression. The extent of the Pol III transcriptome, the complexity of its regulation and its influence on cell physiology, development and disease are emerging as new areas for future research.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy.
| | | | | | | | | |
Collapse
|
10
|
Siol O, Boutliliss M, Chung T, Glöckner G, Dingermann T, Winckler T. Role of RNA polymerase III transcription factors in the selection of integration sites by the dictyostelium non-long terminal repeat retrotransposon TRE5-A. Mol Cell Biol 2006; 26:8242-51. [PMID: 16982688 PMCID: PMC1636787 DOI: 10.1128/mcb.01348-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the compact Dictyostelium discoideum genome, non-long terminal repeat (non-LTR) retrotransposons known as TREs avoid accidental integration-mediated gene disruption by targeting the vicinity of tRNA genes. In this study we provide the first evidence that proteins of a non-LTR retrotransposon interact with a target-specific transcription factor to direct its integration. We applied an in vivo selection system that allows for the isolation of natural TRE5-A integrations into a known genomic location upstream of tRNA genes. TRE5-A frequently modified the integration site in a way characteristic of other non-LTR retrotransposons by adding nontemplated extra nucleotides and generating small and extended target site deletions. Mutations within the B-box promoter of the targeted tRNA genes interfered with both the in vitro binding of RNA polymerase III transcription factor TFIIIC and the ability of TRE5-A to target these genes. An isolated B box was sufficient to enhance TRE5-A integration in the absence of a surrounding tRNA gene. The RNA polymerase III-transcribed ribosomal 5S gene recruits TFIIIC in a B-box-independent manner, yet it was readily targeted by TRE5-A in our assay. These results suggest a direct role of an RNA polymerase III transcription factor in the targeting process.
Collapse
Affiliation(s)
- Oliver Siol
- Institut für Pharmazeutische Biologie, Universität Frankfurt/M., Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Winckler T, Szafranski K, Glöckner G. Transfer RNA gene-targeted integration: an adaptation of retrotransposable elements to survive in the compact Dictyostelium discoideum genome. Cytogenet Genome Res 2005; 110:288-98. [PMID: 16093681 DOI: 10.1159/000084961] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 10/10/2003] [Indexed: 11/19/2022] Open
Abstract
Almost every organism carries along a multitude of molecular parasites known as transposable elements (TEs). TEs influence their host genomes in many ways by expanding genome size and complexity, rearranging genomic DNA, mutagenizing host genes, and altering transcription levels of nearby genes. The eukaryotic microorganism Dictyostelium discoideum is attractive for the study of fundamental biological phenomena such as intercellular communication, formation of multicellularity, cell differentiation, and morphogenesis. D. discoideum has a highly compacted, haploid genome with less than 1 kb of genomic DNA separating coding regions. Nevertheless, the D. discoideum genome is loaded with 10% of TEs that managed to settle and survive in this inhospitable environment. In depth analysis of D. discoideum genome project data has provided intriguing insights into the evolutionary challenges that mobile elements face when they invade compact genomes. Two different mechanisms are used by D. discoideum TEs to avoid disruption of host genes upon retrotransposition. Several TEs have invented the specific targeting of tRNA gene-flanking regions as a means to avoid integration into coding regions. These elements have been dispersed on all chromosomes, closely following the distribution of tRNA genes. By contrast, TEs that lack bona fide integration specificities show a strong bias to nested integration, thus forming large TE clusters at certain chromosomal loci that are hardly resolved by bioinformatics approaches. We summarize our current view of D. discoideum TEs and present new data from the analysis of the complete sequences of D. discoideum chromosomes 1 and 2, which comprise more than one third of the total genome.
Collapse
Affiliation(s)
- T Winckler
- Institut für Pharmazeutische Biologie, Universität Frankfurt am Main (Biozentrum), Frankfurt, Germany.
| | | | | |
Collapse
|
12
|
Szafranski K, Dingermann T, Glöckner G, Winckler T. Template jumping by a LINE reverse transcriptase has created a SINE-like 5S rRNA retropseudogene in Dictyostelium. Mol Genet Genomics 2003; 271:98-102. [PMID: 14652739 DOI: 10.1007/s00438-003-0961-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2003] [Accepted: 11/10/2003] [Indexed: 11/27/2022]
Abstract
Short interspersed nuclear elements (SINEs) are non-autonomous retroelements that mimic the 3' ends of so-called long interspersed nuclear elements (LINEs) to ensure their propagation by proteins encoded by autonomous LINEs. The Dictyostelium discoideum genome contains a family of LINE-like retrotransposons that specifically target tRNA genes for integration (TRE elements). We describe here a retrotransposed ribosomal 5S RNA pseudogene in the D. discoideum genome that contains at its 3' end an 8-bp sequence derived from the 3' end of a TRE and a polyadenine tail. The r5S "retropseudogene" is flanked by target-site duplications that are characteristic for TREs, and is inserted upstream of a tRNA gene, just like a typical TRE. The D. discoideum r5S retropseudogene has structural features of a SINE, but has not been amplified, probably due to the 5'-truncation that occurred upon its initial retrotransposition. The discovery of this D. discoideum r5S retropseudogene reveals that SINEs can be created de novo during reverse transcription of LINE transcripts, if the LINE-encoded reverse transcriptase dissociates from the LINE RNA and jumps to other cellular RNAs-particularly genes transcribed by RNA polymerase III-to create continuous mixed cDNAs.
Collapse
Affiliation(s)
- K Szafranski
- Department of Genome Analysis, IMB Jena, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | | | | |
Collapse
|
13
|
Beck P, Dingermann T, Winckler T. Transfer RNA gene-targeted retrotransposition of Dictyostelium TRE5-A into a chromosomal UMP synthase gene trap. J Mol Biol 2002; 318:273-85. [PMID: 12051837 DOI: 10.1016/s0022-2836(02)00097-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome of the eukaryotic microorganism Dictyostelium discoideum hosts a family of seven non-long terminal repeat retrotransposons (TREs) that show remarkable insertion preferences near tRNA genes. We developed an in vivo assay to detect tRNA gene-targeted retrotransposition of endogenous TREs in a reporter strain of D. discoideum. A tRNA gene positioned within an artificial intron was placed into the D. discoideum UMP synthase gene. This construct was inserted into the D. discoideum genome and presented as a landmark for de novo TRE insertions. We show that the tRNA gene-tagged UMP synthase gene was frequently disrupted by de novo insertions of endogenous TRE5-A copies, thus rendering the resulting mutants resistant to 5-fluoroorotic acid selection. Approximately 96% of all isolated 5-FOA-resistant clones contained TRE5-A insertions, whereas the remaining 4% resulted from transposition-independent mutations. The inserted TRE5-As showed complex structural variations and were found about 50 bp upstream of the reporter tRNA gene, similar to previously analysed genomic copies of TRE5-A. No integration by other members of the TRE family was observed. We found that only 51% of the de novo insertions were derived from autonomous TRE5-A.1 copies. The remaining 49% of new insertions were due to TRE5-A.2 elements, which lack the proteins required for reverse transcription and integration, but retain functional promoter sequences.
Collapse
Affiliation(s)
- Peter Beck
- Institut für Pharmazeutische Biologie, Universität Frankfurt/M. (Biozentrum), Marie-Curie-Strasse 9 D-60439 Frankfurt am Main, Germany
| | | | | |
Collapse
|
14
|
Sucgang R, Shaulsky G, Kuspa A. Toward the functional analysis of the Dictyostelium discoideum genome. J Eukaryot Microbiol 2000; 47:334-9. [PMID: 11140446 DOI: 10.1111/j.1550-7408.2000.tb00058.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dictyostelium discoideum is a useful model for molecular studies of cell biology and development. The 34-megabase Dictyostelium genome is currently being sequenced through the efforts of an international consortium. The genome is expected to encode 8-10,000 genes, including all those required for a free-living eukaryote capable of multicellular development. A complete description of the Dictyostelium genome will open the way toward the application of genome-based experimental approaches to studies of cell biology and development in this organism, and allow detailed physiological and evolutionary comparisons to other species.
Collapse
Affiliation(s)
- R Sucgang
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
15
|
Horn J, Dietz-Schmidt A, Zündorf I, Garin J, Dingermann T, Winckler T. A Dictyostelium protein binds to distinct oligo(dA) x oligo(dT) DNA sequences in the C-module of the retrotransposable element DRE. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:441-8. [PMID: 10491202 DOI: 10.1046/j.1432-1327.1999.00768.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genome of the eukaryotic microbe Dictyostelium discoideum contains some 200 copies of the nonlong-terminal repeat retrotransposon DRE. Among several unique features of this retroelement, DRE is transcribed in both directions leading to the formation of partially overlapping plus strand and minus strand RNAs. The synthesis of minus strand RNAs is controlled by the C-module, a 134-bp DNA sequence located at the 3'-end of DRE. A nuclear protein (CMBF) binds to the C-module via interaction with two almost homopolymeric 24 bp oligo(dA) x oligo(dT) sequences. The DNA-binding drugs distamycin and netropsin, which bind to A x T-rich DNA sequences in the minor groove, competed efficiently for the binding of CMBF to the C-module. The CMBF-encoding gene, cbfA, was isolated and a DNA-binding domain was mapped to a 25-kDa C-terminal region of the protein. A peptide motif involved in the binding of A x T-rich DNA by high mobility group-I proteins ('GRP' box) was identified in the deduced CMBF protein sequence, and exchange of a consensus arginine residue for alanine within the CMBF GRP box abolished the interaction of CMBF with the C-module. The current data support the theory that CMBF binds to the C-module by detecting its long-range DNA conformation and interacting with A x T base pairs in the minor groove of oligo(dA) x oligo(dT) stretches.
Collapse
Affiliation(s)
- J Horn
- Institut für Pharmazeutische Biologie, Universität Frankfurt/Mainz (Biozentrum), Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Morrison A, Marschalek R, Dingermann T, Harwood AJ. A novel, negative selectable marker for gene disruption in Dictyostelium. Gene 1997; 202:171-6. [PMID: 9427562 DOI: 10.1016/s0378-1119(97)00488-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of an ochre suppressor mutant of the GluII(UUA) tRNA appears to be lethal to Dictyostelium, and offers a novel 'positive negative' strategy to select for targeted gene disruption by homologous recombination. Inclusion of the suppressor tRNA gene decreases the overall transformation frequency by approximately 20-fold. This increases the proportion of targeted gene disruptions to over 90%.
Collapse
Affiliation(s)
- A Morrison
- The Imperial Cancer Research Fund, Clare Hall Laboratory, South Mimms, Herts, UK
| | | | | | | |
Collapse
|
17
|
Akama K, Nass A, Junker V, Beier H. Characterization of nuclear tRNA(Tyr) introns: their evolution from red algae to higher plants. FEBS Lett 1997; 417:213-8. [PMID: 9395298 DOI: 10.1016/s0014-5793(97)01288-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously isolated numerous intron-containing nuclear tRNA(Tyr) genes derived from either monocotyledonous (Triticum) or dicotyledonous (Arabidopsis, Nicotiana) plants by screening the corresponding genomic phage libraries with a synthetic tRNA(Tyr)-specific oligonucleotide. Here we have characterized additional tRNA(Tyr) genes from phylogenetically divergent plant species representing red algae (Champia), brown algae (Cystophyllum), green algae (Ulva), stonewort (Chara), liverwort (Marchantia), moss (Polytrichum), fern (Rumohra) and gymnosperms (Ginkgo) using amplification of the coding sequences from the corresponding genomic DNAs by polymerase chain reaction (PCR). All novel tRNA(Tyr) genes contain intervening sequences of variable sequence and length ranging in size from 11 to 21 bp. However, two features are conserved in all plant pre-tRNA(Tyr) introns: they possess a uridine and less frequently an adenosine at the 5' boundary and can adopt similar intron secondary structures in which an extended anticodon helix of 4-5 bp is formed by base-pairing between nucleotides of the intron and the anticodon loop. In order to elucidate the potential role of the highly conserved uridine at the first intron position, we have replaced it by all other nucleosides in an Arabidopsis pre-tRNA(Tyr) and have studied in wheat germ extract its effect on splicing and on conversion of U to psi in the GpsiA anticodon. Furthermore, we discuss the putative acquisition of tRNA(Tyr) introns at an early step of evolution after the separation of Archaea and Eucarya.
Collapse
Affiliation(s)
- K Akama
- Department of Biological Science, Shimane University, Matsue, Japan
| | | | | | | |
Collapse
|
18
|
Bukenberger M, Horn J, Dingermann T, Dottin RP, Winckler T. Molecular cloning of a cDNA encoding the nucleosome core histone H3 from Dictyostelium discoideum by genetic screening in yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:85-90. [PMID: 9177486 DOI: 10.1016/s0167-4781(97)00029-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The one-hybrid method for genetic screening in yeast was used to search a Dictyostelium discoideum cDNA library for DNA-binding proteins that interact with the C-module of the Dictyostelium repetitive element. The C-module was formerly shown to contain two high affinity, sequence-specific binding sites for a nuclear protein factor of unknown function (CMBF). The bait DNA sequence was bound in vivo by a cDNA-encoded protein whose derived amino acid sequence showed high homology to nucleosome core histone H3, but not to partially available CMBF sequences. The D. discoideum histone H3 homolog is encoded by a single gene and shows significant sequence variation at the amino terminus of the protein, including a triple-serine insertion not found in any other histone H3.
Collapse
Affiliation(s)
- M Bukenberger
- Hunter College, Department of Biological Sciences, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
19
|
Vithalani KK, Shoffner JD, De Lozanne A. Isolation and characterization of a novel cytokinesis-deficient mutant in Dictyostelium discoideum. J Cell Biochem 1996; 62:290-301. [PMID: 8844408 DOI: 10.1002/(sici)1097-4644(199608)62:2<290::aid-jcb16>3.0.co;2-p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytokinesis is a dramatic event in the life of any cell during which numerous mechanisms must coordinate the legitimate and complete mechanical separation into two daughter cells. We have used Dictyostelium discoideum as a model system to study this highly orchestrated event through genetic analysis. Transformants were generated using a method of insertional mutagenesis known as restriction enzyme-mediated integration (REMI) and subsequently screened for defects in cytokinesis. Mutants isolated in a similar screen suffered a disruption in the myosin II heavy chain gene, a protein known to be essential for cytokinesis and in a novel gene encoding a rho-like protein termed racE [Larochelle et al., 1996]. In the screen reported here we isolated a third type of mutant, called 10BH2, which also had a complete defect in cytokinesis. 10BH2 mutant cells are able to propagate on tissue culture plates by fragmenting into smaller cells by a process known as traction-mediated cytofission. However, when grown in suspension culture, 10BH2 cells fail to divide and become large and multinucleate. Phenotypic characterization of the mutant cells showed that other cytoskeletal functions are preserved. The distribution of myosin and actin is identical to wild type cells. The cells can chemotax, phagocytose, cap crosslinked receptors, and contract normally. However, the 10BH2 mutants are unable to complete the Dictyostelium developmental program beyond the finger stage. The mutant cells contain functional genes for myosin II heavy and light chains and the racE gene. Thus, based on these findings, we conclude that 10BH2 represents a novel cytokinesis-deficient mutant.
Collapse
Affiliation(s)
- K K Vithalani
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
20
|
Abstract
Over the past ten years, powerful molecular genetic techniques have been developed to analyze gene function in Dictyostelium. DNA-mediated transformation using a variety of selections and vectors has allowed the introduction of wild-type or modified genes that are under various forms of transcriptional control. Homologous recombination is efficient and can be used to modify the genome in precise ways. In addition, it is now possible to clone genes based on their mutant phenotype alone, either by insertional mutagenesis, or by screening antisense expression cDNA libraries. Finally, a nearly complete physical map of the genome is available and so genes are easily mapped by physical techniques. We discuss many of these advances within the context of major research problems presently under study.
Collapse
Affiliation(s)
- A Kuspa
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
21
|
Cole RA, Slade MB, Williams KL. Dictyostelium discoideum mitochondrial DNA encodes a NADH:ubiquinone oxidoreductase subunit which is nuclear encoded in other eukaryotes. J Mol Evol 1995; 40:616-21. [PMID: 7643412 DOI: 10.1007/bf00160509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Complex I, a key component of the mitochondrial electron transport system, is thought to have evolved from at least two separate enzyme systems prior to the evolution of mitochondria from a bacterial endosymbiont, but the genes for one of the enzyme systems are thought to have subsequently been transferred to the nuclear DNA. We demonstrated that the cellular slime mold Dictyostelium discoideum retains the ancestral characteristic of having mitochondria encoding at least one gene (80-kDa subunit) that is nuclear encoded in other eukaryotes. This is consistent with the cellular slime molds of the family Dictyosteliaceae having diverged from other eukaryotes at an early stage prior to the loss of the mitochondrial gene in the lineage giving rise to plants and animals. The D. discoideum mitochondrially encoded 80-kDa subunit of complex I exhibits a twofold-higher mutation rate compared with the homologous chromosomal gene in other eukaryotes, making it the most divergent eukaryotic form of this protein.
Collapse
Affiliation(s)
- R A Cole
- School of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | |
Collapse
|
22
|
Kaçar Y, Beier H, Gross HJ. The presence of tRNA pseudogenes in mammalia and plants and their absence in yeast may account for different specificities of pre-tRNA processing enzymes. Gene X 1995; 156:129-32. [PMID: 7737506 DOI: 10.1016/0378-1119(95)00079-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Six of 13 cloned members of the human tRNA(Val) gene family code for tRNA(Val) pseudogenes, of which all but one are transcribed efficiently in HeLa cell extracts. Due to single or multiple mismatches in stem regions, the corresponding pre-tRNAs are resistant against the action of human 5'- and 3'-processing enzymes and are thus prevented from being converted to mature tRNAs. Surprisingly, all of them are accurately and efficiently processed to mature-sized tRNA in yeast nuclear extract. This is in agreement with corresponding studies of plant pre-tRNAs which are not processed in wheat germ extract but are rapidly processed in yeast extract. These observations imply that the yeast pre-tRNA 5'- and 3'-maturases do not monitor the three-dimensional structure of their substrates as stringently as mammalian and plant enzymes, possibly because tRNA pseudogenes do not occur in yeast.
Collapse
Affiliation(s)
- Y Kaçar
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | | | |
Collapse
|
23
|
Cole RA, Williams KL. The Dictyostelium discoideum mitochondrial genome: a primordial system using the universal code and encoding hydrophilic proteins atypical of metazoan mitochondrial DNA. J Mol Evol 1994; 39:579-88. [PMID: 7807547 DOI: 10.1007/bf00160403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 3,345-bp fragment of Dictyostelium discoideum mitochondrial DNA (mtDNA) has been sequenced. This fragment contained the 80-kDa subunit of complex I (NADH:ubiquinone oxidoreductase), encoding a predicted amino acid sequence of 688 residues and a molecular mass of 79,805 daltons which is nuclear encoded in other metazoa. The C-terminus of the D. discoideum complex I gene shared a 10-bp overlap with NADH:ubiquinone oxidoreductase chain 5 (ND5), while 21 bp 5' were three tRNA genes (two isoleucine and a histidine) and a further 25 bp 5' of these genes is the partial sequence (104 residues) of an unidentified open reading frame (ORF104). Both the 80-kDa subunit and the ORF104 were hydrophilic and highly charged, suggesting they are not membrane associated, unlike most mitochondrially encoded proteins in the metazoa. Sequence analysis of the 80-kDa subunit, its adjacent ND5 gene, and ORF104 indicates the universal stop codon TGA, which codes for tryptophan in nearly all nonplant mtDNA, is either unassigned or coding for a stop codon in D. discoideum. The large size of the mitochondrial genome (54 kb), the lack of intergenic sequence, and the apparent use of the universal code suggest D. discoideum mtDNA may encode many primitive genes that are nuclear encoded in higher organisms.
Collapse
Affiliation(s)
- R A Cole
- School of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | |
Collapse
|
24
|
Vader A, Naess J, Haugli K, Haugli F, Johansen S. Nucleolar introns from Physarum flavicomum contain insertion elements that may explain how mobile group I introns gained their open reading frames. Nucleic Acids Res 1994; 22:4553-9. [PMID: 7984404 PMCID: PMC308500 DOI: 10.1093/nar/22.22.4553] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Comparison of two group I intron sequences in the nucleolar genome of the myxomycete Physarum flavicomum to their homologs in the closely related Physarum polycephalum revealed insertion-like elements. One of the insertion-like elements consists of two repetitive sequence motifs of 11 and 101 bp in five and three copies, respectively. The smaller motif, which flanks the larger, resembles a target duplication and indicates a relationship to transposons or retroelements. The insertion-like elements are found in the peripheral loops of the RNA structure; the positions occupied by the ORFs of mobile nucleolar group I introns. The P. flavicomum introns are 1184 and 637 bp in size, located in the large subunit ribosomal RNA gene, and can be folded into group I intron structures at the RNA level. However, the intron 2s from both P. flavicomum and P. polycephalum contain an unusual core region that lacks the P8 segment. None of the introns are able to self-splice in vitro. Southern analysis of different isolates indicates that the introns are not optional in myxomycetes.
Collapse
Affiliation(s)
- A Vader
- Department of Cell Biology, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
25
|
Titus MA, Kuspa A, Loomis WF. Discovery of myosin genes by physical mapping in Dictyostelium. Proc Natl Acad Sci U S A 1994; 91:9446-50. [PMID: 7937787 PMCID: PMC44829 DOI: 10.1073/pnas.91.20.9446] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The diversity of the myosin family in a single organism, Dictyostelium discoideum, has been investigated by a strategy devised to rapidly identify and clone additional members of a gene family. An ordered array of yeast artificial chromosome clones that encompasses the Dictyostelium genome was probed at low stringency with conserved regions of the myosin motor domain to identify all possible myosin loci. The previously identified myosin loci (mchA, myoA-E) were detected by hybridization to the probes, as well as an additional seven previously unidentified loci (referred to as myoF-L). Clones corresponding to four of these additional loci (myoF, myoH-J) were obtained by using the isolated yeast artificial chromosomes as templates in a PCR employing degenerate primers specific for conserved regions of the myosin head. Sequence analysis and physical mapping of these clones confirm that these PCR products are derived from four previously unidentified myosin genes. Preliminary analysis of these sequences suggests that at least one of the genes (myoJ) encodes a member of a potentially different class of myosins. With the development of whole genome libraries for a variety of organisms, this approach can be used to rapidly explore the diversity of this and other gene families in a number of systems.
Collapse
Affiliation(s)
- M A Titus
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
26
|
Internally located and oppositely oriented polymerase II promoters direct convergent transcription of a LINE-like retroelement, the Dictyostelium repetitive element, from Dictyostelium discoideum. Mol Cell Biol 1994. [PMID: 8164663 DOI: 10.1128/mcb.14.5.3074] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Dictyostelium discoideum NC4 genome harbors approximately 150 individual copies of a retrotransposable element called the Dictyostelium repetitive element (DRE). This element contains nonidentical terminal repeats (TRs) consisting of conserved building blocks A and B in the left TR and B and C in the right TR. Seven different-sized classes of RNA transcripts from these elements were resolved by Northern (RNA) blot analysis, but their combined abundance was very low. When D. discoideum cells were grown in the presence of the respiratory chain blocker antimycin A, steady-state concentrations of these RNA species increased 10- to 20-fold. The D. discoideum genome contains two DRE subtypes, the full-length 5.7-kb DREa and the internally deleted 2.4-kb DREb. Both subtypes are transcribed, as confirmed by analysis of cloned cDNA. Primary transcripts from the sense strand originate at nucleotide +1 and terminate at two dominant sites, located 21 or 28 nucleotides upstream from the 3' end of the elements. The activity of a reasonably strong polymerase II promoter in the 5'-terminal A module is slightly upregulated by the tRNA gene located 50 +/- 4 nucleotides upstream and drastically reduced by the adjacent B module of the DRE. Transcripts from the opposite DNA strand (complementary-sense transcripts) were also detected, directed by an internally located polymerase II promoter residing within the C module. This latter transcription was initiated at multiple sites within the oligo(dA12) stretch which terminates DREs.
Collapse
|
27
|
Schumann G, Zündorf I, Hofmann J, Marschalek R, Dingermann T. Internally located and oppositely oriented polymerase II promoters direct convergent transcription of a LINE-like retroelement, the Dictyostelium repetitive element, from Dictyostelium discoideum. Mol Cell Biol 1994; 14:3074-84. [PMID: 8164663 PMCID: PMC358675 DOI: 10.1128/mcb.14.5.3074-3084.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Dictyostelium discoideum NC4 genome harbors approximately 150 individual copies of a retrotransposable element called the Dictyostelium repetitive element (DRE). This element contains nonidentical terminal repeats (TRs) consisting of conserved building blocks A and B in the left TR and B and C in the right TR. Seven different-sized classes of RNA transcripts from these elements were resolved by Northern (RNA) blot analysis, but their combined abundance was very low. When D. discoideum cells were grown in the presence of the respiratory chain blocker antimycin A, steady-state concentrations of these RNA species increased 10- to 20-fold. The D. discoideum genome contains two DRE subtypes, the full-length 5.7-kb DREa and the internally deleted 2.4-kb DREb. Both subtypes are transcribed, as confirmed by analysis of cloned cDNA. Primary transcripts from the sense strand originate at nucleotide +1 and terminate at two dominant sites, located 21 or 28 nucleotides upstream from the 3' end of the elements. The activity of a reasonably strong polymerase II promoter in the 5'-terminal A module is slightly upregulated by the tRNA gene located 50 +/- 4 nucleotides upstream and drastically reduced by the adjacent B module of the DRE. Transcripts from the opposite DNA strand (complementary-sense transcripts) were also detected, directed by an internally located polymerase II promoter residing within the C module. This latter transcription was initiated at multiple sites within the oligo(dA12) stretch which terminates DREs.
Collapse
Affiliation(s)
- G Schumann
- Institut für Biochemie, Medizinische Fakultät, Universität Erlangen-Nürnberg, Germany
| | | | | | | | | |
Collapse
|
28
|
Pavesi A, Conterio F, Bolchi A, Dieci G, Ottonello S. Identification of new eukaryotic tRNA genes in genomic DNA databases by a multistep weight matrix analysis of transcriptional control regions. Nucleic Acids Res 1994; 22:1247-56. [PMID: 8165140 PMCID: PMC523650 DOI: 10.1093/nar/22.7.1247] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A linear method for the search of eukaryotic nuclear tRNA genes in DNA databases is described. Based on a modified version of the general weight matrix procedure, our algorithm relies on the recognition of two intragenic control regions known as A and B boxes, a transcription termination signal, and on the evaluation of the spacing between these elements. The scanning of the eukaryotic nuclear DNA database using this search algorithm correctly identified 933 of the 940 known tRNA genes (0.74% of false negatives). Thirty new potential tRNA genes were identified, and the transcriptional activity of two of them was directly verified by in vitro transcription. The total false positive rate of the algorithm was 0.014%. Structurally unusual tRNA genes, like those coding for selenocysteine tRNAs, could also be recognized using a set of rules concerning their specific properties, and one human gene coding for such tRNA was identified. Some of the newly identified tRNA genes were found in rather uncommon genomic positions: 2 in centromeric regions and 3 within introns. Furthermore, the presence of extragenically located B boxes in tRNA genes from various organisms could be detected through a specific subroutine of the standard search program.
Collapse
Affiliation(s)
- A Pavesi
- Department of Evolutionary Biology, University of Parma, Italy
| | | | | | | | | |
Collapse
|
29
|
Bukenberger M, Dingermann T, Meissner W, Seifart KH, Winckler T. Isolation of transcription factor IIIC from Dictyostelium discoideum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:839-46. [PMID: 8143738 DOI: 10.1111/j.1432-1033.1994.tb18686.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transcription factor IIIC (TFIIIC) binds in a sequence-specific manner to RNA-polymerase-III-transcribed genes (e.g. tRNA genes). It sequesters other transcription factors into the preformed complex, thereby activating transcription by RNA polymerase III. The Dictyostelium discoideum homologue of TFIIIC was highly purified by affinity chromatography based on its tDNA-binding activity. This TFIIIC homologue is a multicomponent factor (molecular mass 380 kDa), which binds to the B-box element of the internal tRNA gene promoter without significant A-box interaction. Partially purified D. discoideum TFIIIC is able to functionally complement a human RNA polymerase III in vitro transcription system depleted of human TFIIIC. We provide evidence that partially purified D. discoideum TFIIIC interacts in vitro with gene-external B-box elements present down-stream of many D. discoideum tRNA genes.
Collapse
Affiliation(s)
- M Bukenberger
- Institut für Pharmazeutische Biologie, Universität Frankfurt/Main (Biozentrum), Germany
| | | | | | | | | |
Collapse
|
30
|
Marschalek R, Hofmann J, Schumann G, Bach M, Dingermann T. Different organization of the tRNA-gene-associated repetitive element, DRE, in NC4-derived strains and in other wild-type Dictyostelium discoideum strains. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:627-31. [PMID: 8223604 DOI: 10.1111/j.1432-1033.1993.tb18285.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The retrotransposon DRE (Dictyostelium repetitive element) was discovered in the course of an extensive study concerning the genomic organization of tRNA genes in the NC4-derived strains AX2 and AX3 of the cellular slime mold Dictyostelium discoideum. As a striking feature, DRE was found exclusively in a constant orientation and at a constant distance upstream from different tRNA genes. About 150-200 DRE with intact 5'-terminal-repeat structures are present in NC4-derived strains. These strains were termed high-copy DRE strains (HCD strains) as opposed to low-copy DRE strains (LCD strains) such as the wild-type D. discoideum isolates DD61, WS380B, OHIO and V12. LCD strains contain only 3-15 DRE with intact 5'-terminal-repeat-structures. However, in addition to these few intact elements, many 5'-truncated DRE elements are present in LCD strains. In HCD strains, most DRE show typical structural characteristics of retrotransposons containing terminal repeats at both ends, which seems to be one prerequisite for active transposition. In LCD strains, however, most DRE elements are 5'-truncated, which is a common feature of eukaryotic LINE elements. Despite their truncated 5'-ends, DRE in LCD strains retain unique integration specificities, i.e. they are always found position-specifically and orientation-specifically integrated in front of tRNA genes, flanked by a 12-16-bp target-site duplication.
Collapse
Affiliation(s)
- R Marschalek
- Institut für Biochemie der Medizinischen Fakultät, Universität Erlangen-Nürnberg, Germany
| | | | | | | | | |
Collapse
|
31
|
Marschalek R, Hofmann J, Schumann G, Dingermann T. Two distinct subforms of the retrotransposable DRE element in NC4 strains of Dictyostelium discoideum. Nucleic Acids Res 1992; 20:6247-52. [PMID: 1335570 PMCID: PMC334512 DOI: 10.1093/nar/20.23.6247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Approximately 2% of the Dictyostelium discoideum genome consists of multiple copies of a retrotransposable element termed DRE (Dictyostelium Repetitive Element). These elements have always been found integrated in a position and orientation-specific manner 50 +/- 4 nucleotides upstream of the coding region of tRNA genes (tDNAs). An intact DRE is 5.7 kb long. It carries an extensive coding region flanked by non-identical long terminal repeats (LTRs), composed of three distinct modules A, B and C. The left LTR proximal to the tRNA gene contains one or several A-modules followed by a single B-module (AnB). By contrast, the right LTR is composed of a B-module followed by a C-module (BC). Approximately 50% of the DRE elements in NC4 derivatives of D. discoideum are structurally different from the 5.7 kb DRE described above. They carry the following alterations: a) a 3.1 kb deletion in the coding region; b) two small deletions of 8 and 29 nucleotides in the B-module of the right LTR; c) a 72 bp deletion in the B-C junction; and d) three distinct point mutations within the A-module of the left LTR. The deletion in the open reading frame encompasses the putative coding regions for reverse transcriptase adn integrase. At least 60 copies of this smaller 2.4 kb DRE subtype are found in the genome of D. discoideum NC4 strains associated with tRNA genes. Thus, inspite of their lack in reverse transcriptase and integrase those 2.4 kb elements are presumably transposable and at least all isolated copies are found exclusively in the proximity of tRNA gene loci. The enzymes needed for their replication and transposition are likely to be provided by the intact 5.7 kb DREs.
Collapse
Affiliation(s)
- R Marschalek
- Institut für Biochemie, Medizinischen Fakultät, Universität Erlangen-Nürnberg, Germany
| | | | | | | |
Collapse
|
32
|
Fuchs T, Beier D, Beier H. The tRNA(Tyr) multigene family of Nicotiana rustica: genome organization, sequence analyses and expression in vitro. PLANT MOLECULAR BIOLOGY 1992; 20:869-78. [PMID: 1463826 DOI: 10.1007/bf00027158] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Tobacco tRNA(Tyr) genes are mainly organized as a dispersed multigene family as shown by hybridization with a tRNA(Tyr)-specific probe to Southern blots of Eco RI-digested DNA. A Nicotiana genomic library was prepared by Eco RI digestion of nuclear DNA, ligation of the fragments into the vector lambda gtWES.lambda B and in vitro packaging. The phage library was screened with a 5'-labelled synthetic oligonucleotide complementary to nucleotides 18 to 37 of cytoplasmic tobacco tRNA(Tyr). Eleven hybridizing Eco RI fragments ranging in size from 1.7 to 7.5 kb were isolated from recombinant lambda phage and subcloned into pUC19 plasmid. Four of the sequenced tRNA(Tyr) genes code for the known tobacco tRNA1(Tyr) (G psi A) and seven code for tRNA2(Tyr) (G psi A). The two tRNA species differ in one nucleotide pair at the basis of the T psi C stem. Only one tRNA(Tyr) gene (pNtY5) contains a point mutation (T54-->A54). Comparison of the intervening sequences reveals that they differ considerably in length and sequence. Maturation of intron-containing pre-tRNAs was studied in HeLa and wheat germ extracts. All pre-tRNAs(Tyr)--with one exception--are processed and spliced in both extracts. The tRNA(Tyr) gene encoded by pNtY5 is transcribed efficiently in HeLa extract but processing of the pre-tRNA is impaired.
Collapse
Affiliation(s)
- T Fuchs
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, FRG
| | | | | |
Collapse
|
33
|
Abstract
In the decade since Ty elements were discovered, advocates have argued they could be used as a genetic entrée to elusive host-type functions required by retroviruses. However, the advent of the polymerase chain reaction, coupled with a boom in funding for human immunodeficiency virus research have moved retroviral research apace, raising questions as to whether novel contributions would be realized. The past year, with the implication of the cell cycle and specific host proteins, such as the debranching enzyme and transcription initiation factors, in Ty retrotransposition has provided a positive answer and raised new questions.
Collapse
Affiliation(s)
- S B Sandmeyer
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717
| |
Collapse
|