A theory-driven synthesis of symmetric and unsymmetric 1,2-bis(diphenylphosphino)ethane analogues via radical difunctionalization of ethylene.
Nat Commun 2022;
13:7034. [PMID:
36411284 PMCID:
PMC9678890 DOI:
10.1038/s41467-022-34546-5]
[Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
1,2-Bis(diphenylphosphino)ethane (DPPE) and its synthetic analogues are important structural motifs in organic synthesis, particularly as diphosphine ligands with a C2-alkyl-linker chain. Since DPPE is known to bind to many metal centers in a bidentate fashion to stabilize the corresponding metal complex via the chelation effect originating from its entropic advantage over monodentate ligands, it is often used in transition-metal-catalyzed transformations. Symmetric DPPE derivatives (Ar12P-CH2-CH2-PAr12) are well-known and readily prepared, but electronically and sterically unsymmetric DPPE (Ar12P-CH2-CH2-PAr22; Ar1≠Ar2) ligands have been less explored, mostly due to the difficulties associated with their preparation. Here we report a synthetic method for both symmetric and unsymmetric DPPEs via radical difunctionalization of ethylene, a fundamental C2 unit, with two phosphine-centered radicals, which is guided by the computational analysis with the artificial force induced reaction (AFIR) method, a quantum chemical calculation-based automated reaction path search tool. The obtained unsymmetric DPPE ligands can coordinate to several transition-metal salts to form the corresponding complexes, one of which exhibits distinctly different characteristics than the corresponding symmetric DPPE-metal complex.
Collapse