Doddamani SB, Ramoji A, Yenagi J, Tonannavar J. The vibrational spectra, assignments and ab initio/DFT analysis for 3-chloro, 4-chloro and 5-chloro-2-methylphenyl isocyanates.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007;
67:150-9. [PMID:
16942913 DOI:
10.1016/j.saa.2006.06.038]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 06/26/2006] [Accepted: 06/28/2006] [Indexed: 05/11/2023]
Abstract
The Raman (3500-50 cm(-1)) and infrared (4000-200 cm(-1)) spectra of 3-chloro, 4-chloro and 5-chloro-2-methylphenyl isocyanates have been measured. Ab initio and density functional theory calculations, at the levels of RHF/6-311G* and B3LYP/6-311G*, have been performed: energies, optimized geometrical parameters, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios and nuclear displacements are obtained. Potential energy distributions (PEDs) and normal modes, for the spectral data computed at B3LYP/6-311G*, have also been obtained from a force-field calculations. A complete vibrational assignments of the observed spectra have been proposed. The force-field calculations have shown that, several of the normal modes are coupled, as is the case with large molecular systems possessing very low or no symmetry, such as investigated in the present study. Further, the investigation of the internal rotation of the isocyanate, NCO, by B3LYP/6-31G* level of theory has shown that the moiety maintains nearly the same orientation in all the three compounds (approximately 140-145 degrees tilt to the para-position) as in phenyl isocyanate. Two conformers, cis and trans forms, with respect to the substituents, NCO and CH(3), have been determined: the cis form lies above trans form by less than a kilocalorie per mole for each compound.
Collapse