1
|
Jenal U, Stephens C, Shapiro L. Regulation of asymmetry and polarity during the Caulobacter cell cycle. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:1-39. [PMID: 8644489 DOI: 10.1002/9780470123171.ch1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- U Jenal
- Department of Developmental Biology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford University, California 94305, USA
| | | | | |
Collapse
|
2
|
Fischer B, Rummel G, Aldridge P, Jenal U. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Mol Microbiol 2002; 44:461-78. [PMID: 11972783 DOI: 10.1046/j.1365-2958.2002.02887.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ftsH gene of Caulobacter crescentus has been isolated and identified as a component of the general stress response of this organism. In C. crescentus, ftsH expression is transiently induced after temperature upshift and in stationary phase. Consistent with this, mutants deprived of the FtsH protease are viable at normal growth conditions, but are highly sensitive to elevated temperature, increased salt concentration or the presence of antibiotics. Overexpression of ftsH resulted in an increased salt but not thermotolerance, emphasizing the importance of the FtsH protease in stress response. Mutants lacking FtsH were unable to undergo morphological and physiological adaptation in stationary phase and, upon starvation, experienced a more pronounced loss of viability than cells containing FtsH. In addition, cells lacking FtsH had an increased cellular concentration of the heat shock sigma factor sigma32, indicating that, as in Escherichia coli, the FtsH protease is involved in the control of the C. crescentus heat shock response. In agreement with this, transcription of the heat-induced sigma32-dependent gene dnaK was derepressed at normal temperature when FtsH was absent. In contrast, the groEL gene, which is controlled in response to heat stress by both sigma32 and a HcrA/CIRCE mechanism, was not derepressed in an ftsH mutant. Finally, FtsH is involved in C. crescentus development and cell cycle control. ftsH mutants were unable to synthesize stalks efficiently and had a severe cell division phenotype. In the absence of FtsH, swarmer cells differentiated into stalked cells faster than when FtsH was present, even though the entire cell cycle was longer under these conditions. Thus, directly or indirectly, the FtsH protease is involved in the inherent biological clock mechanism, which controls the timing of cell differentiation in C. crescentus.
Collapse
Affiliation(s)
- B Fischer
- Division of Molecular Microbiology, Biozentrum, University of Basel, CH-4056, Switzerland
| | | | | | | |
Collapse
|
3
|
Muir RE, Gober JW. Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus. Mol Microbiol 2002; 43:597-615. [PMID: 11929518 DOI: 10.1046/j.1365-2958.2002.02728.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor FlbD regulates the temporal and spatial transcription of flagellar genes in the bacterium Caulobacter crescentus. Activation of FlbD requires cell cycle progression and the assembly of an early (class II) flagellum structure. In this report, we identify 20 independent gain-of-function mutations in flbD that relieve regulation by flagellar assembly. One of these, flbD-1204, contained a mutation in the receiver domain (V17M) and another, flbD-1231, in the DNA binding domain (V451G). Both of these mutations resulted in an aberrant pattern of cell cycle transcription. The presence of the FlbD-1204 allele also resulted in a loss of swarmer-pole-specific transcription. These results indicate that temporal and spatial transcription is influenced by the assembly of the nascent flagellar structure. The trans-acting positive and negative regulatory factor, FliX, couples flagellar assembly to the activation of FlbD and, as we show here, also influences temporal transcription. Furthermore, we show that FliX can suppress the activity of FlbD mutants that cannot be phosphorylated, and that FliX is required for FlbD stability, and vice versa. These results indicate that FliX may interact directly with FlbD to regulate its activity.
Collapse
Affiliation(s)
- Rachel E Muir
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|
4
|
Muir RE, Gober JW. Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus. Mol Microbiol 2001; 41:117-30. [PMID: 11454205 DOI: 10.1046/j.1365-2958.2001.02506.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biogenesis of the single polar flagellum of Caulobacter crescentus is regulated by a complex interplay of cell cycle events and the progression of flagellum assembly. The expression of class III/IV flagellar genes requires the assembly of an early flagellar basal body structure, encoded by class II genes, and is activated by the transcription factor FlbD. Previous experiments indicated that the class II flagellar gene, flbE, encoded a trans-acting factor that was required for FlbD activity. Here, using mutant alleles of flbE we have determined that FlbE is either a structural component of the flagellum or is required for flagellar assembly and does not, as originally proposed, function as a trans-acting factor. We also demonstrate that two deleted derivatives of flbE have a dominant negative effect on the transcriptional activation of class III/IV flagellar genes that can be relieved by a gain-of-function mutation in flbD called bfa. This same mutation in flbD has been shown to restore class III/IV transcription in the absence of early class II flagellar assembly. These deleted mutants of flbE also exhibited a filamentous cell phenotype that was indistinguishable from that previously observed in class II flagellar mutants. Introduction of a flbD-bfa mutation into these cells expressing the deleted alleles of flbE, as well as several class II mutant strains, restored normal cell division and FtsZ localization. These results suggest that class III/IV transcription and a step in cell division are coupled to flagellar assembly by the same genetic pathway.
Collapse
Affiliation(s)
- R E Muir
- Department of Chemistry and Biochemistry and, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569 USA
| | | |
Collapse
|
5
|
Jones SE, Ferguson NL, Alley MRK. New members of the ctrA regulon: the major chemotaxis operon in Caulobacter is CtrA dependent. MICROBIOLOGY (READING, ENGLAND) 2001; 147:949-958. [PMID: 11283290 DOI: 10.1099/00221287-147-4-949] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Caulobacter crescentus che promoter region consists of two divergent promoters, directing expression of the major chemotaxis operon and a novel gene cagA (chemotaxis associated gene A). Analyses of start sites by primer extension and alignment of the divergent promoters revealed significant similarities between them at the -35 promoter region. Both mcpA and cagA are differentially expressed in the cell cycle, with maximal activation of transcription in predivisional cells. The main difference between the mcpA and cagA promoters is that, in common with the fljK flagellin, cagA is expressed in swarmer cells. A cagA--lacZ promoter fusion that contains 36 bases of untranslated mRNA has sufficient information to segregate the lacZ transcript to swarmer cells. Expression of mcpA and cagA was dependent on DNA replication. Transcriptional epistasis experiments were performed to identify potential regulators in the flagellar hierarchy. The sigma factor RpoN, which is required for flagellar biogenesis, is not required for mcpA and cagA expression. Mutations in the genes for the MS-ring and the switch complex (flagellar class II mutants) do not affect expression of mcpA and cagA. However, CtrA, an essential response regulator of flagellar gene transcription, is required.
Collapse
Affiliation(s)
- Susan E Jones
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK1
| | - N L Ferguson
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK1
| | - M R K Alley
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK1
| |
Collapse
|
6
|
Boyd CH, Gober JW. Temporal regulation of genes encoding the flagellar proximal rod in Caulobacter crescentus. J Bacteriol 2001; 183:725-35. [PMID: 11133968 PMCID: PMC94930 DOI: 10.1128/jb.183.2.725-735.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative bacterium Caulobacter crescentus has a life cycle that includes two distinct and separable developmental stages, a motile swarmer phase and a sessile stalked phase. The cell cycle-controlled biogenesis of the single polar flagellum of the swarmer cell is the best-studied aspect of this developmental program. The flagellar regulon is arranged into a rigid trans-acting hierarchy of gene expression in which successful expression of early genes is required for the expression of genes that are later in the hierarchy and in which the order of gene expression mirrors the order of assembly of gene products into the completed flagellum. The flgBC-fliE genes were identified as a result of the C. crescentus genome sequencing project and encode the homologues of two flagellar proximal rod proteins, FlgB and FlgC, and one conserved protein, FliE, that is of unknown function. Footprint assays on a DNA fragment containing the operon promoter as well as in vivo mutant suppressor analysis of promoter mutations indicate that this operon is controlled by the cell cycle response regulator CtrA, which with sigma(70) is responsible for regulating transcription of other early flagellar genes in C. crescentus. Promoter analysis, timing of expression, and epistasis experiments place these genes outside of the flagellar regulatory hierarchy; they are expressed in class II mutants, and flgB deletions do not prevent class III gene expression. This operon is also unusual in that it is expressed from a promoter that is divergent from the class II operon containing fliP, which encodes a member of the flagellum-specific protein export apparatus.
Collapse
Affiliation(s)
- C H Boyd
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
7
|
Ouimet MC, Marczynski GT. Transcription reporters that shuttle cloned DNA between high-copy Escherichia coli plasmids and low-copy broad-host-range plasmids. Plasmid 2000; 44:152-62. [PMID: 10964625 DOI: 10.1006/plas.2000.1471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe and apply lacZ transcription reporter plasmids designed for both biochemical analyses requiring high DNA yield and physiological studies requiring low gene dosage. Standard DNA ligations are performed at seven unique restriction sites 5' to the lacZ gene on high-copy ColE1 plasmids suitable for double- or single-strand DNA sequencing. A divergent gusA transcription reporter is included and serves as an internal control. Rec(+) Escherichia coli cells readily shuttle DNA placed between gusA and lacZ by allelic exchange with pRK290-based plasmids that subsequently conjugate and replicate in most gram-negative bacteria. We applied this system to study Caulobacter crescentus cell cycle promoters directed by the CtrA response-regulator protein. Synthetic oligonucleotides were ligated to create altered CtrA binding sites and corresponding promoters with varied transcription strength. We also document the phenomenon of long-range promoter interference. A strong promoter can repress up to twofold the transcription from a divergent promoter located 100 bp away. However, the cell cycle timing of both promoters is not changed. Additional applications of our system and theoretical aspects of promoter organization are discussed.
Collapse
Affiliation(s)
- M C Ouimet
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | |
Collapse
|
8
|
Jenal U. Signal transduction mechanisms inCaulobacter crescentusdevelopment and cell cycle control. FEMS Microbiol Rev 2000. [DOI: 10.1111/j.1574-6976.2000.tb00538.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Barrios H, Valderrama B, Morett E. Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res 1999; 27:4305-13. [PMID: 10536136 PMCID: PMC148710 DOI: 10.1093/nar/27.22.4305] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Promoters recognized by the RNA-polymerase with the alternative sigma factor sigma(54) (Esigma54) are unique in having conserved positions around -24 and -12 nucleotides upstream from the transcriptional start site, instead of the typical -35 and -10 boxes. Here we compile 186 -24/-12 promoter sequences reported in the literature and generate an updated and extended consensus sequence. The use of the extended consensus increases the probability of identifying genuine -24/-12 promoters. The effect of several reported mutations at the -24/-12 elements on RNA-polymerase binding and promoter strength is discussed in the light of the updated consensus.
Collapse
Affiliation(s)
- H Barrios
- Departamento de Reconocimiento Molecular y Bioestructura, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México
| | | | | |
Collapse
|
10
|
Loong Chan V, Louie H, Joe A. Expression of the flgFG operon of Campylobacter jejuni in Escherichia coli yields an extra fusion protein. Gene 1998; 225:131-41. [PMID: 9931471 DOI: 10.1016/s0378-1119(98)00516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two Campylobacter jejuni genes with homology to the Escherichia coli flgF and flgG genes encoding two of the basal body rod proteins were isolated, and the nucleotide sequence was determined and analyzed. These two C. jejuni genes were shown, by Northern hybridization analysis, to function as a single operon (flgFG). Two transcriptional start sites were detected upstream of flgF, corresponding to the two RNA transcripts detected in the Northern blot. Western blot immunoassays using anti-FlgF and anti-FlgG antibodies demonstrated the synthesis of FlgF and FlgG proteins in C. jejuni and in Escherichia coli containing the C. jejuni flgF and flgG genes. Maxicell analysis and Western immunoblots using anti-FlgF antibodies to probe flgFG-encoded proteins in E. coli revealed the presence of a protein with a molecular mass of approximately the combined mass of the FlgF and FlgG proteins. Anti-FlgF antibodies detected in C. jejuni cell extracts the native FlgF protein and also a higher-molecular-weight protein that is likely encoded by the flgF and part of the flgG sequences.
Collapse
Affiliation(s)
- V Loong Chan
- Department of Medical Genetics and Microbiology, and Department of Laboratory Medicine and Pathobiology, University of Toronto, 150 College Street, Toronto, Ontario,
| | | | | |
Collapse
|
11
|
Sourjik V, Sterr W, Platzer J, Bos I, Haslbeck M, Schmitt R. Mapping of 41 chemotaxis, flagellar and motility genes to a single region of the Sinorhizobium meliloti chromosome. Gene 1998; 223:283-90. [PMID: 9858749 DOI: 10.1016/s0378-1119(98)00160-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three previously identified gene clusters that contain chemotaxis (che), flagellar (fla) and motility (mot) genes of Sinorhizobium meliloti (formerly Rhizobium meliloti) were mapped to a contiguous 45-kb region of the S. meliloti RU11/001 genome by pulsed-field gel electrophoresis (PFGE) in combination with Southern hybridization. The entire region was cloned and sequenced. The map combines 32 che, fla (flg, flh, fli) and mot genes and nine new open reading frames that probably encode taxis-related functions as well. It is concluded that between 80 and 90% of the genes responsible for chemotaxis and motility are located in a single region of the S. meliloti chromosome near the his-39 marker.
Collapse
Affiliation(s)
- V Sourjik
- Lehrstuhl für Genetik, Universität Regensburg, D-93040, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Mohr CD, MacKichan JK, Shapiro L. A membrane-associated protein, FliX, is required for an early step in Caulobacter flagellar assembly. J Bacteriol 1998; 180:2175-85. [PMID: 9555902 PMCID: PMC107146 DOI: 10.1128/jb.180.8.2175-2185.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
The ordered assembly of the Caulobacter crescentus flagellum is accomplished in part through the organization of the flagellar structural genes in a regulatory hierarchy of four classes. Class II genes are the earliest to be expressed and are activated at a specific time in the cell cycle by the CtrA response regulator. In order to identify gene products required for early events in flagellar assembly, we used the known phenotypes of class II mutants to identify new class II flagellar genes. In this report we describe the isolation and characterization of a flagellar gene, fliX. A fliX null mutant is nonmotile, lacks a flagellum, and exhibits a marked cell division defect. Epistasis experiments placed fliX within class II of the flagellar regulatory hierarchy, suggesting that FliX functions at an early stage in flagellar assembly. The fliX gene encodes a 15-kDa protein with a putative N-terminal signal sequence. Expression of fliX is under cell cycle control, with transcription beginning relatively early in the cell cycle and peaking in Caulobacter predivisional cells. Full expression of fliX was found to be dependent on ctrA, and DNase I footprinting analysis demonstrated a direct interaction between CtrA and the fliX promoter. The fliX gene is located upstream and is divergently transcribed from the class III flagellar gene flgI, which encodes the basal body P-ring monomer. Analysis of the fliX-flgI intergenic region revealed an arrangement of cis-acting elements similar to that of another set of Caulobacter class II and class III flagellar genes, fliL-flgF, that is also divergently transcribed. In parallel with the FliL protein, FliX copurifies with the membrane fraction, and although its expression is cell cycle controlled, the protein is present throughout the cell cycle.
Collapse
Affiliation(s)
- C D Mohr
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305-5427, USA.
| | | | | |
Collapse
|
13
|
Marques MV, Gomes SL, Gober JW. A gene coding for a putative sigma 54 activator is developmentally regulated in Caulobacter crescentus. J Bacteriol 1997; 179:5502-10. [PMID: 9287006 PMCID: PMC179422 DOI: 10.1128/jb.179.17.5502-5510.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Caulobacter crescentus, the alternative sigma factor sigma54 plays an important role in the expression of late flagellar genes. Sigma54-dependent genes are temporally and spatially controlled, being expressed only in the swarmer pole of the predivisional cell. The only sigma54 activator described so far is the FlbD protein, which is involved in activation of the class III and IV flagellar genes and repression of the fliF promoter. To identify new roles for sigma54 in the metabolism and differentiation of C. crescentus, we cloned and characterized a gene encoding a putative sigma54 activator, named tacA. The deduced amino acid sequence from tacA has high similarity to the proteins from the NtrC family of transcriptional activators, including the aspartate residues that are phosphorylated by histidine kinases in other activators. The promoter region of the tacA gene contains a conserved sequence element present in the promoters of class II flagellar genes, and tacA shows a temporal pattern of expression similar to the patterns of these genes. We constructed an insertional mutant that is disrupted in tacA (strain SP2016), and an analysis of this strain showed that it has all polar structures, such as pili, stalk, and flagellum, and displays a motile phenotype, indicating that tacA is not involved in the flagellar biogenesis pathway. However, this strain has a high percentage of filamentous cells and shows a clear-plaque phenotype when infected with phage phiCb5. These results suggest that the TacA protein could mediate the effect of sigma54 on a different pathway in C. crescentus.
Collapse
Affiliation(s)
- M V Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | | | | |
Collapse
|
14
|
Janakiraman RS, Brun YV. Transcriptional and mutational analyses of the rpoN operon in Caulobacter crescentus. J Bacteriol 1997; 179:5138-47. [PMID: 9260957 PMCID: PMC179373 DOI: 10.1128/jb.179.16.5138-5147.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The alternative sigma factor sigma54 is required for the biogenesis of both the flagellum and the stalk in Caulobacter crescentus. The DNA sequence downstream of the sigma54 gene (rpoN) has been determined, revealing three open reading frames (ORFs) encoding peptides of 203, 208, and 159 amino acids. ORF208 and ORF159 are homologous to ORFs found downstream of rpoN in other microorganisms. The organization of this region in C. crescentus is similar to that in other bacteria, with the exception of an additional ORF, ORF203, immediately downstream from rpoN. There is a single temporally regulated promoter that drives the expression of both rpoN and ORF203. Promoter probe analysis indicates the presence of another promoter downstream from ORF203 which exhibits a temporal control that is different from that of the rpoN promoter. Mutational analysis was used to address the function of the proteins encoded by these three downstream ORFs. The mutations have no effect on the transcription of previously known sigma54-dependent flagellar promoters except for a slight effect of an ORF159 mutation on transcription of fljK.
Collapse
Affiliation(s)
- R S Janakiraman
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
15
|
Ge Y, Charon NW. Identification of a large motility operon in Borrelia burgdorferi by semi-random PCR chromosome walking. Gene X 1997; 189:195-201. [PMID: 9168127 DOI: 10.1016/s0378-1119(96)00848-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Motility has been implicated in the invasive process of Borrelia burgdorferi (Bb), the etiologic agent of Lyme disease. To identify Bb motility related genes, we used a method termed 'semi-random PCR chromosome walking' (SRPCW) to walk through a large motility gene cluster. The major advantage of this approach over other PCR walking methods is that it employs a secondary PCR amplification of cloned fragments which can be readily sequenced and analyzed. Starting with a primer specific to flgE, we identified and sequenced 14 open reading frames (ORFs) spanning 11 kb downstream of the flgE gene. The genes identified include flbD, motA, motB, fliL, fliM, fliN, fliZ, fliP, fliQ, fliR, flhB, flhA, flhF and flbE. Twelve of the deduced proteins shared extensive homology with flagellar proteins from other bacteria. The gene products and order of genes within this cluster are most similar to those of Treponema pallidum (Tp) and Bacillus subtilis (Bs). One of the unique genes identified, flbD, demonstrated homology to an ORF from the same operon of Tp. Another ORF, flbE, showed similarity to genes from both Tp and Bs. RT-PCR and primer extension analysis revealed that this gene cluster is transcribed as a single unit indicating that it is part of a large motility operon spanning more than 21 kb. Antisera to Escherichia coli and Salmonella typhimurium FliN, FliM, FlhB and FlhA reacted with proteins of the predicted molecular weights in cell lysates of Bb. The results suggest that the flagellar system is highly conserved in evolution and thus underscore the importance of motility in bacterial survival and pathogenesis.
Collapse
Affiliation(s)
- Y Ge
- Robert C. Byrd Health Sciences Center, Department of Microbiology and Immunology, West Virginia University, Morgantown 26506-9177, USA
| | | |
Collapse
|
16
|
Anderson DK, Newton A. Posttranscriptional regulation of Caulobacter flagellin genes by a late flagellum assembly checkpoint. J Bacteriol 1997; 179:2281-8. [PMID: 9079914 PMCID: PMC178965 DOI: 10.1128/jb.179.7.2281-2288.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Flagellum formation in Caulobacter crescentus requires ca. 50 flagellar genes, most of which belong to one of three classes (II, III, or IV). Epistasis experiments suggest that flagellar gene expression is coordinated with flagellum biosynthesis by two assembly checkpoints. Completion of the M/S ring-switch complex is required for the transition from class II to class III gene expression, and completion of the basal body-hook structure is required for the transition from class III to class IV gene expression. In studies focused on regulation of the class IV flagellin genes, we have examined fljK and fljL expression in a large number of flagellar mutants by using transcription and translation fusions to lacZ, nuclease S1 assays, and measurements of protein stability. The fljK-lacZ and fljL-lacZ transcription fusions were expressed in all class III flagellar mutants, although these strains do not make detectable 25- or 27-kDa flagellins. The finding that the fljK-lacZ translation fusion was not expressed in the same collection of class III mutants confirmed that fljK is regulated posttranscriptionally. The requirement of multiple class III genes for expression of the fljK-lacZ fusion suggests that completion of the basal body-hook is an assembly checkpoint for the posttranscriptional regulation of this flagellin gene. Deletion analysis within the 5' untranslated region of fljK identified a sequence between +24 and +38 required for regulation of the fljK-lacZ fusion by class III genes, which implicates an imperfect 14-bp direct repeat in the posttranscriptional regulation of fljK. Our results show that fljL is also regulated posttranscriptionally by class III and unclassified flagellar genes, apparently by a mechanism different from the one regulating fljK.
Collapse
Affiliation(s)
- D K Anderson
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
17
|
Ge Y, Old IG, Saint Girons I, Charon NW. Molecular characterization of a large Borrelia burgdorferi motility operon which is initiated by a consensus sigma70 promoter. J Bacteriol 1997; 179:2289-99. [PMID: 9079915 PMCID: PMC178966 DOI: 10.1128/jb.179.7.2289-2299.1997] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A large motility operon, referred to as the flgB operon, was identified, characterized, and mapped at 310 to 320 kb on the linear chromosome of the spirochete Borrelia burgdorferi. This is the first report that a sigma70-like promoter rather than a sigma28-like promoter is involved in the transcription of a major motility operon in bacteria. From these results in conjunction with results from a previous study (Y. Ge and N. W. Charon, Gene, in press), we have identified 26 genes in this operon that are relevant to motility and flagellar synthesis. With few exceptions, the gene order and deduced gene products were most similar to those of other spirochetes and Bacillus subtilis. Primer extension analysis indicated that transcription initiated from a conserved sigma70-like promoter immediately upstream of flgB; this promoter mapped within the heat-shock-induced protease gene hslU. Reverse transcriptase PCR analysis indicated that a single transcript of 21 kb initiated at this promoter and extended through flgE and (with our previous results) onto the putative motility gene flbE. The flgB promoter element had strong activity in both Escherichia coli and Salmonella typhimurium. As expected, a mutant of S. typhimurium with an inactivated flagellum-specific sigma28 factor did not affect the function of this promoter. Western blot analysis indicated that B. burgdorferi recombinant FliG and FliI were antigenically similar to those of E. coli and other spirochetes. Although complementation of E. coli or S. typhimurium fliG or fliI mutants with the B. burgdorferi genes was unsuccessful, B. burgdorferi recombinant FliI completely inhibited flagellar synthesis and motility of wild-type E. coli and S. typhimurium. These results show that spirochete motility genes can influence flagellar synthesis in other species of bacteria. Finally, Western blot analysis with sera from infected humans and animals indicated a weak or nondetectable response to recombinant FliG and FliI. These results indicate that these antigens are not favorable candidate reagents to be used in the diagnosis of Lyme disease.
Collapse
Affiliation(s)
- Y Ge
- Department of Microbiology and Immunology, West Virginia University, Robert C. Byrd Health Sciences Center, Morgantown 26506-9177, USA
| | | | | | | |
Collapse
|
18
|
Mohr CD, Jenal U, Shapiro L. Flagellar assembly in Caulobacter crescentus: a basal body P-ring null mutation affects stability of the L-ring protein. J Bacteriol 1996; 178:675-82. [PMID: 8550499 PMCID: PMC177711 DOI: 10.1128/jb.178.3.675-682.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The P- and L-rings are structural components of the flagellar basal body that are positioned in the periplasmic space and outer membrane, respectively. In order to explore the mechanism of P- and L-ring assembly, we examined the effect of a null mutation in the gene encoding the P-ring subunit, FlgI, on the expression, stability, and subcellular localization of the L-ring subunit, FlgH, in Caulobacter crescentus. Transcription of the L-ring gene and synthesis of the L-ring protein were both increased in the P-ring null mutant. However, steady-state L-ring protein levels were dramatically reduced compared with those of wild type. This reduction, which was not observed in flagellar hook mutants, was due to a decreased stability of the L-ring protein. The instability of the L-ring protein was apparent throughout the cell cycle of the P-ring mutant and contrasted with the fairly constant level of L-ring protein during the cell cycle of wild-type cells. Low levels of the L-ring protein were detected exclusively in the cell envelope of cells lacking the P-ring, suggesting that, in the absence of P-ring assembly, L-ring monomers are unable to form multimeric rings and are thus subject to proteolysis in the periplasm.
Collapse
Affiliation(s)
- C D Mohr
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305-5427, USA
| | | | | |
Collapse
|
19
|
Affiliation(s)
- R C Roberts
- Department of Developmental Biology, Stanford University School of Medicine, California 94305, USA
| | | | | |
Collapse
|
20
|
Gober JW, Boyd CH, Jarvis M, Mangan EK, Rizzo MF, Wingrove JA. Temporal and spatial regulation of fliP, an early flagellar gene of Caulobacter crescentus that is required for motility and normal cell division. J Bacteriol 1995; 177:3656-67. [PMID: 7601828 PMCID: PMC177080 DOI: 10.1128/jb.177.13.3656-3667.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In Caulobacter crescentus, the genes encoding a single polar flagellum are expressed under cell cycle control. In this report, we describe the characterization of two early class II flagellar genes contained in the orfX-fliP locus. Strains containing mutations in this locus exhibit a filamentous growth phenotype and fail to express class III and IV flagellar genes. A complementing DNA fragment was sequenced and found to contain two potential open reading frames. The first, orfX, is predicted to encode a 105-amino-acid polypeptide that is similar to MopB, a protein which is required for both motility and virulence in Erwinia carotovora. The deduced amino acid sequence of the second open reading frame, fliP, is 264 amino acids in length and shows significant sequence identity with the FliP protein of Escherichia coli as well as virulence proteins of several plant and mammalian pathogens. The FliP homolog in pathogenic organisms has been implicated in the secretion of virulence factors, suggesting that the export of virulence proteins and some flagellar proteins share a common mechanism. The 5' end of orfX-fliP mRNA was determined and revealed an upstream promoter sequence that shares few conserved features with that of other early Caulobacter flagellar genes, suggesting that transcription of orfX-fliP may require a different complement of trans-acting factors. In C. crescentus, orfX-fliP is transcribed under cell cycle control, with a peak of transcriptional activity in the middle portion of the cell cycle. Later in the cell cycle, orfX-fliP expression occurs in both poles of the predivisional cell. Protein fusions to a lacZ reporter gene indicate that FliP is specifically targeted to the swarmer compartment of the predivisional cell.
Collapse
Affiliation(s)
- J W Gober
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
21
|
Wu J, Benson AK, Newton A. Global regulation of a sigma 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD. J Bacteriol 1995; 177:3241-50. [PMID: 7768824 PMCID: PMC177017 DOI: 10.1128/jb.177.11.3241-3250.1995] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Biosynthesis of the Caulobacter crescentus polar flagellum requires the expression of a large number of flagellar (fla) genes that are organized in a regulatory hierarchy of four classes (I to IV). The timing of fla gene expression in the cell cycle is determined by specialized forms of RNA polymerase and the appearance and/or activation of regulatory proteins. Here we report an investigation of the role of the C. crescentus transcriptional regulatory protein FlbD in the activation of sigma 54-dependent class III and class IV fla genes of the hierarchy by reconstituting transcription from these promoters in vitro. Our results demonstrate that transcription from promoters of the class III genes flbG, flgF, and flgI and the class IV gene fliK by Escherichia coli E sigma 54 is activated by FlbD or the mutant protein FlbDS140F (where S140F denotes an S-to-F mutation at position 140), which we show here has a higher potential for transcriptional activation. In vitro studies of the flbG promoter have shown previously that transcriptional activation by the FlbD protein requires ftr (ftr for flagellar transcription regulation) sequence elements. We have now identified multiple ftr sequences that are conserved in both sequence and spatial architecture in all known class III and class IV promoters. These newly identified ftr elements are positioned ca. 100 bp from the transcription start sites of each sigma 54-dependent fla gene promoter, and our studies indicate that they play an important role in controlling the levels of transcription from different class III and class IV promoters. We have also used mutational analysis to show that the ftr sequences are required for full activation by the FlbD protein both in vitro and in vivo. Thus, our results suggest that FlbD, which is encoded by the class II flbD gene, is a global regulator that activates the cell cycle-regulated transcription from all identified sigma 54-dependent promoters in the C. crescentus fla gene hierarchy.
Collapse
Affiliation(s)
- J Wu
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
22
|
Mangan EK, Bartamian M, Gober JW. A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus. J Bacteriol 1995; 177:3176-84. [PMID: 7768816 PMCID: PMC177008 DOI: 10.1128/jb.177.11.3176-3184.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription of flagellar genes in Caulobacter crescentus is regulated by cell cycle events that culminate in the synthesis of a new flagellum once every cell division. Early flagellar gene products regulate the expression of late flagellar genes at two distinct stages of the flagellar trans-acting hierarchy. Here we investigate the coupling of early flagellar biogenesis with middle and late flagellar gene expression. We have isolated mutants (bfa) that do not require early class II flagellar gene products for the transcription of middle or late flagellar genes. bfa mutant strains are apparently defective in a negative regulatory pathway that couples early flagellar biogenesis to late flagellar gene expression. The bfa regulatory pathway functions solely at the level of transcription. Although flagellin promoters are transcribed in class II/bfa double mutants, there is no detectable flagellin protein on immunoblots prepared from mutant cell extracts. This finding suggests that early flagellar biogenesis is coupled to gene expression by two distinct mechanisms: one that negatively regulates transcription, mediated by bfa, and another that functions posttranscriptionally. To determine whether bfa affects the temporal pattern of late flagellar gene expression, cell cycle experiments were performed in bfa mutant strains. In a bfa mutant strain, flagellin expression fails to shut off at its normal time in the cell division cycle. This experimental result indicates that bfa may function as a regulator of flagellar gene transcription late in the cell cycle, after early flagellar structures have been assembled.
Collapse
Affiliation(s)
- E K Mangan
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | | | |
Collapse
|
23
|
Marques MV, Gober JW. Activation of a temporally regulated Caulobacter promoter by upstream and downstream sequence elements. Mol Microbiol 1995; 16:279-89. [PMID: 7565090 DOI: 10.1111/j.1365-2958.1995.tb02300.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The flagellar genes of Caulobacter crescentus are expressed under cell-cycle control. Expression is regulated by both flagellar assembly cues and cell-cycle events. In this paper we define the sequences required for the expression of the flgF operon, a new class of sigma 54 flagellar promoter. This promoter type is expressed in the middle portion of the cell cycle and regulates the expression of basal-body genes. DNase I footprinting and mutagenesis demonstrates that an integration host factor (IHF)-binding site is required for maximal levels of transcription of the flgF promoter. In addition to containing a conventional upstream enhancer element (RE-1), this promoter is unusual in that it also requires sequences (element RE-2) immediately downstream of the transcriptional start site for maximal levels of gene expression. Cell-cycle experiments indicate that RE-1 and RE-2 contribute equally to the regulation of temporal transcription. The presence of two intact elements in the promoter results in a fourfold increase in promoter activity compared with a promoter containing only one intact element, suggesting that these two elements may function synergistically to activate transcription.
Collapse
Affiliation(s)
- M V Marques
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569, USA
| | | |
Collapse
|
24
|
Anderson DK, Ohta N, Wu J, Newton A. Regulation of the Caulobacter crescentus rpoN gene and function of the purified sigma 54 in flagellar gene transcription. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:697-706. [PMID: 7898437 DOI: 10.1007/bf00290715] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sequential transcription of flagellar (fla) genes in the Caulobacter crescentus cell cycle is controlled by the organization of these genes in a regulatory hierarchy of four levels (I-IV). Level III and level IV genes at the bottom of the hierarchy are dependent on level II genes and are transcribed late in the cell cycle from sigma 54-dependent promoters. To study the regulation of genes at levels III and IV, we have isolated and sequenced the rpoN gene in order to analyze its expression, purified the rpoN gene product, and examined the role of the RpoN protein in initiation of transcription from sigma 54-dependent promoters. We report here epistasis experiments that show rpoN is required for transcription of level III genes, but that the expression of the rpoN gene itself is not dependent on any of the fla genes examined; these results place rpoN at level II near the top of the hierarchy. Consistent with this conclusion were nuclease S1 assays that mapped the rpoN transcription start site and identified a sequence centered at -24, GTTA/TACCA/TT, which is similar to the core consensus sequence of the level IIB fliF, fliL, and fliQ promoters. We purified the full-length rpoN gene product to near homogeneity and demonstrated that the RpoN protein is required for transcription from the well-characterized sigma 54-dependent glnAp2 promoter of Escherichia coli and specifically recognizes the level III flbG gene promoter of C. crescentus. These last results confirm that rpoN encodes the C. crescentus sigma 54 factor and opens the way for the biochemical analysis of transcriptional regulation of level III and IV fla genes.
Collapse
Affiliation(s)
- D K Anderson
- Department of Molecular Biology, Princeton University, NJ 08544-1014, USA
| | | | | | | |
Collapse
|
25
|
Abstract
In Caulobacter crescentus, asymmetry is generated in the predivisional cell, resulting in the formation of two distinct cell types upon cell division: a motile swarmer cell and a sessile stalked cell. These progeny cell types differ in their relative programs of gene expression and DNA replication. In progeny swarmer cells, DNA replication is silenced for a defined period, but stalked cells reinitiate chromosomal DNA replication immediately following cell division. The establishment of these differential programs of DNA replication may be due to the polar localization of DNA replication proteins, differences in chromosome higher-order structure, or pole-specific transcription. The best-understood aspect of Caulobacter development is biogenesis of the polar flagellum. The genes encoding the flagellum are expressed under cell cycle control predominantly in the predivisional cell type. Transcription of flagellar genes is regulated by a trans-acting hierarchy that responds to both flagellar assembly and cell cycle cues. As the flagellar genes are expressed, their products are targeted to the swarmer pole of the predivisional cell, where assembly occurs. Specific protein targeting and compartmentalized transcription are two mechanisms that contribute to the positioning of flagellar gene products at the swarmer pole of the predivisional cell.
Collapse
Affiliation(s)
- J W Gober
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
26
|
Zhuang WY, Shapiro L. Caulobacter FliQ and FliR membrane proteins, required for flagellar biogenesis and cell division, belong to a family of virulence factor export proteins. J Bacteriol 1995; 177:343-56. [PMID: 7814323 PMCID: PMC176597 DOI: 10.1128/jb.177.2.343-356.1995] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Caulobacter crescentus fliQ and fliR genes encode membrane proteins that have a role in an early step of flagellar biogenesis and belong to a family of proteins implicated in the export of virulence factors. These include the MopD and MopE proteins from Erwinia carotovora, the Spa9 and Spa29 proteins from Shigella flexneri, and the YscS protein from Yersinia pestis. Inclusion in this family of proteins suggests that FliQ and FliR may participate in an export pathway required for flagellum assembly. In addition, mutations in either fliQ or fliR exhibit defects in cell division and thus may participate directly or indirectly in the division process. fliQ and fliR are class II flagellar genes residing near the top of the regulatory hierarchy that determines the order of flagellar gene transcription. The promoter sequence of the fliQR operon differs from most known bacterial promoter sequences but is similar to other Caulobacter class II flagellar gene promoter sequences. The conserved nucleotides in the promoter region are clustered in the -10, -20 to -30, and -35 regions. The importance of the conserved bases for promoter activity was demonstrated by mutational analysis. Transcription of the fliQR operon is initiated at a specific time in the cell cycle, and deletion analysis revealed that the minimal sequence required for transcriptional activation resides within 59 bp of the start site.
Collapse
Affiliation(s)
- W Y Zhuang
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427
| | | |
Collapse
|
27
|
|
28
|
Ramakrishnan G, Zhao JL, Newton A. Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes. J Bacteriol 1994; 176:7587-600. [PMID: 8002583 PMCID: PMC197216 DOI: 10.1128/jb.176.24.7587-7600.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The periodic and sequential expression of flagellar (fla) genes in the Caulobacter crescentus cell cycle depends on their organization into levels I to IV of a regulatory hierarchy in which genes at the top of the hierarchy are expressed early in the cell cycle and are required for the later expression of genes below them. In these studies, we have examined the regulatory role of level II fliF operon, which is located near the top of the hierarchy. The last gene in the fliF operon, flbD, encodes a transcriptional factor required for activation of sigma 54-dependent promoters at levels III and IV and negative autoregulation of the level II fliF promoter. We have physically mapped the fliF operon, identified four new genes in the transcription unit, and determined that the organization of these genes is 5'-fliF-fliG-flbE-fliN-flbD-3'. Three of the genes encode homologs of the MS ring protein (FliF) and two switch proteins (FliG and FliN) of enteric bacteria, and the fourth encodes a predicted protein (FlbE) without obvious similarities to known bacterial proteins. We have introduced nonpolar mutations in each of the open reading frames and shown that all of the newly identified genes (fliF, fliG, flbE, and fliN) are required in addition to flbD for activation of the sigma 54-dependent flgK and flbG promoters at level III. In contrast, fliF, fliG, and flbE, but not fliN, are required in addition to flbD for negative autoregulation of the level II fliF promoter. The simplest interpretation of these results is that the requirements of FlbD in transcriptional activation and repression are not identical, and we speculate that FlbD function is subject to dual or overlapping controls. We also discuss the requirement of multiple structural genes for regulation of levels II and III genes and suggest that fla gene expression in C. crescentus may be coupled to two checkpoints in flagellum assembly.
Collapse
Affiliation(s)
- G Ramakrishnan
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014
| | | | | |
Collapse
|
29
|
O'Toole PW, Kostrzynska M, Trust TJ. Non-motile mutants of Helicobacter pylori and Helicobacter mustelae defective in flagellar hook production. Mol Microbiol 1994; 14:691-703. [PMID: 7891557 DOI: 10.1111/j.1365-2958.1994.tb01307.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Flagellar hooks were purified from Helicobacter pylori and Helicobacter mustelae. The 70 x 16 nm H. pylori hook was composed of FlgE subunits of 78kDa, while the 72 x 16 nm H. mustelae hook was composed of 87 kDa subunits. N-terminal sequence was obtained for the FlgE proteins of both species, and for an internal H. mustelae FlgE peptide. Degenerate oligonucleotide primers allowed amplification of a 1.2 kb fragment from the H. mustelae chromosome, which carried part of the flgE gene. The corresponding H. pylori gene was cloned by immunoscreening of a genomic library constructed in lambda ZAP Express. The translated H. pylori flgE sequence indicated a protein with limited homology with the hook proteins from Salmonella typhimurium and Treponema phagedenis. Mutants of H. pylori and H. mustelae defective in hook production generated by allele replacement were non-motile and devoid of flagellar filaments but produced both flagellin subunits, which were localized in the soluble fraction of the cell. The level of flagellin production was unchanged in the mutants, indicating that the regulation of flagellin expression in Helicobacter differs from that in the Enterobacteriaceae.
Collapse
Affiliation(s)
- P W O'Toole
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | | | | |
Collapse
|
30
|
Mullin DA, Van Way SM, Blankenship CA, Mullin AH. FlbD has a DNA-binding activity near its carboxy terminus that recognizes ftr sequences involved in positive and negative regulation of flagellar gene transcription in Caulobacter crescentus. J Bacteriol 1994; 176:5971-81. [PMID: 7928958 PMCID: PMC196814 DOI: 10.1128/jb.176.19.5971-5981.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
FlbD is a transcriptional regulatory protein that negatively autoregulates fliF, and it is required for expression of other Caulobacter crescentus flagellar genes, including flaN and flbG. In this report we have investigated the interaction between carboxy-terminal fragments of FlbD protein and enhancer-like ftr sequences in the promoter regions of fliF, flaN, and flbG. FlbDc87 is a glutathione S-transferase (GST)-FlbD fusion protein that carries the carboxy-terminal 87 amino acids of FlbD, and FlbDc87 binds to restriction fragments containing the promoter regions of fliF, flaN, and flbG, whereas a GST-FlbD fusion protein carrying the last 48 amino acids of FlbD failed to bind to these promoter regions. DNA footprint analysis demonstrated that FlbDc87 is a sequence-specific DNA-binding protein that makes close contact with 11 nucleotides in ftr4, and 6 of these nucleotides were shown previously to function in negative regulation of fliF transcription in vivo (S. M. Van Way, A. Newton, A. H. Mullin, and D. A. Mullin, J. Bacteriol. 175:367-376, 1993). Three DNA fragments, each carrying an ftr4 mutation that resulted in elevated fliF transcript levels in vivo, were defective in binding to FlbDc87 in vitro. We also found that a missense mutation in the recognition helix of the putative helix-turn-helix DNA-binding motif of FlbDc87 resulted in defective binding to ftr4 in vitro. These data suggest that the binding of FlbDc87 to ftr4 is relevant to negative transcriptional regulation of fliF and that FlbD functions directly as a repressor. Footprint analysis showed that FlbDc87 also makes close contacts with specific nucleotides in ftr1, ftr2, and ftr3 in the flaN-flbG promoter region, and some of these nucleotides were shown previously to be required for regulated transcription of flaN and flbG (D. A. Mullin and A. Newton, J. Bacteriol. 175:2067-2076, 1993). Footprint analysis also revealed a new ftr-like sequence, ftr5, at -136 from the transcription start site of flbG. Our results demonstrate that FlbD contains a sequence-specific DNA-binding activity within the 87 amino acids at its carboxy terminus, and the results suggest that FlbD exerts its effect as a positive and negative regulator of C. crescentus flagellar genes by binding to ftr sequences.
Collapse
Affiliation(s)
- D A Mullin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118-5698
| | | | | | | |
Collapse
|
31
|
Benson AK, Wu J, Newton A. The role of FlbD in regulation of flagellar gene transcription in Caulobacter crescentus. Res Microbiol 1994; 145:420-30. [PMID: 7855428 DOI: 10.1016/0923-2508(94)90090-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The flagellar (fla) genes in Caulobacter crescentus are organized into a regulatory hierarchy of four levels (I-IV) in which transcription of the class III and class IV genes late in the cell cycle from sigma 54-dependent promoters depends on expression of the class II genes above them. The periodicity of fla gene expression has been attributed to sequential activation and repression by specific transcription factors. We have been particularly interested in understanding the function and regulation of one such transcription factor, FlbD. FlbD belongs to the NtrC family of bacterial response regulators that catalyse the initiation of transcription by sigma 54 RNA polymerase (E sigma 54) and its function is required for transcription of the class III and IV fla genes. Here we show that purified FlbD binds to ftr elements that are required for transcription from the sigma 54-dependent class III flbG promoter (ftr1) and repression of transcription from the class II fliF promoter (ftr4). Dimethylsulphate footprinting assays demonstrated that FlbD makes base-specific contacts at highly conserved guanine nucleotides in each half site of the ftr sequences. In a reconstituted in vitro transcription system using E. coli E sigma 54, we found that FlbD was clearly capable of driving transcriptional initiation from the flbG promoter and that this activity relied on the ftr1 binding site. Several observations suggest that phosphorylation plays a role in the regulation of FlbD activity. First, we found that a mutant form of FlbD (FlbDS140F) corresponding to the substitution found in a constitutively active NtrC protein (NtrCS160F), displayed a greater potential for activating E sigma 54-dependent transcription that the wildtype protein. We also observed that high energy-phosphate-containing molecules stimulate transcription activation by the wild type FlbD. Together, these results suggest that FlbD is responsible for mediating fla gene transcription initiation by E sigma 54 and that covalent modification is likely to play a role in governing FlbD activity during the cell cycle.
Collapse
Affiliation(s)
- A K Benson
- Department of Molecular Biology, Princeton University, New Jersey 08540
| | | | | |
Collapse
|
32
|
Benson AK, Ramakrishnan G, Ohta N, Feng J, Ninfa AJ, Newton A. The Caulobacter crescentus FlbD protein acts at ftr sequence elements both to activate and to repress transcription of cell cycle-regulated flagellar genes. Proc Natl Acad Sci U S A 1994; 91:4989-93. [PMID: 8197169 PMCID: PMC43915 DOI: 10.1073/pnas.91.11.4989] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The flagellar genes (fla genes) in Caulobacter crescentus are organized into a regulatory hierarchy of four levels, I-IV, in which transcription of the class III and class IV genes late in the cell cycle from sigma 54-dependent promoters depends on expression of the class II genes above them. Timing of fla gene expression has been attributed to sequential activation and repression by specific transcription factors. Here we report that purified FlbD activates transcription in vitro from the sigma 54-dependent class III flbG promoter and repress transcription from the class II fliF promoter by binding to ftr (flagellar transcription regulator) sequence elements required for their transcriptional regulation in vivo. The FlbD protein makes symmetrical base-specific contacts at three highly conserved guanine nucleotides in each half site of ftr1 and ftr1* at flbG and the single ftr4 site at fliF. The dual function of FlbD in activation of class III genes and repression of the class II fliF promoter is consistent with a central role of FlbD as a switch protein mediating the transition from level II to level III fla gene expression.
Collapse
Affiliation(s)
- A K Benson
- Department of Molecular Biology, Princeton University, NJ 08544
| | | | | | | | | | | |
Collapse
|
33
|
Stephens CM, Shapiro L. An unusual promoter controls cell-cycle regulation and dependence on DNA replication of the Caulobacter fliLM early flagellar operon. Mol Microbiol 1993; 9:1169-79. [PMID: 7934930 DOI: 10.1111/j.1365-2958.1993.tb01246.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transcription of flagellar genes in Caulobacter crecentus is programmed to occur during the predivisional stage of the cell cycle. The mechanism of activation of Class II flagellar genes, the highest identified genes in the Caulobacter flagellar hierarchy, is unknown. As a step toward understanding this process, we have defined cis-acting sequences necessary for expression of a Class II flagellar operon, fliLM. Deletion analysis indicated that a 55 bp DNA fragment was sufficient for normal, temporally regulated promoter activity. Transcription from this promoter-containing fragment was severely reduced when chromosomal DNA replication was inhibited. Extensive mutational analysis of the promoter region from -42 to -5 identified functionally important nucleotides at -36 and -35, between -29 and -22, and at -12, which correlates well with sequences conserved between fliLM and the analogous regions of two other Class II flagellar operons. The promoter sequence does not resemble that recognized by any known bacterial sigma factor. Models for regulation of Caulobacter early flagellar promoters are discussed in which RNA polymerase containing a novel sigma subunit interacts with an activation factor bound to the central region of the promoter.
Collapse
Affiliation(s)
- C M Stephens
- Department of Developmental Biology, Beckman Center, Stanford University, California 94305
| | | |
Collapse
|
34
|
Affiliation(s)
- S Khan
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|