1
|
Zimmerman EH, Ramsey EL, Hunter KE, Villadelgado SM, Phillips CM, Shipman RT, Forsyth MH. The Helicobacter pylori methylome is acid-responsive due to regulation by the two-component system ArsRS and the type I DNA methyltransferase HsdM1 (HP0463). J Bacteriol 2024; 206:e0030923. [PMID: 38179929 PMCID: PMC10810217 DOI: 10.1128/jb.00309-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
In addition to its role in genome protection, DNA methylation can regulate gene expression. In this study, we characterized the impact of acidity, phase variation, and the ArsRS TCS on the expression of the Type I m6A DNA methyltransferase HsdM1 (HP0463) of Helicobacter pylori 26695 and their subsequent effects on the methylome. Transcription of hsdM1 increases at least fourfold in the absence of the sensory histidine kinase ArsS, the major acid-sensing protein of H. pylori. hsdM1 exists in the phase-variable operon hsdR1-hsdM1. Phase-locking hsdR1 (HP0464), the restriction endonuclease gene, has significant impacts on the transcription of hsdM1. To determine the impacts of methyltransferase transcription patterns on the methylome, we conducted methylome sequencing on samples cultured at pH 7 or pH 5. We found differentially methylated motifs between these growth conditions and that deletions of arsS and/or hsdM1 interfere with the epigenetic acid response. Deletion of arsS leads to altered activity of HsdM1 and multiple other methyltransferases under both pH conditions indicating that the ArsRS TCS, in addition to direct effects on regulon transcription during acid acclimation, may also indirectly impact gene expression via regulation of the methylome. We determined the target motif of HsdM1 (HP0463) to be the complementary bipartite sequence pair 5'-TCAm6AVN6TGY-3' and 3'-AGTN6GAm6ACA-5'. This complex regulation of DNA methyltransferases, and thus differential methylation patterns, may have implications for the decades-long persistent infection by H. pylori. IMPORTANCE This study expands the possibilities for complex, epigenomic regulation in Helicobacter pylori. We demonstrate that the H. pylori methylome is plastic and acid sensitive via the two-component system ArsRS and the DNA methyltransferase HsdM1. The control of a methyltransferase by ArsRS may allow for a layered response to changing acidity. Likely, an early response whereby ArsR~P affects regulon expression, including the methyltransferase hsdM1. Then, a somewhat later effect as the altered methylome, due to altered HsdM1 expression, subsequently alters the expression of other genes involved in acclimation. The intermediate methylation of certain motifs supports the hypothesis that methyltransferases play a regulatory role. Untangling this additional web of regulation could play a key role in understanding H. pylori colonization and persistence.
Collapse
Affiliation(s)
| | - Erin L. Ramsey
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | | | | | | | - Ryan T. Shipman
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | - Mark H. Forsyth
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| |
Collapse
|
2
|
Molecular insights into DNA recognition and methylation by non-canonical type I restriction-modification systems. Nat Commun 2022; 13:6391. [PMID: 36302770 PMCID: PMC9613975 DOI: 10.1038/s41467-022-34085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Type I restriction-modification systems help establish the prokaryotic DNA methylation landscape and provide protection against invasive DNA. In addition to classical m6A modifications, non-canonical type I enzymes catalyze both m6A and m4C using alternative DNA-modification subunits M1 and M2. Here, we report the crystal structures of the non-canonical PacII_M1M2S methyltransferase bound to target DNA and reaction product S-adenosylhomocysteine in a closed clamp-like conformation. Target DNA binds tightly within the central tunnel of the M1M2S complex and forms extensive contacts with all three protein subunits. Unexpectedly, while the target cytosine properly inserts into M2's pocket, the target adenine (either unmethylated or methylated) is anchored outside M1's pocket. A unique asymmetric catalysis is established where PacII_M1M2S has precisely coordinated the relative conformations of different subunits and evolved specific amino acids within M2/M1. This work provides insights into mechanisms of m6A/m4C catalysis and guidance for designing tools based on type I restriction-modification enzymes.
Collapse
|
3
|
Morgan RD, Luyten YA, Johnson SA, Clough EM, Clark TA, Roberts RJ. Novel m4C modification in type I restriction-modification systems. Nucleic Acids Res 2016; 44:9413-9425. [PMID: 27580720 PMCID: PMC5100572 DOI: 10.1093/nar/gkw743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/12/2016] [Indexed: 11/12/2022] Open
Abstract
We identify a new subgroup of Type I Restriction-Modification enzymes that modify cytosine in one DNA strand and adenine in the opposite strand for host protection. Recognition specificity has been determined for ten systems using SMRT sequencing and each recognizes a novel DNA sequence motif. Previously characterized Type I systems use two identical copies of a single methyltransferase (MTase) subunit, with one bound at each half site of the specificity (S) subunit to form the MTase. The new m4C-producing Type I systems we describe have two separate yet highly similar MTase subunits that form a heterodimeric M1M2S MTase. The MTase subunits from these systems group into two families, one of which has NPPF in the highly conserved catalytic motif IV and modifies adenine to m6A, and one having an NPPY catalytic motif IV and modifying cytosine to m4C. The high degree of similarity among their cytosine-recognizing components (MTase and S) suggest they have recently evolved, most likely from the far more common m6A Type I systems. Type I enzymes that modify cytosine exclusively were formed by replacing the adenine target recognition domain (TRD) with a cytosine-recognizing TRD. These are the first examples of m4C modification in Type I RM systems.
Collapse
Affiliation(s)
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Emily M Clough
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Tyson A Clark
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA
| | | |
Collapse
|
4
|
Kennaway CK, Taylor JE, Song CF, Potrzebowski W, Nicholson W, White JH, Swiderska A, Obarska-Kosinska A, Callow P, Cooper LP, Roberts GA, Artero JB, Bujnicki JM, Trinick J, Kneale GG, Dryden DT. Structure and operation of the DNA-translocating type I DNA restriction enzymes. Genes Dev 2012; 26:92-104. [PMID: 22215814 PMCID: PMC3258970 DOI: 10.1101/gad.179085.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/14/2011] [Indexed: 11/24/2022]
Abstract
Type I DNA restriction/modification (RM) enzymes are molecular machines found in the majority of bacterial species. Their early discovery paved the way for the development of genetic engineering. They control (restrict) the influx of foreign DNA via horizontal gene transfer into the bacterium while maintaining sequence-specific methylation (modification) of host DNA. The endonuclease reaction of these enzymes on unmethylated DNA is preceded by bidirectional translocation of thousands of base pairs of DNA toward the enzyme. We present the structures of two type I RM enzymes, EcoKI and EcoR124I, derived using electron microscopy (EM), small-angle scattering (neutron and X-ray), and detailed molecular modeling. DNA binding triggers a large contraction of the open form of the enzyme to a compact form. The path followed by DNA through the complexes is revealed by using a DNA mimic anti-restriction protein. The structures reveal an evolutionary link between type I RM enzymes and type II RM enzymes.
Collapse
Affiliation(s)
- Christopher K. Kennaway
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - James E. Taylor
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Chun Feng Song
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Wojciech Potrzebowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - William Nicholson
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John H. White
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Anna Swiderska
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Agnieszka Obarska-Kosinska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Philip Callow
- Partnership for Structural Biology, Institut Laue-Langevin, Grenoble, Cedex 9, France
| | - Laurie P. Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Gareth A. Roberts
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Jean-Baptiste Artero
- Partnership for Structural Biology, Institut Laue-Langevin, Grenoble, Cedex 9, France
- EPSAM and ISTM, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, PL-61-614 Poznan, Poland
| | - John Trinick
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - G. Geoff Kneale
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - David T.F. Dryden
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| |
Collapse
|
5
|
Gao P, Tang Q, An X, Yan X, Liang D. Structure of HsdS subunit from Thermoanaerobacter tengcongensis sheds lights on mechanism of dynamic opening and closing of type I methyltransferase. PLoS One 2011; 6:e17346. [PMID: 21399684 PMCID: PMC3047542 DOI: 10.1371/journal.pone.0017346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/29/2011] [Indexed: 11/25/2022] Open
Abstract
Type I DNA methyltransferases contain one specificity subunit (HsdS) and two modification subunits (HsdM). The electron microscopy model of M.EcoKI-M2S1 methyltransferase shows a reasonable closed state of this clamp-like enzyme, but the structure of the open state is still unclear. The 1.95 Å crystal structure of the specificity subunit from Thermoanaerobacter tengcongensis (TTE-HsdS) shows an unreported open form inter-domain orientation of this subunit. Based on the crystal structure of TTE-HsdS and the closed state model of M.EcoKI-M2S1, we constructed a potential open state model of type I methyltransferase. Mutational studies indicated that two α-helices (aa30-59 and aa466-495) of the TTE-HsdM subunit are important inter-subunit interaction sites in the TTE-M2S1 complex. DNA binding assays also highlighted the importance of the C-terminal region of TTE-HsdM for DNA binding by the TTE-M2S1 complex. On the basis of structural analysis, biochemical experiments and previous studies, we propose a dynamic opening and closing mechanism for type I methyltransferase.
Collapse
Affiliation(s)
- Pu Gao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Qun Tang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - XiaoMin An
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - XiaoXue Yan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XXY); (DCL)
| | - DongCai Liang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XXY); (DCL)
| |
Collapse
|
6
|
Madhusoodanan UK, Rao DN. Diversity of DNA methyltransferases that recognize asymmetric target sequences. Crit Rev Biochem Mol Biol 2010; 45:125-45. [PMID: 20184512 DOI: 10.3109/10409231003628007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.
Collapse
|
7
|
Kennaway CK, Obarska-Kosinska A, White JH, Tuszynska I, Cooper LP, Bujnicki JM, Trinick J, Dryden DTF. The structure of M.EcoKI Type I DNA methyltransferase with a DNA mimic antirestriction protein. Nucleic Acids Res 2009; 37:762-70. [PMID: 19074193 PMCID: PMC2647291 DOI: 10.1093/nar/gkn988] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 12/25/2022] Open
Abstract
Type-I DNA restriction-modification (R/M) systems are important agents in limiting the transmission of mobile genetic elements responsible for spreading bacterial resistance to antibiotics. EcoKI, a Type I R/M enzyme from Escherichia coli, acts by methylation- and sequence-specific recognition, leading to either methylation of DNA or translocation and cutting at a random site, often hundreds of base pairs away. Consisting of one specificity subunit, two modification subunits, and two DNA translocase/endonuclease subunits, EcoKI is inhibited by the T7 phage antirestriction protein ocr, a DNA mimic. We present a 3D density map generated by negative-stain electron microscopy and single particle analysis of the central core of the restriction complex, the M.EcoKI M(2)S(1) methyltransferase, bound to ocr. We also present complete atomic models of M.EcoKI in complex with ocr and its cognate DNA giving a clear picture of the overall clamp-like operation of the enzyme. The model is consistent with a large body of experimental data on EcoKI published over 40 years.
Collapse
Affiliation(s)
- Christopher K. Kennaway
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Agnieszka Obarska-Kosinska
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - John H. White
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Irina Tuszynska
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Laurie P. Cooper
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Janusz M. Bujnicki
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - John Trinick
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - David T. F. Dryden
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| |
Collapse
|
8
|
Pennadam SS, Firman K, Alexander C, Górecki DC. Protein-polymer nano-machines. Towards synthetic control of biological processes. J Nanobiotechnology 2004; 2:8. [PMID: 15350203 PMCID: PMC519025 DOI: 10.1186/1477-3155-2-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 09/06/2004] [Indexed: 11/10/2022] Open
Abstract
The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M) enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams [1,2]. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales [3]. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme) with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function [4].
Collapse
Affiliation(s)
- Sivanand S Pennadam
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT UK
| | - Keith Firman
- School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Cameron Alexander
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT UK
| |
Collapse
|
9
|
Hosted TJ, Wang T, Horan AC. Characterization of the Streptomyces lavendulae IMRU 3455 linear plasmid pSLV45. Microbiology (Reading) 2004; 150:1819-1827. [PMID: 15184568 DOI: 10.1099/mic.0.26994-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptomyces lavendulae IMRU 3455 contains two large linear plasmids designated pSLV45 (45 kb) and pSLV195 (195 kb). A cosmid, pSPRX604, containing 42 kb from pSLV45 was cloned and sequenced. pSLV45 was tagged with a hygromycin-resistance marker by homologous recombination to generate the derivatives pSLV45.680 and pSLV45.681. An apramycin-resistance marker was introduced into S. lavendulae IMRU 467 using the pSPR910 integration vector to yield the recipient strain SPW910. The self-transmissible nature of pSLV45 was determined by transfer of pSLV45.680 and pSLV45.681 from the donor strains SPW680 and SPW681 into the recipient strain SPW910. Southern analysis indicated the presence of hygromycin- and pSLV45-hybridizing sequences within SPW910 exconjugants. PFGE analysis confirmed pSLV45.680 and pSLV45.681 were transferred intact and formed freely replicating linear plasmids. Sequence analysis of pSPRX604 revealed genes predicted to be involved in plasmid transfer, partitioning and regulation. The transfer of the linear plasmid pSLV45 from S. lavendulae IMRU 3455 into S. lavendulae IMRU 467 may allow the development of pSLV45 as an actinomycete-to-actinomycete conjugative shuttle vector.
Collapse
Affiliation(s)
- Thomas J Hosted
- New Lead Discovery, Schering Plough Research Institute, 2015 Galloping Hill Road, K15-C321-MS3600, Kenilworth, NJ 07033, USA
| | - Tim Wang
- New Lead Discovery, Schering Plough Research Institute, 2015 Galloping Hill Road, K15-C321-MS3600, Kenilworth, NJ 07033, USA
| | - Ann C Horan
- New Lead Discovery, Schering Plough Research Institute, 2015 Galloping Hill Road, K15-C321-MS3600, Kenilworth, NJ 07033, USA
| |
Collapse
|
10
|
Adamczyk-Popławska M, Kondrzycka A, Urbanek K, Piekarowicz A. Tetra-amino-acid tandem repeats are involved in HsdS complementation in type IC restriction-modification systems. MICROBIOLOGY-SGM 2004; 149:3311-3319. [PMID: 14600243 DOI: 10.1099/mic.0.26497-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All known type I restriction and modification (R-M) systems of Escherichia coli and Salmonella enterica belong to one of four discrete families: type IA, IB, IC or ID. The classification of type I systems from a wide range of other genera is mainly based on complementation and molecular evidence derived from the comparison of the amino acid similarity of the corresponding subunits. This affiliation was seldom based on the strictest requirement for membership of a family, which depends on relatedness as demonstrated by complementation tests. This paper presents data indicating that the type I NgoAV R-M system from Neisseria gonorrhoeae, despite the very high identity of HsdM and HsdR subunits with members of the type IC family, does not show complementation with E. coli type IC R-M systems. Sequence analysis of the HsdS subunit of several different potential type IC R-M systems shows that the presence of different tetra-amino-acid sequence repeats, e.g. TAEL, LEAT, SEAL, TSEL, is characteristic for type IC R-M systems encoded by distantly related bacteria. The other regions of the HsdS subunits potentially responsible for subunit interaction are also different between a group of distantly related bacteria, but show high similarity within these bacteria. Complementation between the NgoAV R-M system and members of the EcoR124 R-M family can be restored by changing the tetra-amino-acid repeat within the HsdS subunit. The authors propose that the type IC family of R-M systems could consist of several complementation subgroups whose specificity would depend on differences in the conserved regions of the HsdS polypeptide.
Collapse
Affiliation(s)
| | - Aneta Kondrzycka
- Institute of Microbiology, University of Warsaw, 02-096 Warsaw, Poland
| | - Katarzyna Urbanek
- Institute of Microbiology, University of Warsaw, 02-096 Warsaw, Poland
| | | |
Collapse
|
11
|
Loenen WAM. Tracking EcoKI and DNA fifty years on: a golden story full of surprises. Nucleic Acids Res 2004; 31:7059-69. [PMID: 14654681 PMCID: PMC291878 DOI: 10.1093/nar/gkg944] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
1953 was a historical year for biology, as it marked the birth of the DNA helix, but also a report by Bertani and Weigle on 'a barrier to infection' of bacteriophage lambda in its natural host, Escherichia coli K-12, that could be lifted by 'host-controlled variation' of the virus. This paper lay dormant till Nobel laureate Arber and PhD student Dussoix showed that the lambda DNA was rejected and degraded upon infection of different bacterial hosts, unless it carried host-specific modification of that DNA, thus laying the foundations for the phenomenon of restriction and modification (R-M). The restriction enzyme of E.coli K-12, EcoKI, was purified in 1968 and required S-adenosylmethionine (AdoMet) and ATP as cofactors. By the end of the decade there was substantial evidence for a chromosomal locus hsdK with three genes encoding restriction (R), modification (M) and specificity (S) subunits that assembled into a large complex of >400 kDa. The 1970s brought the message that EcoKI cut away from its DNA recognition target, to which site the enzyme remained bound while translocating the DNA past itself, with concomitant ATP hydrolysis and subsequent double-strand nicks. This translocation event created clearly visible DNA loops in the electron microscope. EcoKI became the archetypal Type I R-M enzyme with curious DNA translocating properties reminiscent of helicases, recognizing the bipartite asymmetric site AAC(N6)GTGC. Cloning of the hsdK locus in 1976 facilitated molecular understanding of this sophisticated R-M complex and in an elegant 'pas de deux' Murray and Dryden constructed the present model based on a large body of experimental data plus bioinformatics. This review celebrates the golden anniversary of EcoKI and ends with the exciting progress on the vital issue of restriction alleviation after DNA damage, also first reported in 1953, which involves intricate control of R subunit activity by the bacterial proteasome ClpXP, important results that will keep scientists on the EcoKI track for another 50 years to come.
Collapse
Affiliation(s)
- Wil A M Loenen
- Department of Medical Microbiology, University Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
12
|
|
13
|
Marks P, McGeehan J, Wilson G, Errington N, Kneale G. Purification and characterisation of a novel DNA methyltransferase, M.AhdI. Nucleic Acids Res 2003; 31:2803-10. [PMID: 12771207 PMCID: PMC156732 DOI: 10.1093/nar/gkg399] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have cloned the M and S genes of the restriction-modification (R-M) system AhdI and have purified the resulting methyltransferase to homogeneity. M.AhdI is found to form a 170 kDa tetrameric enzyme having a subunit stoichiometry M2S2 (where the M and S subunits are responsible for methylation and DNA sequence specificity, respectively). Sedimentation equilibrium experiments show that the tetrameric enzyme dissociates to form a heterodimer at low concentration, with K(d) approximately 2 microM. The intact (tetrameric) enzyme binds specifically to a 30 bp DNA duplex containing the AhdI recognition sequence GACN5GTC with high affinity (K(d) approximately 50 nM), but at low enzyme concentration the DNA binding activity is governed by the dissociation of the tetramer into dimers, leading to a sigmoidal DNA binding curve. In contrast, only non-specific binding is observed if the duplex lacks the recognition sequence. Methylation activity of the purified enzyme was assessed by its ability to prevent restriction by the cognate endonuclease. The subunit structure of the M.AhdI methyltransferase resembles that of type I MTases, in contrast to the R.AhdI endonuclease which is typical of type II systems. AhdI appears to be a novel R-M system with properties intermediate between simple type II systems and more complex type I systems, and may represent an intermediate in the evolution of R-M systems.
Collapse
Affiliation(s)
- Phil Marks
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | | | | | | | | |
Collapse
|
14
|
Powell LM, Lejeune E, Hussain FS, Cronshaw AD, Kelly SM, Price NC, Dryden DTF. Assembly of EcoKI DNA methyltransferase requires the C-terminal region of the HsdM modification subunit. Biophys Chem 2003; 103:129-37. [PMID: 12568936 DOI: 10.1016/s0301-4622(02)00251-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The methyltransferase component of type I DNA restriction and modification systems comprises three subunits, one DNA sequence specificity subunit and two DNA modification subunits. Limited proteolysis of the EcoKI methyltransferase shows that a 55-kDa N-terminal fragment of the 59-kDa modification subunit is resistant to degradation. We have purified this fragment and determined by mass spectrometry that proteolysis removes 43 or 44 amino acids from the C-terminus. The fragment fails to interact with the other subunits even though it still possesses secondary and tertiary structure and the ability to bind the S-adenosylmethionine cofactor. We conclude that the C-terminal region of the modification subunit of EcoKI is essential for the assembly of the EcoKI methyltransferase.
Collapse
Affiliation(s)
- Lynn M Powell
- Institute of Cell and Molecular Biology, The King's Buildings, University of Edinburgh, Edinburgh, Scotland EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Smith MA, Read CM, Kneale GG. Domain structure and subunit interactions in the type I DNA methyltransferase M.EcoR124I. J Mol Biol 2001; 314:41-50. [PMID: 11724530 DOI: 10.1006/jmbi.2001.5123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type IC DNA methyltransferase M.EcoR124I is a trimeric enzyme of 162 kDa consisting of two modification subunits, HsdM, and a single specificity subunit, HsdS. Studies have been largely restricted to the HsdM subunit or to the intact methyltransferase since the HsdS subunit is insoluble when over-expressed independently of HsdM. Two soluble fragments of the HsdS subunit have been cloned, expressed and purified; a 25 kDa N-terminal fragment (S3) comprising the N-terminal target recognition domain together with the central conserved domain, and a 8.6 kDa fragment (S11) comprising the central conserved domain alone. Analytical ultracentrifugation shows that the S3 subunit exists principally as a dimer of 50 kDa. Gel retardation and competition assays show that both S3 and S11 are able to bind to HsdM, each with a subunit stoichiometry of 1:1. The tetrameric complex (S3/HsdM)(2) is required for effective DNA binding. Cooperative binding is observed and at low enzyme concentration, the multisubunit complex dissociates, leading to a loss of DNA binding activity. The (S3/HsdM)(2) complex is able to bind to both the EcoR124I DNA recognition sequence GAAN(6)RTCG and a symmetrical DNA sequence GAAN(7)TTC, but has a 30-fold higher affinity binding for the latter DNA sequence. Exonuclease III footprinting of the (S3/HsdM)(2) -DNA complex indicates that 29 nucleotides are protected on each strand, corresponding to a region 8 bp on both the 3' and 5' sides of the recognition sequence bound by the (S3/HsdM)(2) complex.
Collapse
Affiliation(s)
- M A Smith
- Biomolecular Structure Group, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | | | | |
Collapse
|
16
|
Abstract
The known nucleoside triphosphate-dependent restriction enzymes are hetero-oligomeric proteins that behave as molecular machines in response to their target sequences. They translocate DNA in a process dependent on the hydrolysis of a nucleoside triphosphate. For the ATP-dependent type I and type III restriction and modification systems, the collision of translocating complexes triggers hydrolysis of phosphodiester bonds in unmodified DNA to generate double-strand breaks. Type I endonucleases break the DNA at unspecified sequences remote from the target sequence, type III endonucleases at a fixed position close to the target sequence. Type I and type III restriction and modification (R-M) systems are notable for effective post-translational control of their endonuclease activity. For some type I enzymes, this control is mediated by proteolytic degradation of that subunit of the complex which is essential for DNA translocation and breakage. This control, lacking in the well-studied type II R-M systems, provides extraordinarily effective protection of resident DNA should it acquire unmodified target sequences. The only well-documented GTP-dependent restriction enzyme, McrBC, requires methylated target sequences for the initiation of phosphodiester bond cleavage.
Collapse
Affiliation(s)
- D T Dryden
- Department of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JJ, UK.
| | | | | |
Collapse
|
17
|
Boucher I, Emond E, Parrot M, Moineau S. DNA sequence analysis of three Lactococcus lactis plasmids encoding phage resistance mechanisms. J Dairy Sci 2001; 84:1610-20. [PMID: 11467810 DOI: 10.3168/jds.s0022-0302(01)74595-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The three Lactococcus lactis plasmids pSRQ700, pSRQ800, and pSRQ900 encode the previously described anti-phage resistance mechanisms LlaDCHI, AbiK, and AbiQ, respectively. Since these plasmids are likely to be introduced into industrial Lactococcus lactis strains used to manufacture commercial fermented dairy products, their complete DNA sequences were determined and analyzed. The plasmids pSRQ700 (7784 bp), pSRQ800 (7858 bp), and pSRQ900 (10,836 bp) showed a similar genetic organization including a common lactococcal theta-type replicon. A second replication module showing features of the pMV158 family of rolling circle replicons was also found on pSRQ700. The theta replication regions of the three plasmids were associated with two additional coding regions, one of which encodes for HsdS, the specificity subunit of the type I restriction/modification system. When introduced into L. lactis IL1403, the HsdS of pSRQ800 and pSRQ900 conferred a weak resistance against phage P008 (936 species). These results indicated that both HsdS subunits can complement the chromosomally encoded type I restriction/modification system in IL1403. The genes involved in the phage resistance systems LlaDCHI, AbiK, and AbiQ were found in close proximity to and downstream of the replication modules. In pSRQ800 and pSRQ900, transfer origins and putative tyrosine recombinases were found upstream of the theta replicons. Genes encoding recombination proteins were also found on pSRQ700. Finally, open reading frames associated with bacteriocin production were found on pSRQ900, but no anti-lactococcal activity was detected. Based on our current knowledge, these three plasmids are safe and suitable for food-grade applications.
Collapse
Affiliation(s)
- I Boucher
- Department of Biochemistry and Microbiology, Faculté des Sciences et de Génie, Faculté de Médecine Dentaire, Université Laval, Quebec, Canada
| | | | | | | |
Collapse
|
18
|
Murray NE. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 2000; 64:412-34. [PMID: 10839821 PMCID: PMC98998 DOI: 10.1128/mmbr.64.2.412-434.2000] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction enzymes are well known as reagents widely used by molecular biologists for genetic manipulation and analysis, but these reagents represent only one class (type II) of a wider range of enzymes that recognize specific nucleotide sequences in DNA molecules and detect the provenance of the DNA on the basis of specific modifications to their target sequence. Type I restriction and modification (R-M) systems are complex; a single multifunctional enzyme can respond to the modification state of its target sequence with the alternative activities of modification or restriction. In the absence of DNA modification, a type I R-M enzyme behaves like a molecular motor, translocating vast stretches of DNA towards itself before eventually breaking the DNA molecule. These sophisticated enzymes are the focus of this review, which will emphasize those aspects that give insights into more general problems of molecular and microbial biology. Current molecular experiments explore target recognition, intramolecular communication, and enzyme activities, including DNA translocation. Type I R-M systems are notable for their ability to evolve new specificities, even in laboratory cultures. This observation raises the important question of how bacteria protect their chromosomes from destruction by newly acquired restriction specifities. Recent experiments demonstrate proteolytic mechanisms by which cells avoid DNA breakage by a type I R-M system whenever their chromosomal DNA acquires unmodified target sequences. Finally, the review will reflect the present impact of genomic sequences on a field that has previously derived information almost exclusively from the analysis of bacteria commonly studied in the laboratory.
Collapse
Affiliation(s)
- N E Murray
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom.
| |
Collapse
|
19
|
Rao DN, Saha S, Krishnamurthy V. ATP-dependent restriction enzymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:1-63. [PMID: 10697406 DOI: 10.1016/s0079-6603(00)64001-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The phenomenon of restriction and modification (R-M) was first observed in the course of studies on bacteriophages in the early 1950s. It was only in the 1960s that work of Arber and colleagues provided a molecular explanation for the host specificity. DNA restriction and modification enzymes are responsible for the host-specific barriers to interstrain and interspecies transfer of genetic information that have been observed in a variety of bacterial cell types. R-M systems comprise an endonuclease and a methyltransferase activity. They serve to protect bacterial cells against bacteriophage infection, because incoming foreign DNA is specifically cleaved by the restriction enzyme if it contains the recognition sequence of the endonuclease. The DNA is protected from cleavage by a specific methylation within the recognition sequence, which is introduced by the methyltransferase. Classic R-M systems are now divided into three types on the basis of enzyme complexity, cofactor requirements, and position of DNA cleavage, although new systems are being discovered that do not fit readily into this classification. This review concentrates on multisubunit, multifunctional ATP-dependent restriction enzymes. A growing number of these enzymes are being subjected to biochemical and genetic studies that, when combined with ongoing structural analyses, promise to provide detailed models for mechanisms of DNA recognition and catalysis. It is now clear that DNA cleavage by these enzymes involves highly unusual modes of interaction between the enzymes and their substrates. These unique features of mechanism pose exciting questions and in addition have led to the suggestion that these enzymes may have biological functions beyond that of restriction and modification. The purpose of this review is to describe the exciting developments in our understanding of how the ATP-dependent restriction enzymes recognize specific DNA sequences and cleave or modify DNA.
Collapse
Affiliation(s)
- D N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
20
|
Janscak P, Weiserova M, Hubacek J, Holubova I, Dutta CF, Firman K. Two temperature-sensitive mutations in the DNA binding subunit of EcoKI with differing properties. FEMS Microbiol Lett 2000; 182:99-104. [PMID: 10612739 DOI: 10.1111/j.1574-6968.2000.tb08881.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two temperature-sensitive mutations in the hsdS gene, which encodes the DNA specificity subunit of the type IA restriction-modification system EcoKI, designated Sts1 (Ser(340)Phe) and Sts2 (Ala(204)Thr) had a different impact on restriction-modification functions in vitro and in vivo. The enzyme activities of the Sts1 mutant were temperature-sensitive in vitro and were reduced even at 30 degrees C (permissive temperature). Gel retardation assays revealed that the Sts1 mutant had significantly decreased DNA binding, which was temperature-sensitive. In contrast the Sts2 mutant did not show differences from the wild-type enzyme even at 42 degrees C. Unlike the HsdSts1 subunit, the HsdSts2 subunit was not able to compete with the wild-type subunit in assembly of the restriction enzyme in vivo, suggesting that the Sts2 mutation affects subunit assembly. Thus, it appears that these two mutations map two important regions in HsdS subunit responsible for DNA-protein and protein-protein interactions, respectively.
Collapse
Affiliation(s)
- P Janscak
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 14220, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
21
|
Davies GP, Martin I, Sturrock SS, Cronshaw A, Murray NE, Dryden DT. On the structure and operation of type I DNA restriction enzymes. J Mol Biol 1999; 290:565-79. [PMID: 10390354 DOI: 10.1006/jmbi.1999.2908] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type I DNA restriction enzymes are large, molecular machines possessing DNA methyltransferase, ATPase, DNA translocase and endonuclease activities. The ATPase, DNA translocase and endonuclease activities are specified by the restriction (R) subunit of the enzyme. We demonstrate that the R subunit of the Eco KI type I restriction enzyme comprises several different functional domains. An N-terminal domain contains an amino acid motif identical with that forming the catalytic site in simple restriction endonucleases, and changes within this motif lead to a loss of nuclease activity and abolish the restriction reaction. The central part of the R subunit contains amino acid sequences characteristic of DNA helicases. We demonstrate, using limited proteolysis of this subunit, that the helicase motifs are contained in two domains. Secondary structure prediction of these domains suggests a structure that is the same as the catalytic domains of DNA helicases of known structure. The C-terminal region of the R subunit can be removed by elastase treatment leaving a large fragment, stable in the presence of ATP, which can no longer bind to the other subunits of Eco KI suggesting that this domain is required for protein assembly. Considering these results and previous models of the methyltransferase part of these enzymes, a structural and operational model of a type I DNA restriction enzyme is presented.
Collapse
Affiliation(s)
- G P Davies
- Institute of Cell and Molecular Biology, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JR, UK
| | | | | | | | | | | |
Collapse
|
22
|
Mernagh DR, Taylor IA, Kneale GG. Interaction of the type I methyltransferase M.EcoR124I with modified DNA substrates: sequence discrimination and base flipping. Biochem J 1998; 336 ( Pt 3):719-25. [PMID: 9841886 PMCID: PMC1219925 DOI: 10.1042/bj3360719] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have analysed the DNA-protein contacts made between the type I DNA methyltransferase M.EcoR124I and its recognition sequence. The effects of base modifications have been probed by measuring the affinity of M.EcoR124I for the modified sequences relative to that for the wild-type sequence by using gel-retardation competition assays. These results, along with those from methylation interference footprinting and photo-affinity cross-linking have identified the location of potential DNA contacts within the DNA recognition site. Substitution of 6-thioguanosine for each of the three specific guanines in the recognition sequence leads to a large (10-20-fold) decrease in the strength of DNA binding, indicating the importance of hydrogen-bonding interactions in the major groove of DNA. In contrast, replacement of either (or both) of the adenines at the target site for methylation by the enzyme, to produce either a base pair mismatch or loss of the base, leads to a marked increase in DNA-binding affinity. The results strongly support the proposal that type I methyltransferases employ a base-flipping mechanism to methylate their target base.
Collapse
Affiliation(s)
- D R Mernagh
- Division of Molecular and Cell Biology, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DT, U.K
| | | | | |
Collapse
|
23
|
Powell LM, Dryden DT, Murray NE. Sequence-specific DNA binding by EcoKI, a type IA DNA restriction enzyme. J Mol Biol 1998; 283:963-76. [PMID: 9799636 DOI: 10.1006/jmbi.1998.2143] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type I DNA restriction and modification enzymes of prokaryotes are multimeric enzymes that cleave unmethylated, foreign DNA in a complex process involving recognition of the methylation status of a DNA target sequence, extensive translocation of DNA in both directions towards the enzyme bound at the target sequence, ATP hydrolysis, which is believed to drive the translocation possibly via a helicase mechanism, and eventual endonucleolytic cleavage of the DNA. We have examined the DNA binding affinity and exonuclease III footprint of the EcoKI type IA restriction enzyme on oligonucleotide duplexes that either contain or lack the target sequence. The influence of the cofactors, S-adenosyl methionine and ATP, on binding to DNA of different methylation states has been assessed. EcoKI in the absence of ATP, with or without S-adenosyl methionine, binds tightly even to DNA lacking the target site and the exonuclease footprint is large, approximately 45 base-pairs. The protection is weaker on DNA lacking the target site. Partially assembled EcoKI lacking one or both of the subunits essential for DNA cleavage, is unable to bind tightly to DNA lacking the target site but can bind tightly to the recognition site. The addition of ATP to EcoKI, in the presence of AdoMet, allows tight binding only to the target site and the footprint shrinks to 30 base-pairs, almost identical to that of the modification enzyme which makes up the core of EcoKI. The same effect occurs when S-adenosyl homocysteine or sinefungin are substituted for S-adenosyl methionine, and ADP or ATPgammaS are substituted for ATP. It is proposed that the DNA binding surface of EcoKI comprises three regions: a "core" region which recognises the target sequence and which is present on the modification enzyme, and a region on each DNA cleavage subunit. The cleavage subunits make tight contacts to any DNA molecule in the absence of cofactors, but this contact is weakened in the presence of cofactors to allow the protein conformational changes required for DNA translocation when a target site is recognised by the core modification enzyme. This weakening of the interaction between the DNA cleavage subunits and the DNA could allow more access of exonuclease III to the DNA and account for the shorter footprint.
Collapse
Affiliation(s)
- L M Powell
- Institute of Cell & Molecular Biology, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
24
|
Powell LM, Connolly BA, Dryden DT. The DNA binding characteristics of the trimeric EcoKI methyltransferase and its partially assembled dimeric form determined by fluorescence polarisation and DNA footprinting. J Mol Biol 1998; 283:947-61. [PMID: 9799635 DOI: 10.1006/jmbi.1998.2142] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type I DNA restriction and modification systems of enteric bacteria display several enzymatic activities due to their oligomeric structure. Partially assembled forms of the EcoKI enzyme from E. coli K12 can display specific DNA binding properties and modification methyltransferase activity. The heterodimer of one specificity (S) subunit and one modification (M) subunit can only bind DNA whereas the addition of a second modification subunit to form M2S1 also confers methyltransferase activity. We have examined the DNA binding specificity of M1S1 and M2S1 using the change in fluorescence anisotropy which occurs on binding of a DNA probe labelled with a hexachlorofluorescein fluorophore. The dimer has much weaker affinity for the EcoKI target sequence than the trimer and slightly less ability to discriminate against other DNA sequences. Binding of both proteins is strongly dependent on salt concentration. The fluorescence results compare favourably with those obtained with the gel retardation method. DNA footprinting using exonucleaseIII and DNaseI, and methylation interference show no asymmetry, with both DNA strands being protected by the dimer and the trimer. This indicates that the dimer is a mixture of the two possible forms, M1S1 and S1M1. The dimer has a footprint on the DNA substrate of the same length as the trimer implying that the modification subunits are located on either side of the DNA helical axis rather than lying along the helical axis.
Collapse
Affiliation(s)
- L M Powell
- Institute of Cell & Molecular Biology, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
25
|
Abstract
We determined the genomic structure of the gene encoding human DNA methyltransferase (DNA MTase). Six overlapping human genomic DNA clones which include all of the known cDNA sequence were isolated. Analysis of these clones demonstrates that the human DNA MTase gene consists of at least 40 exons and 39 introns spanning a distance of 60 kilobases. Elucidation of the chromosomal organization of the human DNA MTase gene provides the template for future structure-function analysis of the properties of mammalian DNA MTase.
Collapse
Affiliation(s)
- S Ramchandani
- Department of Pharmacology and Therapeutics, McGill University, Montreal, PQ, Canada
| | | | | |
Collapse
|
26
|
Schouler C, Gautier M, Ehrlich SD, Chopin MC. Combinational variation of restriction modification specificities in Lactococcus lactis. Mol Microbiol 1998; 28:169-78. [PMID: 9593305 DOI: 10.1046/j.1365-2958.1998.00787.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three genes coding for a type I R-M system related to the class C enzymes have been identified on the chromosome of Lactococcus lactis strain IL1403. In addition, plasmids were found that encode only the HsdS subunit that directs R-M specificity. The presence of these plasmids in IL1403 conferred a new R-M phenotype on the host, indicating that the plasmid-encoded HsdS is able to interact with the chromosomally encoded HsdR and HsdM subunits. Such combinational variation of type I R-M systems may facilitate the evolution of their specificity and thus reinforce bacterial resistance against invasive foreign unmethylated DNA.
Collapse
Affiliation(s)
- C Schouler
- INRA, Laboratoire de Génétique Microbienne, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
27
|
Smith MA, Mernagh DR, Kneale GG. Expression and characterisation of the N-terminal fragment of the HsdS subunit of M.EcoR124I. Biol Chem 1998; 379:505-9. [PMID: 9628344 DOI: 10.1515/bchm.1998.379.4-5.505] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The type IC modification methyltransferase M.EcoR124I is a trimeric enzyme of 162 kDa consisting of two copies of the modification subunit, HsdM, and a single DNA specificity subunit, HsdS. Studies to date have been largely restricted to the HsdM subunit or the intact methyltransferase, since the HsdS subunit is insoluble when expressed independently of HsdM. Using PCR, we have cloned and expressed 13 fragments of the gene for the HsdS subunit, including the sequences encoding each of the variable and conserved domains and various combinations of these. Only two of these fragments were found to be soluble, a 8.6 kDa fragment (S11) comprising the central conserved domain and a 25 kDa N-terminal fragment (S3) containing the N-terminal variable domain and the central conserved domain. Analysis of the larger of these fragments by gel retardation shows that the protein binds DNA in the presence of HsdM at a subunit stoichiometry of 1:1. Gel filtration and CD spectroscopy indicate that the protein is monomeric and predominantly alpha-helical.
Collapse
Affiliation(s)
- M A Smith
- Division of Molecular and Cell Biology, School of Biological Sciences, University of Portsmouth, UK
| | | | | |
Collapse
|
28
|
Sturrock SS, Dryden DT. A prediction of the amino acids and structures involved in DNA recognition by type I DNA restriction and modification enzymes. Nucleic Acids Res 1997; 25:3408-14. [PMID: 9254696 PMCID: PMC146914 DOI: 10.1093/nar/25.17.3408] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The S subunits of type I DNA restriction/modification enzymes are responsible for recognising the DNA target sequence for the enzyme. They contain two domains of approximately 150 amino acids, each of which is responsible for recognising one half of the bipartite asymmetric target. In the absence of any known tertiary structure for type I enzymes or recognisable DNA recognition motifs in the highly variable amino acid sequences of the S subunits, it has previously not been possible to predict which amino acids are responsible for sequence recognition. Using a combination of sequence alignment and secondary structure prediction methods to analyse the sequences of S subunits, we predict that all of the 51 known target recognition domains (TRDs) have the same tertiary structure. Furthermore, this structure is similar to the structure of the TRD of the C5-cytosine methyltransferase, Hha I, which recognises its DNA target via interactions with two short polypeptide loops and a beta strand. Our results predict the location of these sequence recognition structures within the TRDs of all type I S subunits.
Collapse
Affiliation(s)
- S S Sturrock
- Institute of Cell and Molecular Biology, The King's Buildings, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
29
|
Thorpe PH, Ternent D, Murray NE. The specificity of sty SKI, a type I restriction enzyme, implies a structure with rotational symmetry. Nucleic Acids Res 1997; 25:1694-700. [PMID: 9108149 PMCID: PMC146652 DOI: 10.1093/nar/25.9.1694] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The type I restriction and modification (R-M) enzyme from Salmonella enterica serovar kaduna ( Sty SKI) recognises the DNA sequence 5'-CGAT(N)7GTTA, an unusual target for a type I R-M system in that it comprises two tetranucleotide components. The amino target recognition domain (TRD) of Sty SKI recognises 5'-CGAT and shows 36% amino acid identity with the carboxy TRD of Eco R124I which recognises the complementary, but degenerate, sequence 5'-RTCG. Current models predict that the amino and carboxy TRDs of the specificity subunit are in inverted orientations within a structure with 2-fold rotational symmetry. The complementary target sequences recognised by the amino TRD of Sty SKI and the carboxy TRD of Eco R124I are consistent with the predicted inverted positions of the TRDs. Amino TRDs of similar amino acid sequence have been shown to recognise the same nucleotide sequence. The similarity reported here, the first example of one between amino and carboxy TRDs, while consistent with a conserved mechanism of target recognition, offers additional flexibility in the evolution of sequence specificity by increasing the potential diversity of DNA targets for a given number of TRDs. Sty SKI identifies the first member of the IB family in Salmonella species.
Collapse
Affiliation(s)
- P H Thorpe
- Institute of Cell and Molecular Biology, Darwin Building, Kings Buildings, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
30
|
Mernagh DR, Reynolds LA, Kneale GG. DNA binding and subunit interactions in the type I methyltransferase M.EcoR124I. Nucleic Acids Res 1997; 25:987-91. [PMID: 9023108 PMCID: PMC146542 DOI: 10.1093/nar/25.5.987] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The type I DNA methyltransferase M.EcoR124I consists of two methylation subunits (HsdM) and one DNA recognition subunit (HsdS). When expressed independently, HsdS is insoluble, but this subunit can be obtained in soluble form as a GST fusion protein. We show that the HsdS subunit, even as a fusion protein, is unable to form a discrete complex with its DNA recognition sequence. When HsdM is added to the HsdS fusion protein, discrete complexes are formed but these are unable to methylate DNA. The two complexes formed correspond to species with one or two copies of the HsdM subunit, indicating that blocking the N-terminus of HsdS affects one of the HsdM binding sites. However, removal of the GST moiety from such complexes results in tight and specific DNA binding and restores full methylation activity. The results clearly demonstrate the importance of the HsdM subunit for DNA binding, in addition to its catalytic role in the methyltransferase reaction.
Collapse
Affiliation(s)
- D R Mernagh
- Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, St Michael's Building, Portsmouth PO1 2DT, UK
| | | | | |
Collapse
|
31
|
Dryden DT, Cooper LP, Thorpe PH, Byron O. The in vitro assembly of the EcoKI type I DNA restriction/modification enzyme and its in vivo implications. Biochemistry 1997; 36:1065-76. [PMID: 9033396 DOI: 10.1021/bi9619435] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Type I DNA restriction/modification enzymes protect the bacterial cell from viral infection by cleaving foreign DNA which lacks N6-adenine methylation within a target sequence and maintaining the methylation of the targets on the host chromosome. It has been noted that the genes specifying type I systems can be transferred to a new host lacking the appropriate, protective methylation without any adverse effect. The modification phenotype apparently appears before the restriction phenotype, but no evidence for transcriptional or translational control of the genes and the resultant phenotypes has been found. Type I enzymes contain three types of subunit, S for sequence recognition, M for DNA modification (methylation), and R for DNA restriction(cleavage), and can function solely as a M2S1 methylase or as a R2M2S1 bifunctional methylase/nuclease. We show that the methylase is not stable at the concentrations expected to exist in vivo, dissociating into free M subunit and M1S1, whereas the complete nuclease is a stable structure. The M1S1 form can bind the R subunit as effectively as the M2S1 methylase but possesses no activity; therefore, upon establishment of the system in a new host, we propose that most of the R subunit will initially be trapped in an inactive complex until the methylase has been able to modify and protect the host chromosome. We believe that the in vitro assembly pathway will reflect the in vivo situation, thus allowing the assembly process to at least partially explain the observations that the modification phenotype appears before the restriction phenotype upon establishment of a type I system in a new host cell.
Collapse
Affiliation(s)
- D T Dryden
- Institute of Cell & Molecular Biology, University of Edinburgh, U.K.
| | | | | | | |
Collapse
|
32
|
Roy R, Kumar A, Lee JC, Mitra S. The domains of mammalian base excision repair enzyme N-methylpurine-DNA glycosylase. Interaction, conformational change, and role in DNA binding and damage recognition. J Biol Chem 1996; 271:23690-7. [PMID: 8798591 DOI: 10.1074/jbc.271.39.23690] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Repair of a variety of alkylated base adducts in DNA is initiated by their removal by N-methylpurine-DNA glycosylase. The 31-kDa mouse N-methylpurine-DNA glycosylase, derived by deletion of 48 amino acid residues from the 333-residue wild type protein without loss of activity, was analyzed for the presence of protease-resistant domains with specific roles in substrate binding and catalysis. Increasing proteolysis with trypsin generated first a 29-kDa polypeptide by removal of 42 amino-terminal residues, followed by production of 8-, 6-, and 13-kDa fragments with defined, nonoverlapping boundaries. The 8- and 13-kDa domains include the amino and carboxyl termini, respectively. Based on DNA-affinity chromatography and the protease protection assay, it appears that the 6- and 13-kDa domains are necessary for nontarget DNA binding and that the 8-kDa domain, in cooperation with the other two domains, participates in recognition of damaged bases. Furthermore, chemical cross-linking studies indicated that, in the presence of substrate DNA, the 8- and 6-kDa domains undergo conformational changes reflected by both protection from proteolysis and reduced availability of cysteine residues for the thiol-exchange reaction.
Collapse
Affiliation(s)
- R Roy
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
33
|
Dryden DT, Sturrock SS, Winter M. Structural modelling of a type I DNA methyltransferase. NATURE STRUCTURAL BIOLOGY 1995; 2:632-5. [PMID: 7552723 DOI: 10.1038/nsb0895-632] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
34
|
Dryden DT, Willcock DF, Murray NE. Mutational analysis of conserved amino-acid motifs in EcoKI adenine methyltransferase. Gene 1995; 157:123-4. [PMID: 7607472 DOI: 10.1016/0378-1119(94)00630-b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The EcoKI methyltransferase (M.EcoKI, MTase) contains the amino acid (aa) sequences AAGTA and NPPF believed to represent the two sequences that are strongly conserved in adenine MTases [Klimasauskas et al., Nucleic Acids Res. 17 (1989) 9823-9831]. We have analysed a mutation in the first sequence that abolishes cofactor binding and enzyme activity, and mutations in the second sequence that reduce or abolish activity without affecting cofactor and DNA binding.
Collapse
Affiliation(s)
- D T Dryden
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | |
Collapse
|
35
|
Chen A, Powell LM, Dryden DT, Murray NE, Brown T. Tyrosine 27 of the specificity polypeptide of EcoKI can be UV crosslinked to a bromodeoxyuridine-substituted DNA target sequence. Nucleic Acids Res 1995; 23:1177-83. [PMID: 7739896 PMCID: PMC306828 DOI: 10.1093/nar/23.7.1177] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The specificity (S) subunit of the restriction enzyme EcoKI imparts specificity for the sequence AAC(N6)GTGC. Substitution of thymine with bromodeoxyuridine in a 25 bp DNA duplex containing this sequence stimulated UV light-induced covalent crosslinking to the S subunit. Crosslinking occurred only at the residue complementary to the first adenine in the AAC sequence, demonstrating a close contact between the major groove at this sequence and the S subunit. Peptide sequencing of a proteolytically-digested, crosslinked complex identified tyrosine 27 in the S subunit as the site of crosslinking. This is consistent with the role of the N-terminal domain of the S subunit in recognizing the AAC sequence. Tyrosine 27 is conserved in the S subunits of the three type I enzymes that share the sequence AA in the trinucleotide component of their target sequence. This suggests that tyrosine 27 may make a similar DNA contact in these other enzymes.
Collapse
Affiliation(s)
- A Chen
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | | | |
Collapse
|
36
|
Powell LM, Murray NE. S-adenosyl methionine alters the DNA contacts of the EcoKI methyltransferase. Nucleic Acids Res 1995; 23:967-74. [PMID: 7731811 PMCID: PMC306793 DOI: 10.1093/nar/23.6.967] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The EcoKI methyltransferase methylates two adenines on opposite strands of its bipartite DNA recognition sequence AAC(N6)GTGC. The enzyme has a strong preference for hemimethylated DNA substrates, but the methylation state of the DNA does not influence its binding affinity. Methylation interference was used to compare the contacts made by the EcoKI methyltransferase with unmodified, hemimethylated or fully modified DNAs. Contacts were seen at or near the N7 position of guanine, in the major groove, for all of the guanines in the EcoKI recognition sequence, and at two guanines on the edge of the intervening spacer sequence. The presence of the cofactor and methyl donor S-adenosyl methionine had a striking effect on the interference pattern for unmodified DNA which could not be mimicked by the presence of the cofactor analogue S-adenosyl homocysteine. In contrast, S-adenosyl methionine had no effect on the interference patterns for either kind of hemimethylated DNA, or for fully modified DNA. Differences between the interference patterns for the unmodified DNA and any of the three forms of methylated DNA provide evidence that methylation of the target sequence influences the conformation of the protein-DNA interface, and illustrate the importance of S-adenosyl methionine in the distinction between unmodified and methylated DNA by the methyltransferase.
Collapse
Affiliation(s)
- L M Powell
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | |
Collapse
|
37
|
Belogurov AA, Delver EP. A motif conserved among the type I restriction-modification enzymes and antirestriction proteins: a possible basis for mechanism of action of plasmid-encoded antirestriction functions. Nucleic Acids Res 1995; 23:785-7. [PMID: 7708494 PMCID: PMC306760 DOI: 10.1093/nar/23.5.785] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antirestriction proteins Ard encoded by some self-transmissible plasmids specifically inhibit restriction by members of all three families of type I restriction-modification (R-M) systems in E.coli. Recently, we have identified the amino acid region, 'antirestriction' domain, that is conserved within different plasmid and phage T7-encoded antirestriction proteins and may be involved in interaction with the type I R-M systems. In this paper we demonstrate that this amino acid sequence shares considerable similarity with a well-known conserved sequence (the Argos repeat) found in the DNA sequence specificity (S) polypeptides of type I systems. We suggest that the presence of these similar motifs in restriction and antirestriction proteins may give a structural basis for their interaction and that the antirestriction action of Ard proteins may be a result of the competition between the 'antirestriction' domains of Ard proteins and the similar conserved domains of the S subunits that are believed to play a role in the subunit assembly of type I R-M systems.
Collapse
Affiliation(s)
- A A Belogurov
- Department of Genetic Engineering, Cardiology Research Center, Moscow, Russia
| | | |
Collapse
|