1
|
Abergel C, Rudinger-Thirion J, Giegé R, Claverie JM. Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. J Virol 2007; 81:12406-17. [PMID: 17855524 PMCID: PMC2169003 DOI: 10.1128/jvi.01107-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 09/04/2007] [Indexed: 11/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases are pivotal in determining how the genetic code is translated in amino acids and in providing the substrate for protein synthesis. As such, they fulfill a key role in a process universally conserved in all cellular organisms from their most complex to their most reduced parasitic forms. In contrast, even complex viruses were not found to encode much translation machinery, with the exception of isolated components such as tRNAs. In this context, the discovery of four aminoacyl-tRNA synthetases encoded in the genome of mimivirus together with a full set of translation initiation, elongation, and termination factors appeared to blur what was once a clear frontier between the cellular and viral world. Functional studies of two mimivirus tRNA synthetases confirmed the MetRS specificity for methionine and the TyrRS specificity for tyrosine and conformity with the identity rules for tRNA(Tyr) for archea/eukarya. The atomic structure of the mimivirus tyrosyl-tRNA synthetase in complex with tyrosinol exhibits the typical fold and active-site organization of archaeal-type TyrRS. However, the viral enzyme presents a unique dimeric conformation and significant differences in its anticodon binding site. The present work suggests that mimivirus aminoacyl-tRNA synthetases function as regular translation enzymes in infected amoebas. Their phylogenetic classification does not suggest that they have been acquired recently by horizontal gene transfer from a cellular host but rather militates in favor of an intricate evolutionary relationship between large DNA viruses and ancestral eukaryotes.
Collapse
MESH Headings
- Acanthamoeba/virology
- Animals
- Anticodon/chemistry
- Anticodon/metabolism
- Crystallography, X-Ray
- DNA Viruses/enzymology
- Methionine-tRNA Ligase/chemistry
- Methionine-tRNA Ligase/classification
- Methionine-tRNA Ligase/genetics
- Phylogeny
- Protein Structure, Secondary
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/metabolism
- Tyrosine-tRNA Ligase/chemistry
- Tyrosine-tRNA Ligase/classification
- Tyrosine-tRNA Ligase/genetics
- Viral Proteins/chemistry
- Viral Proteins/classification
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Chantal Abergel
- Structural and Genomic Information Laboratory, CNRS-UPR2589, IBSM-IFR88, 163 Avenue de Luminy, Case 934, 13288, Marseille Cedex 9, France.
| | | | | | | |
Collapse
|
2
|
Graindorge JS, Senger B, Tritch D, Simos G, Fasiolo F. Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity. Biochemistry 2005; 44:1344-52. [PMID: 15667228 DOI: 10.1021/bi049024z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Yeast methionyl-tRNA synthetase (MetRS) and glutamyl-tRNA synthetase (GluRS) possess N-terminal extensions that bind the cofactor Arc1p in trans. The strength of GluRS-Arc1p interaction is high enough to allow copurification of the two macromolecules in a 1:1 ratio, in contrast to MetRS. Deletion analysis from the C-terminal end of the GluRS appendix combined with previous N-terminal deletions of GluRS allows restriction of the Arc1p binding site to the 110-170 amino acid region of GluRS. This region has been shown to correspond to a novel protein-protein interaction domain present in both GluRS and Arc1p but not in MetRS [Galani, K., Grosshans, H., Deinert, K., Hurt, E. C., and Simos, G. (2001) EMBO J. 20, 6889-6898]. The GluRS apoenzyme fails to show significant kinetics of tRNA aminoacylation and charges unfractionated yeast tRNA at a level 10-fold reduced compared to Arc1p-bound GluRS. The K(m) values for tRNA(Glu) measured in the ATP-PP(i) exchange were similar for the two forms of GluRS, whereas k(cat) is increased 2-fold in the presence of Arc1p. Band-shift analysis revealed a 100-fold increase in tRNA binding affinity when Arc1p is bound to GluRS. This increase requires the RNA binding properties of the full-length Arc1p since Arc1p N domain leaves the K(d) of GluRS for tRNA unchanged. Transcripts of yeast tRNA(Glu) were poor substrates for measuring tRNA aminoacylation and could not be used to clarify whether Arc1p has a specific effect on the tRNA charging reaction.
Collapse
Affiliation(s)
- Jean-Sébastien Graindorge
- UPR no. 9002 du CNRS, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
3
|
Zheng YG, Wei H, Ling C, Martin F, Eriani G, Wang ED. Two distinct domains of the beta subunit of Aquifex aeolicus leucyl-tRNA synthetase are involved in tRNA binding as revealed by a three-hybrid selection. Nucleic Acids Res 2004; 32:3294-303. [PMID: 15208367 PMCID: PMC443541 DOI: 10.1093/nar/gkh665] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Aquifex aeolicus alphabeta-LeuRS is the only known heterodimeric class Ia aminoacyl-tRNA synthetase. In this study, we investigated the function of the beta subunit which is believed to bind tRNA(Leu). A yeast three-hybrid system was constructed on the basis of the interaction of the beta subunit with its cognate tRNA(Leu). Then, seven mutated beta subunits exhibiting impaired tRNA binding capacities were selected out from a randomly mutated library. Two mutations were identified in the class Ia-helix-bundle-domain, which might interact with the D-hairpin of the tRNA analogous to other class Ia tRNA:synthetases complexes. The five other mutations were found in the LeuRS-specific C-terminal domain of which the folding is still unknown. tRNA affinity measurements and kinetic analyses performed on the isolated beta subunits and on the co-expressed alphabeta-heterodimers showed for all the mutants an effect in tRNA affinity in the ground state. In addition, an effect on the transition state of the aminoacylation reaction was observed for a 21-residues deletion mutant of the C-terminal end. These results show that the genetic approach of the three hybrid system is widely applicable and is a powerful tool for the investigation of tRNA:synthetase interactions.
Collapse
Affiliation(s)
- Yong-Gang Zheng
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | | | | | | | |
Collapse
|
4
|
Geslain R, Bey G, Cavarelli J, Eriani G. Limited set of amino acid residues in a class Ia aminoacyl-tRNA synthetase is crucial for tRNA binding. Biochemistry 2004; 42:15092-101. [PMID: 14690419 DOI: 10.1021/bi035581u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this work was to characterize crucial amino acids for the aminoacylation of tRNA(Arg) by yeast arginyl-tRNA synthetase. Alanine mutagenesis was used to probe all the side chain mediated interactions that occur between tRNA(Arg2)(ICG) and ArgRS. The effects of the substitutions were analyzed in vivo in an ArgRS-knockout strain and in vitro by measuring the aminoacylation efficiencies for two distinct tRNA(Arg) isoacceptors. Nine mutants that generate lethal phenotypes were identified, suggesting that only a limited set of side chain mediated interactions is essential for tRNA recognition. The majority of the lethal mutants was mapped to the anticodon binding domain of ArgRS, a helix bundle that is characteristic for class Ia synthetases. The alanine mutations induce drastic decreases in the tRNA charging rates, which is correlated with a loss in affinity in the catalytic site for ATP. One of those lethal mutations corresponds to an Arg residue that is strictly conserved in all class Ia synthetases. In the known crystallographic structures of complexes of tRNAs and class Ia synthetases, this invariant Arg residue stabilizes the idiosyncratic conformation of the anticodon loop. This paper also highlights the crucial role of the tRNA and enzyme plasticity upon binding. Divalent ions are also shown to contribute to the induced fit process as they may stabilize the local tRNA-enzyme interface. Furthermore, one lethal phenotype can be reverted in the presence of high Mg(2+) concentrations. In contrast with the bacterial system, in yeast arginyl-tRNA synthetase, no lethal mutation has been found in the ArgRS specific domain recognizing the Dhu-loop of the tRNA(Arg). Mutations in this domain have no effects on tRNA(Arg) aminoacylation, thus confirming that Saccharomyces cerevisiae and other fungi belong to a distinct class of ArgRS.
Collapse
Affiliation(s)
- Renaud Geslain
- UPR 9002 SMBMR du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
5
|
Senger B, Despons L, Walter P, Jakubowski H, Fasiolo F. Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions. J Mol Biol 2001; 311:205-16. [PMID: 11469869 DOI: 10.1006/jmbi.2001.4844] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast Saccharomyces cerevisiae possesses two methionyl-tRNA synthetases (MetRS), one in the cytoplasm and the other in mitochondria. The cytoplasmic MetRS has a zinc-finger motif of the type Cys-X(2)-Cys-X(9)-Cys-X(2)-Cys in an insertion domain that divides the nucleotide-binding fold into two halves, whereas no such motif is present in the mitochondrial MetRS. Here, we show that tightly bound zinc atom is present in the cytoplasmic MetRS but not in the mitochondrial MetRS. To test whether the presence of a zinc-binding site is required for cytoplasmic functions of MetRS, we constructed a yeast strain in which cytoplasmic MetRS gene was inactivated and the mitochondrial MetRS gene was expressed in the cytoplasm. Provided that methionine-accepting tRNA is overexpressed, this strain was viable, indicating that mitochondrial MetRS was able to aminoacylate tRNA(Met) in the cytoplasm. Site-directed mutagenesis demonstrated that the zinc domain was required for the stability and consequently for the activity of cytoplasmic MetRS. Mitochondrial MetRS, like cytoplasmic MetRS, supported homocysteine editing in vivo in the yeast cytoplasm. Both MetRSs catalyzed homocysteine editing and aminoacylation of coenzyme A in vitro. Thus, identical synthetic and editing functions can be carried out in different structural frameworks of cytoplasmic and mitochondrial MetRSs.
Collapse
Affiliation(s)
- B Senger
- UPR n degrees 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, Strasbourg Cedex, 67084, France
| | | | | | | | | |
Collapse
|
6
|
Deinert K, Fasiolo F, Hurt EC, Simos G. Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs. J Biol Chem 2001; 276:6000-8. [PMID: 11069915 DOI: 10.1074/jbc.m008682200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic aminoacyl-tRNA synthetases, in contrast to their prokaryotic counterparts, are often part of high molecular weight complexes. In yeast, two enzymes, the methionyl- and glutamyl-tRNA synthetases associate in vivo with the tRNA-binding protein Arc1p. To study the assembly and function of this complex, we have reconstituted it in vitro from individually purified recombinant proteins. Our results show that Arc1p can readily bind to either or both of the two enzymes, mediating the formation of the respective binary or ternary complexes. Under competition conditions, Arc1p alone exhibits broad specificity and interacts with a defined set of tRNA species. Nevertheless, the in vitro reconstituted Arc1p-containing enzyme complexes can bind only to their cognate tRNAs and tighter than the corresponding monomeric enzymes. These results demonstrate that the organization of aminoacyl-tRNA synthetases with general tRNA-binding proteins into multimeric complexes can stimulate their catalytic efficiency and, therefore, offer a significant advantage to the eukaryotic cell.
Collapse
Affiliation(s)
- K Deinert
- Biochemie-Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
7
|
Senger B, Auxilien S, Englisch U, Cramer F, Fasiolo F. The modified wobble base inosine in yeast tRNAIle is a positive determinant for aminoacylation by isoleucyl-tRNA synthetase. Biochemistry 1997; 36:8269-75. [PMID: 9204872 DOI: 10.1021/bi970206l] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Earlier work by two independent groups has established the fact that anticodons GAU and LAU of Escherichia coli tRNAIle isoacceptors play a critical role in the tRNA identity. Yeast possesses two isoleucine transfer RNAs, a major one with anticodon IAU and a minor one with anticodon PsiAPsi which are derived from the post-transcriptional modification of AAU and UAU gene sequences, respectively. We present direct evidence which reveals that inosine is a positive determinant for yeast isoleucyl-tRNA synthetase. We also show that yeast tRNAMet with guanosine at the wobble position becomes aminoacylated with isoleucine while methionine acceptance is lost. As inosine and guanosine share the 6-keto and the N-1 hydrogen groups, this suggests that these hydrogen donor and acceptor groups are determinants for isoleucine specificity. The role of the minor tRNAIle anticodon pseudouridines in tRNA isoleucylation could not be tested directly but was deduced from a 40-fold decrease in the activity of the unmodified transcript. The presence of the NHCO structure in guanosine, inosine, pseudouridine, and lysidine suggests a unifying model of wobble base recognition by the yeast and E. coli isoleucyl-tRNA synthetase. In contrast to lysidine which switches the identity of the tRNA from methionine to isoleucine [Muramatsu, T., Nishikawa, K., Nemoto, F., Kuchino, Y., Nishimura, S., Miyazawa, T., & Yokoyama, S. (1988) Nature 336, 179-181], pseudouridine-34 does not modify the specificity of the yeast minor tRNAIle since U-34 is a strong negative determinant for yeast MetRS. Therefore, the major role of Psi-34 (in combination with Psi-36 or not) is likely in isoleucine AUA codon specificity and translational fidelity.
Collapse
Affiliation(s)
- B Senger
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 15, Rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
8
|
Schmitt E, Panvert M, Mechulam Y, Blanquet S. General structure/function properties of microbial methionyl-tRNA synthetases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:539-47. [PMID: 9208948 DOI: 10.1111/j.1432-1033.1997.00539.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alignment of the sequences of methionyl-tRNA synthetases from various microbial sources shows low levels of identities. However, sequence identities are clustered in a limited number of sites, most of which contain peptide patterns known to support the activity of the Escherichia coli enzyme. In the present study, site-directed mutagenesis was used to probe the role of these conserved residues in the case of the Bacillus stearothermophilus methionyl-tRNA synthetase. The B. stearothermophilus enzyme was chosen in this study because it can be produced as an active truncated monomeric form, similar to the monomeric derivative of E. coli methionyl-tRNA synthetase produced by mild proteolysis. The two core enzyme molecules share only 27% identical residues. The results allowed the identification of the binding sites for ATP, methionine and tRNA, as well as that responsible for the tight binding of the zinc ion to the enzyme. It is concluded that the thermostable synthetase adopts a three-dimensional folding very similar to that of the E. coli one. Therefore, the two methionyl-tRNA synthetase sequences, although significantly different, maintain a common scaffold with the functionally important residues exposed at constant positions. Sequence alignments suggest that the above conclusion can be generalized to the known methionyl-tRNA synthetases from various sources.
Collapse
Affiliation(s)
- E Schmitt
- Laboratoire de Biochimie, Unité de Recherche Associeé n 1970 du Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France
| | | | | | | |
Collapse
|
9
|
Friant S, Heyman T, Wilhelm ML, Wilhelm FX. Extended interactions between the primer tRNAi(Met) and genomic RNA of the yeast Ty1 retrotransposon. Nucleic Acids Res 1996; 24:441-9. [PMID: 8602356 PMCID: PMC145666 DOI: 10.1093/nar/24.3.441] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Reverse transcription of the yeast Ty1 retrotransposon is primed by tRNAi(Met) base paired to the primer binding site near the 5'-end of Ty1 genomic RNA. To understand the molecular basis of the tRNAi(Met)-Ty1 RNA interaction the secondary structure of the binary complex was analysed. Enzymatic probes were used to test the conformation of tRNAi(Met) and of Ty1 RNA in the free form and in the complex. A secondary structure model of the tRNAi(Met) Ty1 RNA complex consistent with the probing data was constructed with the help of a computer program. The model shows that besides interactions between the primer binding site and the last 10 nt at the 3'-end of tRNAi(Met), three short regions of Ty1 RNA named boxes 0, 1 and 2.1 interact with the T and D stems and loops of tRNAiMet. Mutations were made in the boxes or in the complementary sequences of tRNAi(Met) to study the contribution of these sequences to formation of the complex. We find that interaction with at least one of the two boxes 0 or 1 is absolutely required for efficient annealing of the two RNAs. Sequence comparison showing that the primary sequence of the boxes is strictly conserved in Ty1 and Ty2 elements and previously published in vivo results underline the functional importance of the primary sequence of the boxes and suggest that extended interactions between genomic Ty1 RNA and the primary tRNAi(Met) play a role in the reverse transcription pathway.
Collapse
Affiliation(s)
- S Friant
- Unité Propre de Recherche, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
10
|
Senger B, Fasiolo F. Yeast tRNA(Met) recognition by methionyl-tRNA synthetase requires determinants from the primary, secondary and tertiary structure: a review. Biochimie 1996; 78:597-604. [PMID: 8955903 DOI: 10.1016/s0300-9084(96)80006-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The primordial role of the CAU anticodon in methionine identity of the tRNA has been established by others nearly a decade ago in Escherichia coli and yeast tRNA(Met). We show here that the CAU triplet alone is unable to confer methionine acceptance to a tRNA. This requires the contribution of the discriminatory base A73 and the non-anticodon bases of the anticodon loop. To better understand the functional communication between the anticodon and the active site, we analysed the binding and aminoacylation of tRNA(Met) based anticodon and acceptor-stem minihelices and of tRNA(Met) chimeras where the central core region of yeast tRNA(Met) is replaced by that of unusual mitochondrial forms lacking either a D-stem or a T-stem. These studies suggest that the high selectivity of the anticodon bases in tRNA(Met) implies the L-conformation of the tRNA and the presence of a D-stem. The importance of a L-structure for recognition of tRNA(Met) was also deduced from mutations of tertiary interactions known to play a general role in tRNA(Met) folding.
Collapse
Affiliation(s)
- B Senger
- CNRS, UPR 9002, Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | |
Collapse
|
11
|
Yesland KD, Johnson JD. Anticodon bases C34 and C35 are major, positive, identity elements in Saccharomyces cerevisiae tRNA(Trp). Nucleic Acids Res 1993; 21:5079-84. [PMID: 8255761 PMCID: PMC310620 DOI: 10.1093/nar/21.22.5079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A single form of tRNA(Trp) exists in the yeast cytoplasm to respond to the unique codon, UGG, which specifies this amino acid. Mutations in the anticodon of the corresponding gene, which generate potential nonsense suppressor tRNAs, have been generated in vitro and tested in vivo for biological activity. The amber (C35U) and opal (C34U) suppressors show strong and weak activities respectively while the ochre suppressor (C34U,C35U) has no detectable biological activity. To understand the basis for these differences, a set of synthetic tRNA(Trp) genes has been constructed to permit in vitro, T7 RNA polymerase synthesis of transcripts corresponding to the normal and mutant tRNAs. Kinetic parameters for aminoacylation of these transcripts by purified, yeast, tryptophanyl-tRNA synthetase have been measured and compared to values observed using the naturally occurring tRNA(Trp) as a substrate. The efficiency of aminoacylation is reduced by 40, 2000, and 30,000 fold by the C35U, C34U, and C34U,C35U mutations respectively. Interestingly, the C35U change affects only tRNA binding while C34U also alters catalytic efficiency. We conclude that both C34 and C35 are major identity elements in the recognition of tRNA(Trp) by its cognate synthetase. These differences in aminoacylation efficiency closely parallel the in vivo suppressor activities of the mutants.
Collapse
Affiliation(s)
- K D Yesland
- Department of Molecular Biology, University of Wyoming, Laramie 82071
| | | |
Collapse
|
12
|
|
13
|
Giegé R, Puglisi JD, Florentz C. tRNA structure and aminoacylation efficiency. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:129-206. [PMID: 8341800 DOI: 10.1016/s0079-6603(08)60869-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
14
|
Senger B, Despons L, Walter P, Fasiolo F. The anticodon triplet is not sufficient to confer methionine acceptance to a transfer RNA. Proc Natl Acad Sci U S A 1992; 89:10768-71. [PMID: 1438273 PMCID: PMC50423 DOI: 10.1073/pnas.89.22.10768] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previous work suggested that the presence of the anticodon CAU alone was enough to confer methionine acceptance to a tRNA. Conversions of Escherichia coli nonmethionine tRNAs to a methionine-accepting species were obtained by substitutions reconstructing the whole methionine anticodon loop together with preservation (or introduction) of the acceptor stem base A73. We show here that the CAU triplet alone is unable to confer methionine acceptance when transplanted into a yeast aspartic tRNA. Both non-anticodon bases of the anticodon loop of yeast tRNA(Met) and A73 are required in addition to CAU for methionine acceptance. The importance of these non-anticodon bases in other CAU-containing tRNA frameworks was also established. These specific non-anticodon base interactions make a substantial thermodynamic contribution to the methionine acceptance of a transfer RNA.
Collapse
Affiliation(s)
- B Senger
- Laboratoire de Biochimie, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|