Rinkel LJ, van der Marel GA, van Boom JH, Altona C. Influence of the base sequence on the conformational behaviour of DNA polynucleotides in solution.
EUROPEAN JOURNAL OF BIOCHEMISTRY 1987;
166:87-101. [PMID:
3036527 DOI:
10.1111/j.1432-1033.1987.tb13487.x]
[Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
NMR studies were carried out on samples of the non-self-complementary tetramers d(C-A-C-A), d(T-G-T-G), d(G-A-G-A) and d(T-C-T-C) and of 1:1 mixtures of the complementary tetramers d(C-A-C-A) X d(T-G-T-G) and d(G-A-G-A) X d(T-C-T-C) at two DNA concentrations and of the self-complementary octamers d(C-A-C-A-T-G-T-G) and d(G-A-G-A-T-C-T-C). Assignments, based upon one-dimensional NOE and homonuclear-decoupling and two-dimensional correlated and NOE spectroscopies are given of the resonances of most of the base and sugar protons. Chemical shift vs temperature profiles, constructed for all samples, yielded insight into the temperature- and concentration-dependent conformational behaviour of the compounds and were used to obtain thermodynamic parameters pertaining to the stacked-single-strand----random-coil and duplex----random-coil equilibria. Vicinal proton-proton couplings were analyzed in terms of the conformation of the deoxyribose rings in the single-stranded tetramers and duplexed octamers. The NOE patterns, chemical shift profiles, imino-proton resonances and coupling data revealed that the compounds adopt B-DNA-like structures. The ratio duplexed/stacked-single-strand/random coil depends upon external conditions as well as upon base sequence. The thermodynamic data indicate that: in terms of single-helical stacking, the R-R steps (Tm 321-328 K) appear more stable than the Y-R or R-Y steps (Tm 308-316 K) and the Y-Y steps score least (Tm 290-300 K), and the duplexes consisting of alternating, d(Y-R)n, strands are more stable, in terms of delta H degrees, compared to the d(R-R)n X d(Y-Y)n duplexes. The analyses of the couplings demonstrated that the sugars of the single-stranded tetramers and duplexed octamers occur as a blend of N- and S-type conformers, with a preference for the S-type (C2'-endo) sugar conformation: upon duplex formation, no significant shift in the N-type/S-type ratio was observed. The fraction S-type sugar conformation of a given residue, %S, in the stacked-single strands was found to depend upon the nature of its own base and that of the adjacent residues: sugars in an R-R stretch display high values of %S (90-100), whereas those in Y-Y stretches show relatively low values (approximately equal to 65).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse