1
|
Riedling O, Walker AS, Rokas A. Predicting fungal secondary metabolite activity from biosynthetic gene cluster data using machine learning. Microbiol Spectr 2024; 12:e0340023. [PMID: 38193680 PMCID: PMC10846162 DOI: 10.1128/spectrum.03400-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Fungal secondary metabolites (SMs) contribute to the diversity of fungal ecological communities, niches, and lifestyles. Many fungal SMs have one or more medically and industrially important activities (e.g., antifungal, antibacterial, and antitumor). The genes necessary for fungal SM biosynthesis are typically located right next to each other in the genome and are known as biosynthetic gene clusters (BGCs). However, whether fungal SM bioactivity can be predicted from specific attributes of genes in BGCs remains an open question. We adapted machine learning models that predicted SM bioactivity from bacterial BGC data with accuracies as high as 80% to fungal BGC data. We trained our models to predict the antibacterial, antifungal, and cytotoxic/antitumor bioactivity of fungal SMs on two data sets: (i) fungal BGCs (data set comprised of 314 BGCs) and (ii) fungal (314 BGCs) and bacterial BGCs (1,003 BGCs). We found that models trained on fungal BGCs had balanced accuracies between 51% and 68%, whereas training on bacterial and fungal BGCs had balanced accuracies between 56% and 68%. The low prediction accuracy of fungal SM bioactivities likely stems from the small size of the data set; this lack of data, coupled with our finding that including bacterial BGC data in the training data did not substantially change accuracies currently limits the application of machine learning approaches to fungal SM studies. With >15,000 characterized fungal SMs, millions of putative BGCs in fungal genomes, and increased demand for novel drugs, efforts that systematically link fungal SM bioactivity to BGCs are urgently needed.IMPORTANCEFungi are key sources of natural products and iconic drugs, including penicillin and statins. DNA sequencing has revealed that there are likely millions of biosynthetic pathways in fungal genomes, but the chemical structures and bioactivities of >99% of natural products produced by these pathways remain unknown. We used artificial intelligence to predict the bioactivities of diverse fungal biosynthetic pathways. We found that the accuracies of our predictions were generally low, between 51% and 68%, likely because the natural products and bioactivities of only very few fungal pathways are known. With >15,000 characterized fungal natural products, millions of putative biosynthetic pathways present in fungal genomes, and increased demand for novel drugs, our study suggests that there is an urgent need for efforts that systematically identify fungal biosynthetic pathways, their natural products, and their bioactivities.
Collapse
Affiliation(s)
- Olivia Riedling
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison S. Walker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Riedling O, Walker AS, Rokas A. Predicting fungal secondary metabolite activity from biosynthetic gene cluster data using machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557468. [PMID: 37745539 PMCID: PMC10515863 DOI: 10.1101/2023.09.12.557468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Fungal secondary metabolites (SMs) play a significant role in the diversity of ecological communities, niches, and lifestyles in the fungal kingdom. Many fungal SMs have medically and industrially important properties including antifungal, antibacterial, and antitumor activity, and a single metabolite can display multiple types of bioactivities. The genes necessary for fungal SM biosynthesis are typically found in a single genomic region forming biosynthetic gene clusters (BGCs). However, whether fungal SM bioactivity can be predicted from specific attributes of genes in BGCs remains an open question. We adapted previously used machine learning models for predicting SM bioactivity from bacterial BGC data to fungal BGC data. We trained our models to predict antibacterial, antifungal, and cytotoxic/antitumor bioactivity on two datasets: 1) fungal BGCs (dataset comprised of 314 BGCs), and 2) fungal (314 BGCs) and bacterial BGCs (1,003 BGCs); the second dataset was our control since a previous study using just the bacterial BGC data yielded prediction accuracies as high as 80%. We found that the models trained only on fungal BGCs had balanced accuracies between 51-68%, whereas training on bacterial and fungal BGCs yielded balanced accuracies between 61-74%. The lower accuracy of the predictions from fungal data likely stems from the small number of BGCs and SMs with known bioactivity; this lack of data currently limits the application of machine learning approaches in studying fungal secondary metabolism. However, our data also suggest that machine learning approaches trained on bacterial and fungal data can predict SM bioactivity with good accuracy. With more than 15,000 characterized fungal SMs, millions of putative BGCs present in fungal genomes, and increased demand for novel drugs, efforts that systematically link fungal SM bioactivity to BGCs are urgently needed.
Collapse
Affiliation(s)
- Olivia Riedling
- Department of Biological Science, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Allison S Walker
- Department of Biological Science, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Science, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
The Novel Amidase PcnH Initiates the Degradation of Phenazine-1-Carboxamide in Sphingomonas histidinilytica DS-9. Appl Environ Microbiol 2022; 88:e0054322. [PMID: 35579476 PMCID: PMC9195955 DOI: 10.1128/aem.00543-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phenazines are an important class of secondary metabolites and are primarily named for their heterocyclic phenazine cores, including phenazine-1-carboxylic acid (PCA) and its derivatives, such as phenazine-1-carboxamide (PCN) and pyocyanin (PYO). Although several genes involved in the degradation of PCA and PYO have been reported so far, the genetic foundations of PCN degradation remain unknown. In this study, a PCN-degrading bacterial strain, Sphingomonas histidinilytica DS-9, was isolated. The gene pcnH, encoding a novel amidase responsible for the initial step of PCN degradation, was cloned by genome comparison and subsequent experimental validation. PcnH catalyzed the hydrolysis of the amide bond of PCN to produce PCA, which shared low identity (only 26 to 33%) with reported amidases. The Km and kcat values of PcnH for PCN were 33.22 ± 5.70 μM and 18.71 ± 0.52 s-1, respectively. PcnH has an Asp-Lys-Cys motif, which is conserved among amidases of the isochorismate hydrolase-like (IHL) superfamily. The replacement of Asp37, Lys128, and Cys163 with alanine in PcnH led to the complete loss of enzymatic activity. Furthermore, the genes pcaA1A2A3A4 and pcnD were found to encode PCA 1,2-dioxygenase and 1,2-dihydroxyphenazine (2OHPC) dioxygenase, which were responsible for the subsequent degradation steps of PCN. The PCN-degradative genes were highly conserved in some bacteria of the genus Sphingomonas, with slight variations in the sequence identities. IMPORTANCE Phenazines have been widely acknowledged as a natural antibiotic for more than 150 years, but their degradation mechanisms are still not completely elucidated. Compared with the studies on the degradation mechanism of PCA and PYO, little is known regarding PCN degradation by far. Previous studies have speculated that its initial degradation step may be catalyzed by an amidase, but no further studies have been conducted. This study identified a novel amidase, PcnH, that catalyzed the hydrolysis of PCN to PCA. In addition, the PCA 1,2-dioxygenase PcaA1A2A3A4 and 2OHPC dioxygenase PcnD were also found to be involved in the subsequent degradation steps of PCN in S. histidinilytica DS-9. And the genes responsible for PCN catabolism are highly conserved in some strains of Sphingomonas. These results deepen our understanding of the PCN degradation mechanism.
Collapse
|
4
|
Zhang H, Ouyang Z, Zhao N, Han S, Zheng S. Transcriptional Regulation of the Creatine Utilization Genes of Corynebacterium glutamicum ATCC 14067 by AmtR, a Central Nitrogen Regulator. Front Bioeng Biotechnol 2022; 10:816628. [PMID: 35223787 PMCID: PMC8864220 DOI: 10.3389/fbioe.2022.816628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
In the genus Corynebacterium, AmtR is a key component of the nitrogen regulatory system, and it belongs to the TetR family of transcription regulators. There has been much research on AmtR structure, functions, and regulons in the type strain C. glutamicum ATCC 13032, but little research in other C. glutamicum strains. In this study, chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq) was performed to identify the AmtR regulon in C. glutamicum ATCC 14067. Ten peaks were obtained in the C. glutamicum ATCC 14067 genome including two new peaks related to three operons (RS_01910-RS_01915, RS_15995, and RS_16000). The interactions between AmtR and the promoter regions of the three operons were confirmed by electrophoretic mobility shift assays (EMSAs). The RS_01910, RS_01915, RS_15995, and RS_16000 are not present in the type strain C. glutamicum ATCC 13032. Sequence analysis indicates that RS_01910, RS_01915, RS_15995, and RS_16000, are related to the degradation of creatine and creatinine; RS_01910 may encode a protein related to creatine transport. The genes RS_01910, RS_01915, RS_15995, and RS_16000 were given the names crnA, creT, cshA, and hyuB, respectively. Real-time quantitative PCR (RT-qPCR) analysis and sfGFP (superfolder green fluorescent protein) analysis reveal that AmtR directly and negatively regulates the transcription and expression of crnA, creT, cshA, and hyuB. A growth test shows that C. glutamicum ATCC 14067 can use creatine or creatinine as a sole nitrogen source. In comparison, a creT deletion mutant strain is able to grow on creatinine but loses the ability to grow on creatine. This study provides the first genome-wide captures of the dynamics of in vivo AmtR binding events and the regulatory network they define. These elements provide more options for synthetic biology by extending the scope of the AmtR regulon.
Collapse
Affiliation(s)
- Hao Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhilin Ouyang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Nannan Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Engineering the Enantioselectivity and Thermostability of a (+)-γ-Lactamase from Microbacterium hydrocarbonoxydans for Kinetic Resolution of Vince Lactam (2-Azabicyclo[2.2.1]hept-5-en-3-one). Appl Environ Microbiol 2017; 84:AEM.01780-17. [PMID: 29054871 DOI: 10.1128/aem.01780-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/29/2017] [Indexed: 11/20/2022] Open
Abstract
To produce promising biocatalysts, natural enzymes often need to be engineered to increase their catalytic performance. In this study, the enantioselectivity and thermostability of a (+)-γ-lactamase from Microbacterium hydrocarbonoxydans as the catalyst in the kinetic resolution of Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) were improved. Enantiomerically pure (-)-Vince lactam is the key synthon in the synthesis of antiviral drugs, such as carbovir and abacavir, which are used to fight against HIV and hepatitis B virus. The work was initialized by using the combinatorial active-site saturation test strategy to engineer the enantioselectivity of the enzyme. The approach resulted in two mutants, Val54Ser and Val54Leu, which catalyzed the hydrolysis of Vince lactam to give (-)-Vince lactam, with 99.2% (enantiomeric ratio [E] > 200) enantiomeric excess (ee) and 99.5% ee (E > 200), respectively. To improve the thermostability of the enzyme, 11 residues with high temperature factors (B-factors) calculated by B-FITTER or high root mean square fluctuation (RMSF) values from the molecular dynamics simulation were selected. Six mutants with increased thermostability were obtained. Finally, the mutants generated with improved enantioselectivity and mutants evolved for enhanced thermostability were combined. Several variants showing (+)-selectivity (E value > 200) and improved thermostability were observed. These engineered enzymes are good candidates to serve as enantioselective catalysts for the preparation of enantiomerically pure Vince lactam.IMPORTANCE Enzymatic kinetic resolution of the racemic Vince lactam using (+)-γ-lactamase is the most often utilized means of resolving the enantiomers for the preparation of carbocyclic nucleoside compounds. The efficiency of the native enzymes could be improved by using protein engineering methods, such as directed evolution and rational design. In our study, two properties (enantioselectivity and thermostability) of a γ-lactamase identified from Microbacterium hydrocarbonoxydans were tackled using a semirational design. The protein engineering was initialized by combinatorial active-site saturation test to improve the enantioselectivity. At the same time, two strategies were applied to identify mutation candidates to enhance the thermostability based on calculations from both a static (B-FITTER based on the crystal structure) and a dynamic (root mean square fluctuation [RMSF] values based on molecular dynamics simulations) way. After combining the mutants, we successfully obtained the final mutants showing better properties in both properties. The engineered (+)-lactamase could be a candidate for the preparation of (-)-Vince lactam.
Collapse
|
6
|
Bacteria-mediated phthalic acid esters degradation and related molecular mechanisms. Appl Microbiol Biotechnol 2017; 102:1085-1096. [DOI: 10.1007/s00253-017-8687-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
|
7
|
Villegente M, Marmey P, Job C, Galland M, Cueff G, Godin B, Rajjou L, Balliau T, Zivy M, Fogliani B, Sarramegna-Burtet V, Job D. A Combination of Histological, Physiological, and Proteomic Approaches Shed Light on Seed Desiccation Tolerance of the Basal Angiosperm Amborella trichopoda. Proteomes 2017; 5:E19. [PMID: 28788068 PMCID: PMC5620536 DOI: 10.3390/proteomes5030019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Desiccation tolerance allows plant seeds to remain viable in a dry state for years and even centuries. To reveal potential evolutionary processes of this trait, we have conducted a shotgun proteomic analysis of isolated embryo and endosperm from mature seeds of Amborella trichopoda, an understory shrub endemic to New Caledonia that is considered to be the basal extant angiosperm. The present analysis led to the characterization of 415 and 69 proteins from the isolated embryo and endosperm tissues, respectively. The role of these proteins is discussed in terms of protein evolution and physiological properties of the rudimentary, underdeveloped, Amborella embryos, notably considering that the acquisition of desiccation tolerance corresponds to the final developmental stage of mature seeds possessing large embryos.
Collapse
Affiliation(s)
- Matthieu Villegente
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Philippe Marmey
- Institut de recherche pour le développement (IRD), UMR Diversité, Adaptation et Développement des plantes (DIADE), BP A5, 98848 Nouméa Cedex, Nouvelle-Calédonie.
| | - Claudette Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
| | - Marc Galland
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
| | - Gwendal Cueff
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Béatrice Godin
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Loïc Rajjou
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Thierry Balliau
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Michel Zivy
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Bruno Fogliani
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
- Institut Agronomique Néo-Calédonien (IAC), Équipe ARBOREAL, Agriculture Biodiversité et Valorisation, BP 73 Port Laguerre, 98890 Païta, Nouvelle-Calédonie.
| | - Valérie Sarramegna-Burtet
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Dominique Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| |
Collapse
|
8
|
Gao S, Huang R, Zhu S, Li H, Zheng G. Identification and characterization of a novel (+)-γ-lactamase from Microbacterium hydrocarbonoxydans. Appl Microbiol Biotechnol 2016; 100:9543-9553. [DOI: 10.1007/s00253-016-7643-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 11/24/2022]
|
9
|
Characterization of a recombinant (+)-γ-lactamase from Microbacterium hydrocarbonoxydans which provides evidence that two enantiocomplementary γ-lactamases are in the strain. Appl Microbiol Biotechnol 2014; 99:3069-80. [DOI: 10.1007/s00253-014-6114-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/20/2014] [Accepted: 09/23/2014] [Indexed: 11/25/2022]
|
10
|
Wu G, Chen D, Tang H, Ren Y, Chen Q, Lv Y, Zhang Z, Zhao YL, Yao Y, Xu P. Structural insights into the specific recognition of N-heterocycle biodenitrogenation-derived substrates by microbial amide hydrolases. Mol Microbiol 2014; 91:1009-21. [PMID: 24397579 DOI: 10.1111/mmi.12511] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2014] [Indexed: 11/28/2022]
Abstract
N-heterocyclic compounds from industrial wastes, including nicotine, are environmental pollutants or toxicants responsible for a variety of health problems. Microbial biodegradation is an attractive strategy for the removal of N-heterocyclic pollutants, during which carbon-nitrogen bonds in N-heterocycles are converted to amide bonds and subsequently severed by amide hydrolases. Previous studies have failed to clarify the molecular mechanism through which amide hydrolases selectively recognize diverse amide substrates and complete the biodenitrogenation process. In this study, structural, computational and enzymatic analyses showed how the N-formylmaleamate deformylase Nfo and the maleamate amidase Ami, two pivotal amide hydrolases in the nicotine catabolic pathway of Pseudomonas putida S16, specifically recognize their respective substrates. In addition, comparison of the α-β-α groups of amidases, which include Ami, pinpointed several subgroup-characteristic residues differentiating the two classes of amide substrates as containing either carboxylate groups or aromatic rings. Furthermore, this study reveals the molecular mechanism through which the specially tailored active sites of deformylases and amidases selectively recognize their unique substrates. Our work thus provides a thorough elucidation of the molecular mechanism through which amide hydrolases accomplish substrate-specific recognition in the microbial N-heterocycles biodenitrogenation pathway.
Collapse
Affiliation(s)
- Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abergel C. Molecular replacement: tricks and treats. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2167-73. [PMID: 24189227 PMCID: PMC3817689 DOI: 10.1107/s0907444913015291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/02/2013] [Indexed: 11/16/2022]
Abstract
Molecular replacement is the method of choice for X-ray crystallographic structure determination provided that suitable structural homologues are available in the PDB. Presently, there are ~80,000 structures in the PDB (8074 were deposited in the year 2012 alone), of which ~70% have been solved by molecular replacement. For successful molecular replacement the model must cover at least 50% of the total structure and the Cα r.m.s.d. between the core model and the structure to be solved must be less than 2 Å. Here, an approach originally implemented in the CaspR server (http://www.igs.cnrs-mrs.fr/Caspr2/index.cgi) based on homology modelling to search for a molecular-replacement solution is discussed. How the use of as much information as possible from different sources can improve the model(s) is briefly described. The combination of structural information with distantly related sequences is crucial to optimize the multiple alignment that will define the boundaries of the core domains. PDB clusters (sequences with ≥30% identical residues) can also provide information on the eventual changes in conformation and will help to explore the relative orientations assumed by protein subdomains. Normal-mode analysis can also help in generating series of conformational models in the search for a molecular-replacement solution. Of course, finding a correct solution is only the first step and the accuracy of the identified solution is as important as the data quality to proceed through refinement. Here, some possible reasons for failure are discussed and solutions are proposed using a set of successful examples.
Collapse
Affiliation(s)
- Chantal Abergel
- Information Génomique et Structurale, IGS UMR 7256, CNRS, Aix-Marseille Université, IMM, FR3479, 163 Avenue de Luminy – case 934, 13288 Marseille CEDEX 09, France
| |
Collapse
|
12
|
Turk D. MAIN software for density averaging, model building, structure refinement and validation. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1342-57. [PMID: 23897458 PMCID: PMC3727325 DOI: 10.1107/s0907444913008408] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022]
Abstract
MAIN is software that has been designed to interactively perform the complex tasks of macromolecular crystal structure determination and validation. Using MAIN, it is possible to perform density modification, manual and semi-automated or automated model building and rebuilding, real- and reciprocal-space structure optimization and refinement, map calculations and various types of molecular structure validation. The prompt availability of various analytical tools and the immediate visualization of molecular and map objects allow a user to efficiently progress towards the completed refined structure. The extraordinary depth perception of molecular objects in three dimensions that is provided by MAIN is achieved by the clarity and contrast of colours and the smooth rotation of the displayed objects. MAIN allows simultaneous work on several molecular models and various crystal forms. The strength of MAIN lies in its manipulation of averaged density maps and molecular models when noncrystallographic symmetry (NCS) is present. Using MAIN, it is possible to optimize NCS parameters and envelopes and to refine the structure in single or multiple crystal forms.
Collapse
Affiliation(s)
- Dušan Turk
- Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Liu S, Zhang C, Li N, Niu B, Liu M, Liu X, Wei T, Zhu D, Huang Y, Xu S, Gu L. Structural insight into the ISC domain of VibB fromVibrio choleraeat atomic resolution: a snapshot just before the enzymatic reaction. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1329-38. [DOI: 10.1107/s090744491202848x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/23/2012] [Indexed: 11/10/2022]
|
14
|
Crystal structure of a putative isochorismatase hydrolase from Oleispira antarctica. ACTA ACUST UNITED AC 2012; 13:27-36. [PMID: 22350524 DOI: 10.1007/s10969-012-9127-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/20/2012] [Indexed: 11/27/2022]
Abstract
Isochorismatase-like hydrolases (IHL) constitute a large family of enzymes divided into five structural families (by SCOP). IHLs are crucial for siderophore-mediated ferric iron acquisition by cells. Knowledge of the structural characteristics of these molecules will enhance the understanding of the molecular basis of iron transport, and perhaps resolve which of the mechanisms previously proposed in the literature is the correct one. We determined the crystal structure of the apo-form of a putative isochorismatase hydrolase OaIHL (PDB code: 3LQY) from the antarctic γ-proteobacterium Oleispira antarctica, and did comparative sequential and structural analysis of its closest homologs. The characteristic features of all analyzed structures were identified and discussed. We also docked isochorismate to the determined crystal structure by in silico methods, to highlight the interactions of the active center with the substrate. The putative isochorismate hydrolase OaIHL from O. antarctica possesses the typical catalytic triad for IHL proteins. Its active center resembles those IHLs with a D-K-C catalytic triad, rather than those variants with a D-K-X triad. OaIHL shares some structural and sequential features with other members of the IHL superfamily. In silico docking results showed that despite small differences in active site composition, isochorismate binds to in the structure of OaIHL in a similar mode to its binding in phenazine biosynthesis protein PhzD (PDB code 1NF8).
Collapse
|
15
|
Kincaid VA, Sullivan ED, Klein RD, Noel JW, Rowlett RS, Snider MJ. Structure and Catalytic Mechanism of Nicotinate (Vitamin B3) Degradative Enzyme Maleamate Amidohydrolase from Bordetella bronchiseptica RB50. Biochemistry 2011; 51:545-54. [DOI: 10.1021/bi201347n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Virginia A. Kincaid
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United
States
| | - Eric D. Sullivan
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United
States
| | - Roger D. Klein
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United
States
| | - Jeff W. Noel
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United
States
| | - Roger S. Rowlett
- Department of Chemistry, Colgate University, Hamilton, New York 13346, United
States
| | - Mark J. Snider
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United
States
| |
Collapse
|
16
|
The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. J Bacteriol 2010; 192:4089-102. [PMID: 20400551 DOI: 10.1128/jb.00201-10] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rut pathway is composed of seven proteins, all of which are required by Escherichia coli K-12 to grow on uracil as the sole nitrogen source. The RutA and RutB proteins are central: no spontaneous suppressors arise in strains lacking them. RutA works in conjunction with a flavin reductase (RutF or a substitute) to catalyze a novel reaction. It directly cleaves the uracil ring between N-3 and C-4 to yield ureidoacrylate, as established by both nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Although ureidoacrylate appears to arise by hydrolysis, the requirements for the reaction and the incorporation of (18)O at C-4 from molecular oxygen indicate otherwise. Mass spectrometry revealed the presence of a small amount of product with the mass of ureidoacrylate peracid in reaction mixtures, and we infer that this is the direct product of RutA. In vitro RutB cleaves ureidoacrylate hydrolytically to release 2 mol of ammonium, malonic semialdehyde, and carbon dioxide. Presumably the direct products are aminoacrylate and carbamate, both of which hydrolyze spontaneously. Together with bioinformatic predictions and published crystal structures, genetic and physiological studies allow us to predict functions for RutC, -D, and -E. In vivo we postulate that RutB hydrolyzes the peracid of ureidoacrylate to yield the peracid of aminoacrylate. We speculate that RutC reduces aminoacrylate peracid to aminoacrylate and RutD increases the rate of spontaneous hydrolysis of aminoacrylate. The function of RutE appears to be the same as that of YdfG, which reduces malonic semialdehyde to 3-hydroxypropionic acid. RutG appears to be a uracil transporter.
Collapse
|
17
|
Luo HB, Zheng H, Zimmerman MD, Chruszcz M, Skarina T, Egorova O, Savchenko A, Edwards AM, Minor W. Crystal structure and molecular modeling study of N-carbamoylsarcosine amidase Ta0454 from Thermoplasma acidophilum. J Struct Biol 2010; 169:304-11. [PMID: 19932181 PMCID: PMC2830209 DOI: 10.1016/j.jsb.2009.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 01/07/2023]
Abstract
A crystal structure of the putative N-carbamoylsarcosine amidase (CSHase) Ta0454 from Thermoplasma acidophilum was solved by single-wavelength anomalous diffraction and refined at a resolution of 2.35A. CSHases are involved in the degradation of creatinine. Ta0454 shares a similar fold and a highly conserved C-D-K catalytic triad (Cys123, Asp9, and Lys90) with the structures of three cysteine hydrolases (PDB codes 1NBA, 1IM5, and 2H0R). Molecular dynamics (MD) simulations of Ta0454/N-carbamoylsarcosine and Ta0454/pyrazinamide complexes were performed to determine the structural basis of the substrate binding pattern for each ligand. Based on the MD-simulated trajectories, the MM/PBSA method predicts binding free energies of -24.5 and -17.1 kcal/mol for the two systems, respectively. The predicted binding free energies suggest that Ta0454 is selective for N-carbamoylsarcosine over pyrazinamide, and zinc ions play an important role in the favorable substrate bound states.
Collapse
Affiliation(s)
- Hai-Bin Luo
- School of Pharmaceutical Sciences, East campus, Sun Yat-Sen University, Guangzhou 510006, China, Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA, Midwest Center for Structural Genomics
| | - Heping Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA, Midwest Center for Structural Genomics
| | - Matthew D. Zimmerman
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA, Midwest Center for Structural Genomics
| | - Maksymilian Chruszcz
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA, Midwest Center for Structural Genomics
| | - Tatiana Skarina
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA, Midwest Center for Structural Genomics
| | - Olga Egorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA, Midwest Center for Structural Genomics
| | - Alexei Savchenko
- Banting and Best Department of Medical Research and Structural Genomics Consortium, 112 College Street, University of Toronto, Toronto, Ontario M5G 1L6, Canada, Midwest Center for Structural Genomics
| | - Aled M. Edwards
- Banting and Best Department of Medical Research and Structural Genomics Consortium, 112 College Street, University of Toronto, Toronto, Ontario M5G 1L6, Canada, Midwest Center for Structural Genomics
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA, Midwest Center for Structural Genomics,Corresponding author. Fax: 434-982-1616, Phone: 434-243-6865, and
| |
Collapse
|
18
|
Hu G, Taylor AB, McAlister-Henn L, Hart PJ. Crystal structure of the yeast nicotinamidase Pnc1p. Arch Biochem Biophys 2007; 461:66-75. [PMID: 17382284 PMCID: PMC1931499 DOI: 10.1016/j.abb.2007.01.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 11/18/2022]
Abstract
The yeast nicotinamidase Pnc1p acts in transcriptional silencing by reducing levels of nicotinamide, an inhibitor of the histone deacetylase Sir2p. The Pnc1p structure was determined at 2.9A resolution using MAD and MIRAS phasing methods after inadvertent crystallization during the pursuit of the structure of histidine-tagged yeast isocitrate dehydrogenase (IDH). Pnc1p displays a cluster of surface histidine residues likely responsible for its co-fractionation with IDH from Ni(2+)-coupled chromatography resins. Researchers expressing histidine-tagged proteins in yeast should be aware of the propensity of Pnc1p to crystallize, even when overwhelmed in concentration by the protein of interest. The protein assembles into extended helical arrays interwoven to form an unusually robust, yet porous superstructure. Comparison of the Pnc1p structure with those of three homologous bacterial proteins reveals a common core fold punctuated by amino acid insertions unique to each protein. These insertions mediate the self-interactions that define the distinct higher order oligomeric states attained by these molecules. Pnc1p also acts on pyrazinamide, a substrate analog converted by the nicotinamidase from Mycobacterium tuberculosis into a product toxic to that organism. However, we find no evidence for detrimental effects of the drug on yeast cell growth.
Collapse
Affiliation(s)
- Gang Hu
- Department of Biochemistry, South Texas Veterans Health Care System, the University of Texas Health Science Center, San Antonio TX, U.S.A
| | - Alexander B. Taylor
- Department of Biochemistry, South Texas Veterans Health Care System, the University of Texas Health Science Center, San Antonio TX, U.S.A
- X-ray Crystallography Core Laboratory, South Texas Veterans Health Care System, the University of Texas Health Science Center, San Antonio TX, U.S.A
| | - Lee McAlister-Henn
- Department of Biochemistry, South Texas Veterans Health Care System, the University of Texas Health Science Center, San Antonio TX, U.S.A
| | - P. John Hart
- Department of Biochemistry, South Texas Veterans Health Care System, the University of Texas Health Science Center, San Antonio TX, U.S.A
- X-ray Crystallography Core Laboratory, South Texas Veterans Health Care System, the University of Texas Health Science Center, San Antonio TX, U.S.A
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, the University of Texas Health Science Center, San Antonio TX, U.S.A
| |
Collapse
|
19
|
Caruthers J, Zucker F, Worthey E, Myler PJ, Buckner F, Van Voorhuis W, Mehlin C, Boni E, Feist T, Luft J, Gulde S, Lauricella A, Kaluzhniy O, Anderson L, Le Trong I, Holmes MA, Earnest T, Soltis M, Hodgson KO, Hol WGJ, Merritt EA. Crystal structures and proposed structural/functional classification of three protozoan proteins from the isochorismatase superfamily. Protein Sci 2005; 14:2887-94. [PMID: 16199669 PMCID: PMC2253213 DOI: 10.1110/ps.051783005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have determined the crystal structures of three homologous proteins from the pathogenic protozoans Leishmania donovani, Leishmania major, and Trypanosoma cruzi. We propose that these proteins represent a new subfamily within the isochorismatase superfamily (CDD classification cd004310). Their overall fold and key active site residues are structurally homologous both to the biochemically well-characterized N-carbamoylsarcosine-amidohydrolase, a cysteine hydrolase, and to the phenazine biosynthesis protein PHZD (isochorismase), an aspartyl hydrolase. All three proteins are annotated as mitochondrial-associated ribonuclease Mar1, based on a previous characterization of the homologous protein from L. tarentolae. This would constitute a new enzymatic activity for this structural superfamily, but this is not strongly supported by the observed structures. In these protozoan proteins, the extended active site is formed by inter-subunit association within a tetramer, which implies a distinct evolutionary history and substrate specificity from the previously characterized members of the isochorismatase superfamily. The characterization of the active site is supported crystallographically by the presence of an unidentified ligand bound at the active site cysteine of the T. cruzi structure.
Collapse
Affiliation(s)
- Jonathan Caruthers
- Biomolecular Structure Center M/S 357742, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Horiba N, Masuda S, Takeuchi A, Saito H, Okuda M, Inui KI. Gene expression variance based on random sequencing in rat remnant kidney. Kidney Int 2005; 66:29-45. [PMID: 15200410 DOI: 10.1111/j.1523-1755.2004.00704.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Several examinations have been performed to identify the genes involved in chronic renal failure using 5/6 nephrectomized rats. Recently, many systematic techniques for examining molecular expression have been developed. They might also be effective in elucidating the molecular mechanism of progressive renal failure. In this study, digital expression profiling was carried out to construct a subtractive mRNA expression database for the 5/6 nephrectomized kidney. METHODS One thousand clones were randomly sequenced from 5/6 nephrectomized and sham-operated rat kidney cDNA libraries, respectively, and defined by BLAST search. In silico subtractive analysis was performed to search for genes up- or down-regulated in the 5/6 nephrectomized kidney. RESULTS The growth factor-related mRNAs and the mRNAs encoding cytoskeletal or membrane proteins were up-regulated, but the transporter-related mRNAs were down-regulated in the 5/6 nephrectomized kidney database. In silico subtraction revealed that 63 mRNAs were increased and 59 were decreased in the 5/6 nephrectomized kidney. To confirm whether the in silico subtractive database reflected the actual expression of mRNA or protein, 12 known genes were examined by Northern blotting or immunoblotting, respectively. The actual expression of the 12 genes was comparable with the results of in silico subtraction. In addition, we successfully isolated five unknown genes, two up-regulated and three down-regulated in the 5/6 nephrectomized kidney. CONCLUSION We constructed a subtractive mRNA expression database for 5/6 nephrectomized kidney, which reflects the actual alterations in mRNA expression after subtotal nephrectomy. This database may be useful for elucidation of the molecular mechanism of progressive renal failure.
Collapse
Affiliation(s)
- Naoshi Horiba
- Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Chen CY, Chiu WC, Liu JS, Hsu WH, Wang WC. Structural basis for catalysis and substrate specificity of Agrobacterium radiobacter N-carbamoyl-D-amino acid amidohydrolase. J Biol Chem 2003; 278:26194-201. [PMID: 12709423 DOI: 10.1074/jbc.m302384200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Carbamoyl-d-amino acid amidohydrolase is an industrial biocatalyst to hydrolyze N-carbamoyl-d-amino acids for producing valuable d-amino acids. The crystal structure of N-carbamoyl-d-amino acid amidohydrolase in the unliganded form exhibits a alpha-beta-beta-alpha fold. To investigate the roles of Cys172, Asn173, Arg175, and Arg176 in catalysis, C172A, C172S, N173A, R175A, R176A, R175K, and R176K mutants were constructed and expressed, respectively. All mutants showed similar CD spectra and had hardly any detectable activity except for R173A that retained 5% of relative activity. N173A had a decreased value in kcat or Km, whereas R175K or R176K showed high Km and very low kcat values. Crystal structures of C172A and C172S in its free form and in complex form with a substrate, along with N173A and R175A, have been determined. Analysis of these structures shows that the overall structure maintains its four-layer architecture and that there is limited conformational change within the binding pocket except for R175A. In the substrate-bound structure, side chains of Glu47, Lys127, and C172S cluster together toward the carbamoyl moiety of the substrate, and those of Asn173, Arg175, and Arg176 interact with the carboxyl group. These results collectively suggest that a Cys172-Glu47-Lys127 catalytic triad is involved in the hydrolysis of the carbamoyl moiety and that Arg175 and Arg176 are crucial in binding to the carboxyl moiety, hence demonstrating substrate specificity. The common (Glu/Asp)-Lys-Cys triad observed among N-carbamoyl-d-amino acid amidohydrolase, NitFhit, and another carbamoylase suggests a conserved and robust platform during evolution, enabling it to catalyze the reactions toward a specific nitrile or amide efficiently.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Abstract
Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri (formerly Micrococcus sp.) 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates). Because these products lack a carboxyl group at the 2 position, they were not substrates for the next enzyme of the phthalate catabolic pathway, 3,4-dihydroxyphthalate 2-decarboxylase, and accumulated. When these incubations were carried out in iron-containing minimal medium, the products formed colored chelates. This chromogenic response was subsequently used to identify recombinant Escherichia coli strains carrying genes encoding the responsible enzymes, phthalate 3,4-dioxygenase and 3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase, from the 130-kbp plasmid pRE1 of strain 12B. Beginning with the initially cloned 8.14-kbp PstI fragment of pRE824 as a probe to identify recombinant plasmids carrying overlapping fragments, a DNA segment of 33.5 kbp was cloned from pRE1 on several plasmids and mapped using restriction endonucleases. From these plasmids, the sequence of 26,274 contiguous bp was determined. Sequenced DNA included several genetic units: tnpR, pcm operon, ptr genes, pehA, norA fragment, and pht operon, encoding a transposon resolvase, catabolism of protocatechuate (3,4-dihydroxybenzoate), a putative ATP-binding cassette transporter, a possible phthalate ester hydrolase, a fragment of a norfloxacin resistance-like transporter, and the conversion of phthalate to protocatechuate, respectively. Activities of the eight enzymes involved in the catabolism of phthalate through protocatechuate to pyruvate and oxaloacetate were demonstrated in cells or cell extracts of recombinant E. coli strains.
Collapse
Affiliation(s)
- R W Eaton
- Gulf Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, USA.
| |
Collapse
|
23
|
Begley TP, Kinsland C, Mehl RA, Osterman A, Dorrestein P. The biosynthesis of nicotinamide adenine dinucleotides in bacteria. VITAMINS AND HORMONES 2001; 61:103-19. [PMID: 11153263 DOI: 10.1016/s0083-6729(01)61003-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The nicotinamide adenine dinucleotides (NAD, NADH, NADP, and NADPH) are essential cofactors in all living systems and function as hydride acceptors (NAD, NADP) and hydride donors (NADH, NADPH) in biochemical redox reactions. The six-step bacterial biosynthetic pathway begins with the oxidation of aspartate to iminosuccinic acid, which is then condensed with dihydroxyacetone phosphate to give quinolinic acid. Phosphoribosylation and decarboxylation of quinolinic acid gives nicotinic acid mononucleotide. Adenylation of this mononucleotide followed by amide formation completes the biosynthesis of NAD. An additional phosphorylation gives NADP. This review focuses on the mechanistic enzymology of this pathway in bacteria.
Collapse
Affiliation(s)
- T P Begley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | | | | | | | |
Collapse
|
24
|
Wang WC, Hsu WH, Chien FT, Chen CY. Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft. J Mol Biol 2001; 306:251-61. [PMID: 11237598 DOI: 10.1006/jmbi.2000.4380] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-carbamoyl-D-amino-acid amidohydrolase (D-NCAase) is used on an industrial scale for the production of D-amino acids. The crystal structure of D-NCAase was solved by multiple isomorphous replacement with anomalous scattering using xenon and gold derivatives, and refined to 1.95 A resolution, to an R-factor of 18.6 %. The crystal structure shows a four-layer alpha/beta fold with two six-stranded beta sheets packed on either side by two alpha helices. One exterior layer faces the solvent, whereas the other one is buried and involved in the tight intersubunit contacts. A long C-terminal fragment extends from a monomer to a site near a dyad axis, and associates with another monomer to form a small and hydrophobic cavity, where a xenon atom can bind. Site-directed mutagenesis of His129, His144 and His215 revealed strict geometric requirements of these conserved residues to maintain a stable conformation of a putative catalytic cleft. A region located within this cleft involving Cys172, Glu47, and Lys127 is proposed for D-NCAase catalysis and is similar to the Cys-Asp-Lys site of N-carbamoylsarcosine amidohydrolase. The homologous active-site framework of these enzymes with distinct structures suggests convergent evolution of a common catalytic mechanism.
Collapse
Affiliation(s)
- W C Wang
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | | | | | | |
Collapse
|
25
|
Walsh TA, Green SB, Larrinua IM, Schmitzer PR. Characterization of plant beta-ureidopropionase and functional overexpression in Escherichia coli. PLANT PHYSIOLOGY 2001; 125:1001-11. [PMID: 11161056 PMCID: PMC64900 DOI: 10.1104/pp.125.2.1001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2000] [Revised: 10/16/2000] [Accepted: 11/06/2000] [Indexed: 05/21/2023]
Abstract
Pyrimidine bases are rapidly catabolized in growing plant tissues. The final enzyme of the catabolic pathway, beta-ureidopropionase (beta-UP; EC 3.5.1.6), was partially purified from the shoots of etiolated maize (Zea mays) seedlings. The enzyme had a K(m) for beta-ureidopropionate (the substrate derived from uracil) of 11 microM. Only one enantiomer of racemic beta-ureidoisobutyrate (derived from thymine) was processed with a K(m) of 6 microM. The enzyme was inactivated by dialysis against 1,10-phenanthroline and activity could be partially restored by addition of Zn(2+). Maize beta-UP was very sensitive to inactivation by iodoacetamide. This could be prevented by addition of substrate, indicating the presence of an active site Cys. The enzyme was strongly inhibited by short chain aliphatic acids and aryl propionates, the most potent inhibitor of which was 2-(2, 6-dinitrophenoxy)-propionate (I(50) = 0.5 microM). A gene for Arabidopsis beta-UP encodes a polypeptide of 405 amino acids and has about 55% homology with the enzymes from other eukaryotic organisms. Several highly conserved residues link the plant beta-UP with a larger class of prokaryotic and eukaryotic amidohydrolases. An Arabidopsis cDNA truncated at the N terminus by 14 residues was cloned and overexpressed in Escherichia coli. The recombinant enzyme (43.7 kD) was soluble, functional, and purified to homogeneity with yields of 15 to 20 mg per 30 g fresh weight of E. coli cells. The recombinant enzyme from Arabidopsis and the native enzyme from maize had molecular masses of approximately 440 kD, indicating the enzyme is a decamer at pH 7.
Collapse
Affiliation(s)
- T A Walsh
- Dow AgroSciences, Discovery Research, 9330 Zionsville Road, Indianapolis, Indiana 46268, USA.
| | | | | | | |
Collapse
|
26
|
Lemaitre N, Callebaut I, Frenois F, Jarlier V, Sougakoff W. Study of the structure-activity relationships for the pyrazinamidase (PncA) from Mycobacterium tuberculosis. Biochem J 2001; 353:453-8. [PMID: 11171040 PMCID: PMC1221589 DOI: 10.1042/0264-6021:3530453] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In an attempt to investigate the molecular basis of pyrazinamide hydrolysis by the PncA protein from Mycobacterium tuberculosis, we determined the pyrazinamidase activity of nine PncA mutants bearing a single amino acid substitution. Among them, three mutants (D8G, K96T and S104R) had virtually no activity (< or =0.004 unit/mg), five (F13S, T61P, P69L, Y103S and A146V) retained a low level of activity (0.06-0.25 unit/mg) and one (T167L) exhibited a wild-type activity (1.51 units/mg). The possible structural effects of these substitutions were assessed by analysing a three-dimensional model of the PncA protein constructed on the basis of the crystal structure of the N-carbamoylsarcosine amidohydrolase (CSHase) from Arthrobacter sp., an amidohydrolase which was found by hydrophobic cluster analysis to be closely related to PncA. In the PncA model, five of the mutated residues, Asp-8, Phe-13, Lys-96, Tyr-103 and Ser-104, were located within a 6 A sphere around the cysteine residue Cys-138, which could be the counterpart of the active cysteine residue Cys-177 found in the CSHase. Among the remaining mutated residues, Thr-61, Pro-69 and Ala-146 were found to be more distant from Cys-138 but were associated with structural elements contributing to the catalytic centre, whereas Thr-167 was situated in an alpha-helix located far from the putative active site. These data suggest that the decrease in pyrazinamidase activity observed in the PncA mutant proteins is well correlated with the structural modifications the mutations can cause in the environment of the putative active cysteine Cys-138.
Collapse
Affiliation(s)
- N Lemaitre
- Laboratoire de Recherche Moléculaire sur les Antibiotiques, Faculté de Médecine Pitié-Salpêtrière, Université Paris VI, 91 bvd de l'Hôpital, 75634 Paris Cedex 13, France
| | | | | | | | | |
Collapse
|
27
|
Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, Ueki T, Nanba H, Ikenaka Y, Takahashi S, Sato M, Tsukihara T. Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure 2000; 8:729-37. [PMID: 10903946 DOI: 10.1016/s0969-2126(00)00160-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND N-carbamyl-D-amino acid amidohydrolase (DCase) catalyzes the hydrolysis of N-carbamyl-D-amino acids to the corresponding D-amino acids, which are useful intermediates in the preparation of beta-lactam antibiotics. To understand the catalytic mechanism of N-carbamyl-D-amino acid hydrolysis, the substrate specificity and thermostability of the enzyme, we have determined the structure of DCase from Agrobacterium sp. strain KNK712. RESULTS The crystal structure of DCase has been determined to 1.7 A resolution. The enzyme forms a homotetramer and each monomer consists of a variant of the alpha + beta fold. The topology of the enzyme comprises a sandwich of parallel beta sheets surrounded by two layers of alpha helices, this topology has not been observed in other amidohydrolases such as the N-terminal nucleophile (Ntn) hydrolases. CONCLUSIONS The catalytic center could be identified and consists of Glu46, Lys126 and Cys171. Cys171 was found to be the catalytic nucleophile, and its nucleophilic character appeared to be increased through general-base activation by Glu46. DCase shows only weak sequence similarity with a family of amidohydrolases, including beta-alanine synthase, aliphatic amidases and nitrilases, but might share highly conserved residues in a novel framework, which could provide a possible explanation for the catalytic mechanism for this family of enzymes.
Collapse
Affiliation(s)
- T Nakai
- Kaneka Corporation, Takasago-cho, Takasago, 676-8688, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology. Very recently, a series of new discoveries have been made that are bound to have distinguished implications for bioenergetics, physiology, human pathology, and clinical diagnosis and that suggest that deregulation of the creatine kinase (CK) system is associated with a variety of diseases. Disturbances of the CK system have been observed in muscle, brain, cardiac, and renal diseases as well as in cancer. On the other hand, Cr and Cr analogs such as cyclocreatine were found to have antitumor, antiviral, and antidiabetic effects and to protect tissues from hypoxic, ischemic, neurodegenerative, or muscle damage. Oral Cr ingestion is used in sports as an ergogenic aid, and some data suggest that Cr and creatinine may be precursors of food mutagens and uremic toxins. These findings are discussed in depth, the interrelationships are outlined, and all is put into a broader context to provide a more detailed understanding of the biological functions of Cr and of the CK system.
Collapse
Affiliation(s)
- M Wyss
- F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, Basel, Switzerland.
| | | |
Collapse
|
29
|
Lemaitre N, Sougakoff W, Truffot-Pernot C, Jarlier V. Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Antimicrob Agents Chemother 1999; 43:1761-3. [PMID: 10390238 PMCID: PMC89359 DOI: 10.1128/aac.43.7.1761] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new set of mutations, including transposition of the insertion sequence IS6110, was identified in the pncA gene from 19 pyrazinamide-resistant Mycobacterium tuberculosis strains. Alignment of the PncA protein from M. tuberculosis with homologous proteins from different bacterial species revealed three highly conserved regions in PncA which may play an important role in the processing of pyrazinamide.
Collapse
Affiliation(s)
- N Lemaitre
- Laboratoire de Recherche Moléculaire sur les Antibiotiques, Faculté de Médecine Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
30
|
Colovos C, Cascio D, Yeates TO. The 1.8 A crystal structure of the ycaC gene product from Escherichia coli reveals an octameric hydrolase of unknown specificity. Structure 1998; 6:1329-37. [PMID: 9782055 DOI: 10.1016/s0969-2126(98)00132-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The ycaC gene comprises a 621 base pair open reading frame in Escherichia coli. The ycaC gene product (ycaCgp) is uncharacterized and has no assigned function. The closest sequence homologs with an assigned function belong to a family of bacterial hydrolases that catalyze isochorismatase-like reactions, but these have only low sequence similarity to ycaCgp (approximately 20% amino acid identity). The ycaCgp was obtained and identified during crystallization trials of an unrelated E. coli protein with which it co-purified. RESULTS The 1.8 A crystal structure of ycaCgp reveals an octameric complex comprised of two tetrameric rings. A large three-layer (alphabetaalpha) sandwich domain and a small helical domain form the folded structure of the monomeric unit. Comparisons with sequence and structure databases suggest that ycaCgp belongs to a diverse family of bacterial hydrolases. The most closely related three-dimensional structure is that of the D2 tetrameric N-carbamoylsarcosine amidohydrolase (CSHase) from an Arthrobacter species. A conspicuous cleft between two ycaCgp subunits contains several conserved residues including Cys118, which we propose to be catalytic. In the active site, a nonprolyl cis peptide bond precedes Val114 and coincides with a cis peptide bond in CSHase in a region of dissimilar sequence. The crystal structure reveals a probable error or mutation relative to the reported genomic sequence. CONCLUSIONS Although the specific function of ycaCgp is not yet known, structural studies solidify the relationship of this protein to other hydrolases and illuminate its active site and key elements of the catalytic mechanism.
Collapse
Affiliation(s)
- C Colovos
- Department of Chemistry & Biochemistry Molecular Biology Institute UCLA-DOE Laboratory of Structural Biology and Molecular Medicine University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
31
|
Humm A, Fritsche E, Steinbacher S, Huber R. Crystal structure and mechanism of human L-arginine:glycine amidinotransferase: a mitochondrial enzyme involved in creatine biosynthesis. EMBO J 1997; 16:3373-85. [PMID: 9218780 PMCID: PMC1169963 DOI: 10.1093/emboj/16.12.3373] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
L-arginine:glycine amidinotransferase (AT) catalyses the committed step in creatine biosynthesis by formation of guanidinoacetic acid, the immediate precursor of creatine. We have determined the crystal structure of the recombinant human enzyme by multiple isomorphous replacement at 1.9 A resolution. A telluromethionine derivative was used in sequence assignment. The structure of AT reveals a new fold with 5-fold pseudosymmetry of circularly arranged betabeta alphabeta-modules. These enclose the active site compartment, which is accessible only through a narrow channel. The overall structure resembles a basket with handles that are formed from insertions into the betabeta alphabeta-modules. Binding of L-ornithine, a product inhibitor, reveals a marked induced-fit mechanism, with a loop at the active site entrance changing its conformation accompanied by a shift of an alpha-helix by -4 A. Binding of the arginine educt to the inactive mutant C407A shows a similar mode of binding. A reaction mechanism with a catalytic triad Cys-His-Asp is proposed on the basis of substrate and product bound states.
Collapse
Affiliation(s)
- A Humm
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
32
|
Abstract
Structural trees for large protein superfamilies, such as beta proteins with the aligned beta sheet packing, beta proteins with the orthogonal packing of alpha helices, two-layer and three-layer alpha/beta proteins, have been constructed. The structural motifs having unique overall folds and a unique handedness are taken as root structures of the trees. The larger protein structures of each superfamily are obtained by a stepwise addition of alpha helices and/or beta strands to the corresponding root motif, taking into account a restricted set of rules inferred from known principles of the protein structure. Among these rules, prohibition of crossing connections, attention to handedness and compactness, and a requirement for alpha helices to be packed in alpha-helical layers and beta strands in beta layers are the most important. Proteins and domains whose structures can be obtained by stepwise addition of alpha helices and/or beta strands to the same root motif can be grouped into one structural class or a superfamily. Proteins and domains found within branches of a structural tree can be grouped into subclasses or subfamilies. Levels of structural similarity between different proteins can easily be observed by visual inspection. Within one branch, protein structures having a higher position in the tree include the structures located lower. Proteins and domains of different branches have the structure located in the branching point as the common fold.
Collapse
Affiliation(s)
- A V Efimov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region.
| |
Collapse
|
33
|
Hisano T, Hata Y, Fujii T, Liu JQ, Kurihara T, Esaki N, Soda K. Crystal structure of L-2-haloacid dehalogenase from Pseudomonas sp. YL. An alpha/beta hydrolase structure that is different from the alpha/beta hydrolase fold. J Biol Chem 1996; 271:20322-30. [PMID: 8702766 DOI: 10.1074/jbc.271.34.20322] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
L-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation of L-2-haloalkanoic acids to yield the corresponding D-2-hydroxyalkanoic acids. The crystal structure of the homodimeric enzyme from Pseudomonas sp. YL has been determined by a multiple isomorphous replacement method and refined at 2.5 A resolution to a crystallographic R-factor of 19.5%. The subunit consists of two structurally distinct domains: the core domain and the subdomain. The core domain has an alpha/beta structure formed by a six-stranded parallel beta-sheet flanked by five alpha-helices. The subdomain inserted into the core domain has a four helix bundle structure providing the greater part of the interface for dimer formation. There is an active site cavity between the domains. An experimentally identified nucleophilic residue, Asp-10, is located on a loop following the amino-terminal beta-strand in the core domain, and other functional residues, Thr-14, Arg-41, Ser-118, Lys-151, Tyr-157, Ser-175, Asn-177, and Asp-180, detected by a site-directed mutagenesis experiment, are arranged around the nucleophile in the active site. Although the enzyme is an alpha/beta-type hydrolase, it does not belong to the alpha/beta hydrolase fold family, from the viewpoint of the topological feature and the position of the nucleophile.
Collapse
Affiliation(s)
- T Hisano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Frothingham R, Meeker-O'Connell WA, Talbot EA, George JW, Kreuzer KN. Identification, cloning, and expression of the Escherichia coli pyrazinamidase and nicotinamidase gene, pncA. Antimicrob Agents Chemother 1996; 40:1426-31. [PMID: 8726014 PMCID: PMC163344 DOI: 10.1128/aac.40.6.1426] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pyrazinamide (PZA) is one of the three most important drugs for treatment of Mycobacterium tuberculosis infections. The antibacterial activity of PZA requires a bacterial enzyme, pyrazinamidase (PZAase), which hydrolyzes PZA to form pyrazinoic acid and ammonia. Most PZA-resistant clinical M. tuberculosis isolates lack PZAase activity. With the goal of eventually identifying and characterizing the M.tuberculosis PZAase gene, we began with the more tractable organism, Escherichia coli, which also has PZAase activity. We screened a transposon-generated E. coli insertion mutant library, using a qualitative PZAase assay. Two PZAase-negative mutants out of 4,000 colonies screened were identified. In each mutant, the transposon interrupted the same 639-bp open reading frame (ORF), ORF1. The expression of ORF1 on a multicopy plasmid complemented a PZAase-negative mutant, leading to PZAase activity levels approximately 10-fold greater than those of the wild type. PZA has a structure similar to that of nicotinamide, a pyridine nucleotide cycle intermediate, so we tested our strains for nicotinamidase activity (EC 3.5.1.19) (genetic locus pncA). The construct with multiple plasmid copies of ORF1 had an approximately 10-fold increase in levels of nicotinamidase activity. This overexpressing strain could utilize nicotinamide as a sole nitrogen source, through wild-type E. coli cannot. We conclude that a single E. coli enzyme accounts for both PZAase and nicotinamidase activities and that ORF1 is the E.coli PZAase and nicotinamidase gene, pncA.
Collapse
Affiliation(s)
- R Frothingham
- Infectious Diseases Section, Durham Veterans Affairs Medical Center, North Carolina 27705, USA.
| | | | | | | | | |
Collapse
|
35
|
Caldeira J, Palma PN, Regalla M, Lampreia J, Calvete J, Schäfer W, Legall J, Moura I, Moura JJ. Primary sequence, oxidation-reduction potentials and tertiary-structure prediction of Desulfovibrio desulfuricans ATCC 27774 flavodoxin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:987-95. [PMID: 8143752 DOI: 10.1111/j.1432-1033.1994.tb18703.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Flavodoxin was isolated and purified from Desulfovibrio desulfuricans ATCC 27774, a sulfate-reducing organism that can also utilize nitrate as an alternative electron acceptor. Mid-point oxidation-reduction potentials of this flavodoxin were determined by ultraviolet/visible and EPR methods coupled to potentiometric measurements and their pH dependence studied in detail. The redox potential E2, for the couple oxidized/semiquinone forms at pH 6.7 and 25 degrees C is -40 mV, while the value for the semiquinone/hydroquinone forms (E1), at the same pH, -387 mV. E2 varies linearly with pH, while E1 is independent of pH at high values. However, at low pH (< 7.0), this value is less negative, compatible with a redox-linked protonation of the flavodoxin hydroquinone. A comparative study is presented for Desulfovibrio salexigens NCIB 8403 flavodoxin [Moura, I., Moura, J.J.G., Bruschi, M. & LeGall, J. (1980) Biochim. Biophys. Acta 591, 1-8]. The complete primary amino acid sequence was obtained by automated Edman degradation from peptides obtained by chemical and enzymic procedures. The amino acid sequence was confirmed by FAB/MS. Using the previously determined tridimensional structure of Desulfovibrio vulgaris flavodoxin as a model [similarity, 48.6%; Watenpaugh, K.D., Sieker, L.C., Jensen, L.H., LeGall, J. & Dubourdieu M. (1972) Proc. Natl Acad. Sci. USA 69, 3185-3188], the tridimensional structure of D. desulfuricans ATCC 27774 flavodoxin was predicted using AMBER force-field calculations.
Collapse
Affiliation(s)
- J Caldeira
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|