Chandrasekaran R, Pulikkottil FT, Elama KS, Rasappan R. Direct synthesis and applications of solid silylzinc reagents.
Chem Sci 2021;
12:15719-15726. [PMID:
35003603 PMCID:
PMC8654096 DOI:
10.1039/d1sc06038d]
[Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 01/29/2023] Open
Abstract
The increased synthetic utility of organosilanes has motivated researchers to develop milder and more practical synthetic methods. Silylzinc reagents, which are typically the most functional group tolerant, are notoriously difficult to synthesize because they are obtained by a pyrophoric reaction of silyllithium, particularly Me3SiLi which is itself prepared by the reaction of MeLi and disilane. Furthermore, the dissolved LiCl in silylzinc may have a detrimental effect. A synthetic method that can avoid silyllithium and involves a direct synthesis of silylzinc reagents from silyl halides is arguably the simplest and most economical strategy. We describe, for the first time, the direct synthesis of PhMe2SiZnI and Me3SiZnI reagents by employing a coordinating TMEDA ligand, as well as single crystal XRD structures. Importantly, they can be obtained as solids and stored for longer periods at 4 °C. We also demonstrate their significance in cross-coupling of various free alkyl/aryl/alkenyl carboxylic acids with broader functional group tolerance and API derivatives. The general applicability and efficiency of solid Me3SiZnI are shown in a wide variety of reactions including alkylation, arylation, allylation, 1,4-addition, acylation and more.
Collapse