1
|
Bobotis BC, Khakpour M, Braniff O, de Andrade EG, Gargus M, Allen M, Carrier M, Baillargeon J, Rangachari M, Tremblay MÈ. Sex chromosomes and sex hormones differently shape microglial properties during normal physiological conditions in the adult mouse hippocampus. J Neuroinflammation 2025; 22:18. [PMID: 39856696 PMCID: PMC11762133 DOI: 10.1186/s12974-025-03341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The brain presents various structural and functional sex differences, for which multiple factors are attributed: genetic, epigenetic, metabolic, and hormonal. While biological sex is determined by both sex chromosomes and sex hormones, little is known about how these two factors interact to establish this dimorphism. Sex differences in the brain also affect its resident immune cells, microglia, which actively survey the brain parenchyma and interact with sex hormones throughout life. However, microglial differences in density and distribution, morphology and ultrastructural patterns in physiological conditions during adulthood are largely unknown. Here, we investigated these aforementioned properties of microglia using the Four Core Genotypes (FCG) model, which allows for an independent assessment of gonadal hormones and sex chromosomal effects in four conditions: FCG XX and Tg XY- (both ovaries); Tg XXSry and Tg XYSry (both testes). We also compared the FCG results with XX and XY wild-type (WT) mice. In adult mice, we focused our investigation on the ventral hippocampus across different layers: CA1 stratum radiatum (Rad) and CA1 stratum lacunosum-moleculare (LMol), as well as the dentate gyrus polymorphic layer (PoDG). Double immunostaining for Iba1 and TMEM119 revealed that microglial density is influenced by both sex chromosomes and sex hormones. We show in the Rad and LMol that microglia are denser in FCG XX compared to Tg XYSry mice, however, microglia were densest in WT XX mice. In the PoDG, ovarian animals had increased microglial density compared to testes animals. Additionally, microglial morphology was modulated by a complex interaction between hormones and chromosomes, affecting both their cellular soma and arborization across the hippocampal layers. Moreover, ultrastructural analysis showed that microglia in WT animals make overall more contacts with pre- and post-synaptic elements than in FCG animals. Lastly, microglial markers of cellular stress, including mitochondrion elongation, and dilation of the endoplasmic reticulum and Golgi apparatus, were mostly chromosomally driven. Overall, we characterized different aspects of microglial properties during normal physiological conditions that were found to be shaped by sex chromosomes and sex hormones, shading more light onto how sex differences affect the brain immunity at steady-state.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Mohammadparsa Khakpour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | | | - Makenna Gargus
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Micah Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Joanie Baillargeon
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Manu Rangachari
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
2
|
Lee R, Lee WY, Park HJ. Diuron-induced fetal Leydig cell dysfunction in in vitro organ cultured fetal testes. Reprod Toxicol 2024; 123:108497. [PMID: 37949197 DOI: 10.1016/j.reprotox.2023.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Diuron is a phenylurea herbicide widely used in the agricultural industry. In recent years, the risk of infertility and developmental defects has increased due to exposure to environmental pollutants. In this study, we investigated the toxicity of diuron in fetal mouse testes using three-dimensional organ cultures. Fetal testes derived from embryonic day (E) 14.5 were cultured with 200 µM diuron for 5 days. The results revealed that diuron did not impair fetal germ cell proliferation or the expression levels of germ cell markers such as Ddx4, Dazl, Oct 4, Nanog, Plzf, and TRA 98. Similarly, the gene or protein expression of the Sertoli cell markers Sox9 and Wt1 in diuron-exposed fetal testes did not change after 5 days of culture. In contrast, diuron increased fetal Leydig cell markers (FLC), Cyp11a1, Cyp17a1, Thbs2, and Pdgf α, and decreased adult Leydig cell (ALC) markers, Sult1e1, Hsd173, Ptgds, and Vcam1. However, 3-βHSD, an FLC and ALC marker, was consistently maintained upon exposure to diuron in fetal testes compared to non-treated groups. In conclusion, our study demonstrates that diuron negatively impacts Fetal Leydig cell development, although it does not affect germ and Sertoli cells.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National College of Agriculture and Fisheries, Jeonbuk 54874, Republic of Korea; Department of Animal Biotechnology, Sangji University, Wonju-si, Gangwon-do 26339, Republic of Korea
| | - Won-Young Lee
- Department of Livestock, Korea National College of Agriculture and Fisheries, Jeonbuk 54874, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, Sangji University, Wonju-si, Gangwon-do 26339, Republic of Korea.
| |
Collapse
|
3
|
Das M, Gurusubramanian G, Roy VK. Postnatal developmental expression of apelin receptor proteins and its role in juvenile mice testis. J Steroid Biochem Mol Biol 2022; 224:106178. [PMID: 36108814 DOI: 10.1016/j.jsbmb.2022.106178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
The expression of apelin system has been shown in the adult testis of rat and mice. It has also been emphasized that regulation of testicular activity in early stages is important to sustain normal testicular activity in adulthood. Since the expression of apelin receptor (APJ) has been shown in the adult testis, moreover, developmental expression of APJ and its role has not been explored yet. Thus, we have examined the testicular expression of APJ during postnatal stages with special reference to proliferation, apoptosis and hormone secretion in early postnatal stage. Postnatal analysis showed that circulating apelin was lowest at PND1 and maximum at PND42. Among testosterone, estrogen and androstenedione, only circulating testosterone showed a gradual increase from PND1 to PND42. Testicular expression of APJ was also developmenatly regulated from PND1 to PND42, revealing a positive correlation with circulating apelin, testosterone, and androstenedione. Immunohistochemical study showed that APJ was mainly confined to Leydig cells of early postnatal stages, whereas, seminiferous tubules at PND42 showed immunostaining in the round spermatids. APJ inhibition from PND14-PND20 by ML221 suppressed the testicular proliferation, increased apoptosis and increased estrogen secretion. However, expression of AR was down-regulated by ML221 treatment. Furthermore, ML221 decreased the abundance of p-Akt. In vitro study also showed that APJ antagonist, ML221 decreased AR expression. These results suggests that apelin signaling during early developmental stages might be required to stimulate the germ cell proliferation, and inhibition of apoptosis. Both in vivo and in vitro study have shown that expression of AR was regulated by apelin signaling. Since the first wave spermatogenesis involves proliferation and apoptosis, therefore, further study would be required to unravel the exact mechanism of apelin mediated regulation of testicular activity during early postnatal stages. In conclusion, the present results are an indicative of apelin mediated signaling during early postnatal stage for regulation of germ cell proliferation, apoptosis and AR expression.
Collapse
Affiliation(s)
- Milirani Das
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India.
| |
Collapse
|
4
|
Zhang TD, Ma YB, Gao M, Li HC, Wang ZM, Chong T, Zhang LD. 10−7 M genistein partially alleviates 10−7 M MEHP unfavorable effects in a new modified fetal rat testis culture system. Front Cell Dev Biol 2022; 10:987928. [PMID: 36105356 PMCID: PMC9465295 DOI: 10.3389/fcell.2022.987928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Recent studies revealed that some common endocrine-disrupting chemicals (EDCs) including phthalates and phytoestrogens may exhibit low-dose effects properties. However, how low dose of these EDCs and their mixture would affect fetal rat testis development still needs further investigation. Moreover, testis organ culture system also needs further modification to provide an effective tool for ex vivo EDCs study.Methods: We firstly modified the agarose organ culture system, in which fetal rat testes were cultured for 4 days (d1 to d4) on agarose gels held by Millicell inserts. Then we used the modified agarose culture system to study the combined effects of multiple EDCs exposure. 15.5 dpc fetal rat testes were isolated and treated with vehicle, MEHP (0.1 μmol/L), GEN (0.1 μmol/L) or MEHP (0.1 μmol/L) + GEN (0.1 μmol/L). Parameters concerning testicular cell development and function were evaluated, trying to gain insight into the early molecular events after multiple EDCs exposure.Results: The development of somatic, germ cells and seminiferous tubule in 15.5 dpc fetal rat testis was better sustained in the modified agarose culture system. Based on the modified system, we found that MEHP at 0.1 μmol/L induced alterations in gonocyte markers, antioxidative enzyme activity as well as transient reduction of testosterone production, accompanied by mitochondria swelling in gonocytes and Sertoli cells. No obvious morphological and histological alterations were observed in all treated groups. However, coadministration of genistein at 0.1 μmol/L partially alleviated MEHP-induced fetal testis damage ex vivo through enhancement of antioxidative action. MEHP at low dose still showed weak endocrine disrupting properties but did not exhibit typical low-dose effects.Conclusion: Our findings indicated that the modified agarose culture system could better mimic testicular microenvironment without obvious hypoxic cell damage. Furthermore, low dose of MEHP induced mild disruption to fetal testis development, cotreatment of genistein at low dose attenuated MEHP induced fetal testis injuries in part by balancing redox state, indicating that low dose of genistein may partially protect fetal testis from phthalates induced injury.
Collapse
Affiliation(s)
- Tong-Dian Zhang
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Andrology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Yu-Bo Ma
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ming Gao
- Department of Nephrology, Xi’an No. 4 Hospital, Xi’an, Shaanxi, China
| | - He-Cheng Li
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zi-Ming Wang
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lian-Dong Zhang
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Lian-Dong Zhang,
| |
Collapse
|
5
|
Lecante LL, Gaye B, Delbes G. Impact of in Utero Rat Exposure to 17Alpha-Ethinylestradiol or Genistein on Testicular Development and Germ Cell Gene Expression. FRONTIERS IN TOXICOLOGY 2022; 4:893050. [PMID: 35722060 PMCID: PMC9201280 DOI: 10.3389/ftox.2022.893050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Although the decline in male fertility is believed to partially result from environmental exposures to xenoestrogens during critical developmental windows, the underlying mechanisms are still poorly understood. Experimental in utero exposures in rodents have demonstrated the negative impact of xenoestrogens on reproductive development, long-term adult reproductive function and offspring health. In addition, transcriptomic studies have demonstrated immediate effects on gene expression in fetal reproductive tissues, However, the immediate molecular effects on the developing germ cells have been poorly investigated. Here, we took advantage of a transgenic rat expressing the green fluorescent protein specifically in germ cells allowing purification of perinatal GFP-positive germ cells. Timed-pregnant rats were exposed to ethinylestradiol (EE2, 2 μg/kg/d), genistein (GE, 10 mg/kg/d) or vehicle by gavage, from gestational days (GD) 13–19; testes were sampled at GD20 or post-natal (PND) 5 for histological analysis and sorting of GFP-positive cells. While EE2-exposed females gained less weight during treatment compared to controls, neither treatment affected the number of pups per litter, sex ratio, anogenital distance, or body and gonadal weights of the offspring. Although GE significantly decreased circulating testosterone at GD20, no change was observed in either testicular histology or germ cell and sertoli cell densities. Gene expression was assessed in GFP-positive cells using Affymetrix Rat Gene 2.0 ST microarrays. Analysis of differentially expressed genes (DEGs) (p < 0.05; fold change 1.5) identified expression changes of 149 and 128 transcripts by EE2 and GE respectively at GD20, and 287 and 207 transcripts at PND5, revealing an increased effect after the end of treatment. Only about 1% of DEGs were common to both stages for each treatment. Functional analysis of coding DEG revealed an overrepresentation of olfactory transduction in all groups. In parallel, many non-coding RNAs were affected by both treatments, the most represented being small nucleolar and small nuclear RNAs. Our data suggest that despite no immediate toxic effects, fetal exposure to xenoestrogens can induce subtle immediate changes in germ cell gene expression. Moreover, the increased number of DEGs between GD20 and PND5 suggests an effect of early exposures with latent impact on later germ cell differentiation.
Collapse
|
6
|
Y It Matters—Sex Differences in Fetal Lung Development. Biomolecules 2022; 12:biom12030437. [PMID: 35327629 PMCID: PMC8946560 DOI: 10.3390/biom12030437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Within this review, sex-specific differences in alveolar epithelial functions are discussed with special focus on preterm infants and the respiratory disorders associated with premature birth. First, a short overview about fetal lung development, the challenges the lung faces during perinatal lung transition to air breathing and respiratory distress in preterm infants is given. Next, clinical observations concerning sex-specific differences in pulmonary morbidity of human preterm infants are noted. The second part discusses potential sex-specific causes of pulmonary complications, including pulmonary steroid receptors and local lung steroid metabolism. With regard to pulmonary steroid metabolism, it is important to highlight which steroidogenic enzymes are expressed at which stage during fetal lung development. Thereafter, we review the knowledge concerning sex-specific aspects of lung growth and maturation. Special focus is given to alveolar epithelial Na+ transport as a driver of perinatal lung transition and the sex differences that were noted in this process.
Collapse
|
7
|
Delbes G, Blázquez M, Fernandino JI, Grigorova P, Hales BF, Metcalfe C, Navarro-Martín L, Parent L, Robaire B, Rwigemera A, Van Der Kraak G, Wade M, Marlatt V. Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals. ENVIRONMENTAL RESEARCH 2022; 204:112040. [PMID: 34509487 DOI: 10.1016/j.envres.2021.112040] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Over the past century, evidence has emerged that endocrine disrupting chemicals (EDCs) have an impact on reproductive health. An increased frequency of reproductive disorders has been observed worldwide in both wildlife and humans that is correlated with accidental exposures to EDCs and their increased production. Epidemiological and experimental studies have highlighted the consequences of early exposures and the existence of key windows of sensitivity during development. Such early in life exposures can have an immediate impact on gonadal and reproductive tract development, as well as on long-term reproductive health in both males and females. Traditionally, EDCs were thought to exert their effects by modifying the endocrine pathways controlling reproduction. Advances in knowledge of the mechanisms regulating sex determination, differentiation and gonadal development in fish and rodents have led to a better understanding of the molecular mechanisms underlying the effects of early exposure to EDCs on reproduction. In this manuscript, we review the key developmental stages sensitive to EDCs and the state of knowledge on the mechanisms by which model EDCs affect these processes, based on the roadmap of gonad development specific to fish and mammals.
Collapse
Affiliation(s)
- G Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada.
| | - M Blázquez
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - J I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | | | - B F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - C Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - L Parent
- Université TELUQ, Montréal, Canada
| | - B Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, Canada
| | - V Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
8
|
Stenhouse C, Suva LJ, Gaddy D, Wu G, Bazer FW. Phosphate, Calcium, and Vitamin D: Key Regulators of Fetal and Placental Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:77-107. [PMID: 34807438 DOI: 10.1007/978-3-030-85686-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Normal calcium and bone homeostasis in the adult is virtually fully explained by the interactions of several key regulatory hormones, including parathyroid hormone, 1,25 dihydroxy vitamin D3, fibroblast growth factor-23, calcitonin, and sex steroids (estradiol and testosterone). In utero, bone and mineral metabolism is regulated differently from the adult. During development, it is the placenta and not the fetal kidneys, intestines, or skeleton that is the primary source of minerals for the fetus. The placenta is able to meet the almost inexhaustible needs of the fetus for minerals by actively driving the transport of calcium and phosphorus from the maternal circulation to the growing fetus. These fundamentally important minerals are maintained in the fetal circulation at higher concentrations than those in maternal blood. Maintenance of these inordinately higher fetal levels is necessary for the developing skeleton to accrue sufficient minerals by term. Importantly, in livestock species, prenatal mineralization of the skeleton is crucial for the high levels of offspring activity soon after birth. Calcium is required for mineralization, as well as a plethora of other physiological functions. Placental calcium and phosphate transport are regulated by several mechanisms that are discussed in this review. It is clear that phosphate and calcium metabolism is intimately interrelated and, therefore, placental transport of these minerals cannot be considered in isolation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Kleberg Center, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
9
|
Dai Y, Kou H, Guo X, Gong Z, Liu H, Liu Y, Wang H, Guo Y. Identification and validation of reference genes for RT-qPCR analysis in fetal rat pancreas. Reprod Toxicol 2021; 105:211-220. [PMID: 34537367 DOI: 10.1016/j.reprotox.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022]
Abstract
The choice of reference gene is crucial for quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) assay. To screen and determine the suitable reference genes in fetal rat pancreas, we selected eight candidate reference genes (Gapdh, Actb, Rn18 s, B2m, Rpl13a, Tbp, Ywhaz and Ubc), and evaluated the constancy of gene expression from fetal rat pancreases in non-pathological situation and prenatal dexamethasone exposure (PDE) model, using four algorithms: GeNorm, NormFinder, Bestkeeper and Comparative ΔCt method. In addition, the alteration of mRNA levels of pancreatic insulin was compared between control and PDE groups to validate the reliability of selected reference genes for data normalization of RT-qPCR. The comprehensive ranking of reference genes under physiological condition was as follow: Gapdh > Actb > Ywhaz > Ubc > Rn18s > Rpl13a > B2m > Tbp (female); Actb > Ywhaz > Gapdh > Ubc > B2m > Rpl13a > Rn18 s | Tbp (male). The top ranking reference genes were also stably expressed in PDE fetal pancreas. The best reference gene combinations are: Ywhaz+Actb for female and Ywhaz+Gapdh for male fetal rat pancreas, respectively. Compared with low ranking or single reference gene, the change trend of insulin mRNA normalized by the best reference gene combination between control and PDE groups was more significant and consistent with that of serum insulin level. In conclusion, our results provided the optimal combination of stable reference genes for RT-qPCR assay in pancreatic developmental toxicity study.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Hao Kou
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Xiaoling Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
10
|
Developmental programming of cardiovascular function: a translational perspective. Clin Sci (Lond) 2021; 134:3023-3046. [PMID: 33231619 DOI: 10.1042/cs20191210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
The developmental origins of health and disease (DOHaD) is a concept linking pre- and early postnatal exposures to environmental influences with long-term health outcomes and susceptibility to disease. It has provided a new perspective on the etiology and evolution of chronic disease risk, and as such is a classic example of a paradigm shift. What first emerged as the 'fetal origins of disease', the evolution of the DOHaD conceptual framework is a storied one in which preclinical studies played an important role. With its potential clinical applications of DOHaD, there is increasing desire to leverage this growing body of preclinical work to improve health outcomes in populations all over the world. In this review, we provide a perspective on the values and limitations of preclinical research, and the challenges that impede its translation. The review focuses largely on the developmental programming of cardiovascular function and begins with a brief discussion on the emergence of the 'Barker hypothesis', and its subsequent evolution into the more-encompassing DOHaD framework. We then discuss some fundamental pathophysiological processes by which developmental programming may occur, and attempt to define these as 'instigator' and 'effector' mechanisms, according to their role in early adversity. We conclude with a brief discussion of some notable challenges that hinder the translation of this preclinical work.
Collapse
|
11
|
Dai Y, Luo J, Xiang E, Guo Q, He Z, Gong Z, Sun X, Kou H, Xu K, Fan C, Liu J, Qiu S, Wang Y, Wang H, Guo Y. Prenatal Exposure to Retrorsine Induces Developmental Toxicity and Hepatotoxicity of Fetal Rats in a Sex-Dependent Manner: The Role of Pregnane X Receptor Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3219-3231. [PMID: 33685126 DOI: 10.1021/acs.jafc.0c06748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a type of natural phytotoxin that contaminate food and feed and become an environmental health risk to humans and livestock. PAs exert toxicity that requires metabolic activation by cytochrome P450 (CYP) 3A, and case reports showed that fetuses are quite susceptible to PAs toxicity. The aim of this study was to explore the characteristics of developmental toxicity and fetal hepatotoxicity induced by retrorsine (RTS, a typcial toxic PA) and the underlying mechanism. Pregnant Wistar rats were intragastrically administered with 20 mg/(kg·day) RTS from gestation day (GD) 9 to 20. Results showed that prenatal RTS exposure lowered fetal bodyweights, reduced hepatocyte numbers, and potentiated hepatic apoptosis in fetuses, particularly females. Simutaneously, RTS increased CYP3A expression and pregnane X receptor (PXR) activation in female fetal liver. We further confirmed that RTS was a PXR agonist in LO2 and HepG2 cell lines. Furthermore, agonism or antagonism of androgen receptor (AR) either induced or blocked RTS-mediated PXR activation, respectively. As a PXR agonist, RTS toxicity was exacerbated in female fetus due to the increased CYP3A induction and self-metabolism, while the inhibitory effect of AR on PXR activation reduced the susceptibility of male fetus to RTS. Our findings indicated that PXR may be a potential therapeutic target for PA toxicity.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Jinyuan Luo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province, China
| | - E Xiang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Qi Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Zheng He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Hao Kou
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei Province, China
| | - Kequan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
| | - Jie Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Shuaikai Qiu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Yanqing Wang
- Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| |
Collapse
|
12
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
13
|
Eustache F, Bennani Smires B, Moison D, Bergès R, Canivenc-Lavier MC, Vaiman D, Auger J. Different exposure windows to low doses of genistein and/or vinclozolin result in contrasted disorders of testis function and gene expression of exposed rats and their unexposed progeny. ENVIRONMENTAL RESEARCH 2020; 190:109975. [PMID: 32827888 DOI: 10.1016/j.envres.2020.109975] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Living species including humans are continuously exposed to low levels of a myriad of endocrine active compounds that may affect their reproductive function. In contrast, experimental designs scrutinizing this question mostly consider the gestational/lactational period, select high unrealistic doses and, have rarely investigated the possible reproductive consequences in the progeny. The present study aimed at assessing comparatively a set of male reproductive endpoints according to exposure windows, gestational/lactational versus pre-pubertal to adulthood, using low doses of endocrine active substances in male rats as well as their unexposed male progeny. Animals were orally exposed to 1 mg/kg bw/d of genistein and/or vinclozolin, from conception to weaning or from prepuberty to young adulthood. A number of reproductive endpoints were assessed as well as testicular mRNA expression profiles, in the exposed rats and their unexposed progeny. Overall, the low dosage used only affected weakly most of classical reproductive endpoints. However, the gestational/lactational exposure to vinclozolin alone or combined to genistein significantly delayed the puberty onset. Contrasting with the gestational/lactational exposure, a decreased sperm production was found in the animals exposed to genistein and vinclozolin from the pre-pubertal period but also in their progeny for vinclozolin and the mixture. The expression level of several genes involved in meiosis, apoptosis and steroidogenesis was also affected differentially as a function of the exposure window in both exposed rats and unexposed offspring. We also provide further evidence that doses of endocrine active substances relevant with human exposure may affect the male reproductive phenotype and testicular transcriptome in the exposed generation as well as in the indirectly exposed offspring.
Collapse
Affiliation(s)
- Florence Eustache
- Service D'Histologie-Embryologie, Cytogénétique, Biologie de La Reproduction / CECOS, Hôpitaux Universitaires Paris Seine-Saint-Denis, Site Jean Verdier, Bondy, France; INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France.
| | - Badria Bennani Smires
- Service D'Histologie-Embryologie, Cytogénétique, Biologie de La Reproduction / CECOS, Hôpitaux Universitaires Paris Seine-Saint-Denis, Site Jean Verdier, Bondy, France; INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France
| | - Delphine Moison
- INSERM UMR967, Laboratoire de Développement des Gonades, Equipe "Stabilité Génomique, Cellules Souches et Radiations", Université Paris 7, Sorbonne Paris Cité and CEA, Fontenay-aux-Roses, France
| | - Raymond Bergès
- INRA UMR1324, Centre des Sciences Du Goût et de L'Alimentation, Dijon, France
| | | | - Daniel Vaiman
- INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France
| | - Jacques Auger
- INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France
| |
Collapse
|
14
|
Female-specific activation of pregnane X receptor mediates sex difference in fetal hepatotoxicity by prenatal monocrotaline exposure. Toxicol Appl Pharmacol 2020; 406:115137. [PMID: 32682830 DOI: 10.1016/j.taap.2020.115137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 01/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a group of hepatic toxicant widely present in plants. Cytochrome P450 (CYP) 3A plays a key role in metabolic activation of PAs to generate electrophilic metabolites, which is the main cause of hepatotoxicity. We have previously demonstrated the sex difference in developmental toxicity and hepatotoxicity in fetal rats exposed to monocrotaline (MCT), a representative toxic PA. The aim of this study was to explore the underlying mechanism. 20 mg·kg-1·d-1 MCT was intragastrically given to pregnant Wistar rats from gestation day 9 to 20. CYP3As expression and pregnane X receptor (PXR) activation were specifically enhanced in female fetal liver. After MCT treatment, we also observed a significant increase of CYP3As expression in LO2 cells (high PXR level) or hPXR-transfected HepG2 cells (low PXR level). Employing hPXR and CYP3A4 dual-luciferase reporter gene assay, we confirmed the agonism effect of MCT on PXR-dependent transcriptional activity of CYP3A4. Agonism and antagonism of the androgen receptor (AR) either induced or blocked MCT-induced PXR activation, respectively. This study was the first report identifying that MCT served as PXR agonist to induce CYP3A expression. CYP3A induction may increase self-metabolic activation of MCT and subsequently lead to more severe hepatotoxicity in female fetus. While in male, during the intrauterine period, activated AR by testosterone secretion from developing testes represses MCT-induced PXR activation and CYP3A induction, which may partially protect male fetus from MCT-induced hepatotoxicity.
Collapse
|
15
|
Low Dose of Genistein Alleviates Mono-(2-Ethylhexyl) Phthalate-Induced Fetal Testis Disorder Based on Organ Culture Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4569268. [PMID: 32566080 PMCID: PMC7275205 DOI: 10.1155/2020/4569268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 12/04/2022]
Abstract
Mono-(2-ethylhexyl) phthalate (MEHP) and genistein have been classified as endocrine-disrupting chemicals (EDCs) which interfere with the differentiation and development of the male reproductive system. However, how these two EDCs would affect fetal rat testis development at a low dose was rarely studied. In this study, we established the organ culture system and applied it to evaluate testicular effects following multiple EDC exposure at a low dose. 15.5 days postcoitum fetal rat testes were dissected, cultured, and exposed to vehicle (control), GEN (1 μmol/L, G), MEHP (1 μmol/L, M), or GEN (1 μmol/L)+MEHP (1 μmol/L, G+M). Testicular cell markers, testosterone concentration, redox state, testicular histology, and testicular ultrastructure were evaluated. Our results showed that a low dose of MEHP suppressed the development of Sertoli cells, Leydig cells, and gonocytes by triggering oxidative injuries, which was consistent with the ultrastructural findings. However, coadministration of genistein at a low dose could partially attenuate MEHP-induced fetal testis damage through antioxidative action. Cotreatment of genistein at a low dose may have a promising future on its protecting role for attenuating other EDC-induced reproductive disorders during early life. Based on the results, it can be speculated that dietary intake of isoflavones may make the fetal testis less susceptible to phthalate-induced injury.
Collapse
|
16
|
Harada N, Yotsumoto Y, Katsuki T, Yoda Y, Masuda T, Nomura M, Shiraki N, Inui H, Yamaji R. Fetal androgen signaling defects affect pancreatic β-cell mass and function, leading to glucose intolerance in high-fat diet-fed male rats. Am J Physiol Endocrinol Metab 2019; 317:E731-E741. [PMID: 31287713 DOI: 10.1152/ajpendo.00173.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously demonstrated that androgen signaling expands pancreatic β-cell mass in the sexual maturation period (Am J Physiol Endocrinol Metab 314: E274-E286, 2018). The aim of this study was to elucidate whether fetal androgen signaling plays important roles in β-cell mass development and β-cell function in adulthood, defects of which are associated with type 2 diabetes mellitus. In the pancreas of male fetuses, androgen receptor (AR) was strongly expressed in the cytoplasm and at the cell membrane of Nkx6.1-positive β-cell precursor cells but was markedly reduced in insulin-positive β-cells. Administration of the anti-androgen flutamide to pregnant dams during late gestation reduced β-cell mass and Ki67-positive proliferating β-cells at birth in a male-specific manner without affecting body weight. The decrease of β-cell mass in flutamide-exposed male rats was not recovered when rats were fed a standard diet, whereas it was fully recovered when rats were fed a high-fat diet (HFD), at 6 and 12 wk of age. Flutamide exposure in utero led to the development of glucose intolerance in male rats due to a decrease in insulin secretion when fed HFD but not standard diet. Insulin sensitivity did not differ between the two groups irrespective of diet. These results indicated that the action of fetal androgen contributed to β-cell mass expansion in a sex-specific manner at birth and to the development of glucose intolerance by decreasing the secretion of insulin in HFD-fed male rats. Our data demonstrated the involvement of fetal androgen signaling in hypothesized sex differences in the developmental origins of health and disease by affecting pancreatic β-cell function.
Collapse
Affiliation(s)
- Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yusuke Yotsumoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takahiro Katsuki
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yasuhiro Yoda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tatsuya Masuda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Masayuki Nomura
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Nobuaki Shiraki
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hiroshi Inui
- Division of Clinical Nutrition, Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| |
Collapse
|
17
|
Divergent Roles of CYP26B1 and Endogenous Retinoic Acid in Mouse Fetal Gonads. Biomolecules 2019; 9:biom9100536. [PMID: 31561560 PMCID: PMC6843241 DOI: 10.3390/biom9100536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
In female mammals, germ cells enter meiosis in the fetal ovaries, while in males, meiosis is prevented until postnatal development. Retinoic acid (RA) is considered the main inducer of meiotic entry, as it stimulates Stra8 which is required for the mitotic/meiotic switch. In fetal testes, the RA-degrading enzyme CYP26B1 prevents meiosis initiation. However, the role of endogenous RA in female meiosis entry has never been demonstrated in vivo. In this study, we demonstrate that some effects of RA in mouse fetal gonads are not recapitulated by the invalidation or up-regulation of CYP26B1. In organ culture of fetal testes, RA stimulates testosterone production and inhibits Sertoli cell proliferation. In the ovaries, short-term inhibition of RA-signaling does not decrease Stra8 expression. We develop a gain-of-function model to express CYP26A1 or CYP26B1. Only CYP26B1 fully prevents STRA8 induction in female germ cells, confirming its role as part of the meiotic prevention machinery. CYP26A1, a very potent RA degrading enzyme, does not impair the formation of STRA8-positive cells, but decreases Stra8 transcription. Collectively, our data reveal that CYP26B1 has other activities apart from metabolizing RA in fetal gonads and suggest a role of endogenous RA in amplifying Stra8, rather than being the initial inducer of Stra8. These findings should reactivate the quest to identify meiotic preventing or inducing substances.
Collapse
|
18
|
The effects of perfluorooctanoic acid (PFOA) on fetal and adult rat testis. Reprod Toxicol 2019; 90:68-76. [PMID: 31412280 DOI: 10.1016/j.reprotox.2019.08.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/24/2022]
Abstract
Perfluorooctanoic acid (PFOA) is a widely dispersed synthetic chemical, which accumulates in living organisms and has been connected with male reproductive disorders. To monitor the effects of PFOA, fetal rat testes or seminiferous tubule segments (stage VII-VIII) of adult rats were cultured in 0-100 μg/ml PFOA for 24 h. Afterwards, cAMP, progesterone, testosterone and StAR protein levels were measured from the fetal testes culture. Measurements were combined with immunohistochemistry, immunofluorescence, TUNEL and flow cytometric analysis to monitor cell death in somatic and germ cells. This study shows that the levels of cAMP, progesterone, testosterone and expression of StAR decreased significantly in PFOA 50 and 100 μg/ml. PFOA affected cell populations significantly by decreasing the amount of diploid, proliferating, meiotic I and G2/M-phase cells in adult rat testis. However, PFOA did not affect fetal, proliferating or adult rat Sertoli cells but an increased tendency of apoptosis in fetal Leydig cells was observed.
Collapse
|
19
|
Luo J, Yang X, Qiu S, Li X, Xiang E, Fang Y, Wang Y, Zhang L, Wang H, Zheng J, Guo Y. Sex difference in monocrotaline-induced developmental toxicity and fetal hepatotoxicity in rats. Toxicology 2019; 418:32-40. [PMID: 30825512 DOI: 10.1016/j.tox.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are a class of hepatic toxins widely existing in plants. Cytochromes P450 (CYP) mediates PA bioactivation and toxicities in mammals. It has been reported that PAs can induce developmental toxicity, but systematic research is lacking. In this study, we investigated developmental toxicity of monocrotaline (MCT) in rats. Pregnant rats were administered with MCT (20 mg/kg) intragastrically from gestation day 9 to 20, followed by determination of changes in fetal growth, hepatic morphology, serum biochemical indices, and indicators of hepatocytes apoptosis. MCT was found to induce developmental toxicity and fetal hepatotoxicity, particularly in female fetuses. Metabolic activation was also studied by examination of bioactivation efficiency of MCT in fetal liver microsomes, serum MCT, pyrrole-protein adduction derived from MCT, and hepatic CYP3 A expression of fetuses in vivo. Male fetuses showed greater basal MCT bioactivation than that of female fetuses, but continuous exposure to MCT caused a selective CYP3 A induction in female fetuses, which may contribute to the sex difference in MCT-induced developmental toxicity.
Collapse
Affiliation(s)
- Jinyuan Luo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Xiaojing Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People's Republic of China.
| | - Shuaikai Qiu
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Xia Li
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - E Xiang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Yan Fang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Yanqing Wang
- Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China.
| | - Li Zhang
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China; Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| |
Collapse
|
20
|
Beverly BEJ, Furr JR, Lambright CS, Wilson VS, McIntyre BS, Foster PMD, Travlos G, Earl Gray L. In utero exposure to simvastatin reduces postnatal survival and permanently alters reproductive tract development in the Crl:CD(SD) male rat. Toxicol Appl Pharmacol 2019; 365:112-123. [PMID: 30639414 DOI: 10.1016/j.taap.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/01/2019] [Indexed: 12/27/2022]
Abstract
We showed previously that in utero exposure to the cholesterol-lowering drug simvastatin (SMV) during sex differentiation lowers fetal lipids and testicular testosterone production (T Prod) in Hsd:SD rats. Here, the effects of SMV on fetal lipids and T Prod in Crl:CD(SD) rats were correlated with postnatal alterations in F1 males. The current study was conducted in two parts: 1) a prenatal assessment to confirm and further characterize the dose response relationship among previously reported alterations of SMV on fetal T Prod and the fetal lipid profile and 2) a postnatal assessment to determine the effects of SMV exposure during the periods of major organogenesis and/or sexual differentiation on F1 offspring growth and development. We hypothesized that SMV would have adverse effects on postnatal development and sexual differentiation as a consequence of the disruptions of fetal lipid levels and testicular T Prod since fetal cholesterol is essential for normal intrauterine growth and development and steroid synthesis. In the prenatal assessment, SMV was administered orally at 0, 15.6, 31.25, 62.5, 80, 90, 100, and 110 mg SMV/kg/d from GD 14-18, the period that cover the critical window of sex differentiation in the male rat fetus. T Prod was maximally reduced by ~40% at 62.5 mg/kg/d, and higher doses induced overt maternal and toxicity. In the postnatal assessment, SMV was administered at 0, 15.6, 31.25, and 62.5 mg/kg/d from GD 8-18 to determine if it altered postnatal development. We found that exposure during this time frame to 62.5 mg SMV/kg/d reduced pup viability by 92%, decreased neonatal anogenital distance, and altered testis histology and morphology in 17% of the F1 males. In another group, SMV was administered only during the masculinizing window (GD14-18) at 62.5 mg/kg/d to determine if male rat sexual differentiation and postnatal reproductive development were altered. SMV-exposed F1 males displayed female-like areolae/nipples, delayed puberty, and reduced seminal vesicle and levator ani-bulbocavernosus weights. Together, these results demonstrate that in utero exposure to SMV reduces offspring viability and permanently disrupts reproductive tract development in the male offspring. While the effects of high dose, short term in utero exposure to SMV in the adult male are likely androgen-dependent and consistent with the 40% reduction in T Prod in the fetal testes, long-term, lower dose administration induced some effects that were likely not mediated by decreased T Prod.
Collapse
Affiliation(s)
- Brandiese E J Beverly
- Reproductive Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, B105-04, 109 TW Alexander Dr., Research Triangle Park, NC 27709, United States; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, United States.
| | - Johnathan R Furr
- Reproductive Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, B105-04, 109 TW Alexander Dr., Research Triangle Park, NC 27709, United States.
| | - Christy S Lambright
- Reproductive Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, B105-04, 109 TW Alexander Dr., Research Triangle Park, NC 27709, United States.
| | - Vickie S Wilson
- Reproductive Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, B105-04, 109 TW Alexander Dr., Research Triangle Park, NC 27709, United States.
| | - Barry S McIntyre
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| | - Paul M D Foster
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| | - Greg Travlos
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| | - L Earl Gray
- Reproductive Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, B105-04, 109 TW Alexander Dr., Research Triangle Park, NC 27709, United States.
| |
Collapse
|
21
|
Harada N. Role of androgens in energy metabolism affecting on body composition, metabolic syndrome, type 2 diabetes, cardiovascular disease, and longevity: lessons from a meta-analysis and rodent studies. Biosci Biotechnol Biochem 2018; 82:1667-1682. [PMID: 29957125 DOI: 10.1080/09168451.2018.1490172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Testosterone is a sex hormone produced by testicular Leydig cells in males. Blood testosterone concentrations increase at three time-periods in male life-fetal, neonatal (which can be separated into newborn and infant periods), and pubertal stages. After peaking in the early 20s, the blood bioactive testosterone level declines by 1-2% each year. It is increasingly apparent that a low testosterone level impairs general physical and mental health in men. Here, this review summarizes recent systematic reviews and meta-analyses of epidemiological studies in males (including cross-sectional, longitudinal, and androgen deprivation studies, and randomized controlled testosterone replacement trials) in relation to testosterone and obesity, body composition, metabolic syndrome, type 2 diabetes, cardiovascular disease, and longevity. Furthermore, underlying mechanisms are discussed using data from rodent studies involving castration or androgen receptor knockout. This review provides an update understanding of the role of testosterone in energy metabolism. Abbreviations AR: androgen receptor; CV: cardiovascular; FDA: US Food and Drug Administration; HFD: high-fat diet; KO: knockout; MetS: metabolic syndrome; RCT: randomized controlled trial; SHBG: sex hormone binding globulin; SRMA: systematic review and meta-analysis; TRT: testosterone replacement therapy; T2DM:type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Naoki Harada
- a Division of Applied Life Sciences , Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Sakai , Osaka , Japan
| |
Collapse
|
22
|
Eladak S, Moison D, Guerquin MJ, Matilionyte G, Kilcoyne K, N’Tumba-Byn T, Messiaen S, Deceuninck Y, Pozzi-Gaudin S, Benachi A, Livera G, Antignac JP, Mitchell R, Rouiller-Fabre V, Habert R. Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis. PLoS One 2018; 13:e0191934. [PMID: 29385186 PMCID: PMC5791995 DOI: 10.1371/journal.pone.0191934] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/15/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models. METHODS Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks. RESULTS With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice. CONCLUSIONS Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures.
Collapse
Affiliation(s)
- Soria Eladak
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Delphine Moison
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Marie-Justine Guerquin
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Gabriele Matilionyte
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Karen Kilcoyne
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Thierry N’Tumba-Byn
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Sébastien Messiaen
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Yoann Deceuninck
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation Nantes Atlantique (ONIRIS), Nantes, France
| | - Stéphanie Pozzi-Gaudin
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Hôpital A. Béclère, Université Paris Sud, Clamart, France
| | - Alexandra Benachi
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Hôpital A. Béclère, Université Paris Sud, Clamart, France
| | - Gabriel Livera
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Jean-Philippe Antignac
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation Nantes Atlantique (ONIRIS), Nantes, France
| | - Rod Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Virginie Rouiller-Fabre
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - René Habert
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| |
Collapse
|
23
|
Woodman AG, Mah R, Keddie D, Noble RMN, Panahi S, Gragasin FS, Lemieux H, Bourque SL. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver. FASEB J 2018; 32:3254-3263. [PMID: 29401611 DOI: 10.1096/fj.201701080r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.
Collapse
Affiliation(s)
- Andrew G Woodman
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Mah
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Danae Keddie
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ronan M N Noble
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Sareh Panahi
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ferrante S Gragasin
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Stephane L Bourque
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Konopko MA, Densmore AL, Krueger BK. Sexually Dimorphic Epigenetic Regulation of Brain-Derived Neurotrophic Factor in Fetal Brain in the Valproic Acid Model of Autism Spectrum Disorder. Dev Neurosci 2017; 39:507-518. [PMID: 29073621 PMCID: PMC6020162 DOI: 10.1159/000481134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023] Open
Abstract
Prenatal exposure to the antiepileptic, mood-stabilizing drug, valproic acid (VPA), increases the incidence of autism spectrum disorders (ASDs); in utero administration of VPA to pregnant rodents induces ASD-like behaviors such as repetitive, stereotyped activity, and decreased socialization. In both cases, males are more affected than females. We previously reported that VPA, administered to pregnant mice at gestational day 12.5, rapidly induces a transient, 6-fold increase in BDNF (brain-derived neurotrophic factor) protein and mRNA in the fetal brain. Here, we investigate sex differences in the induction of Bdnf expression by VPA as well as the underlying epigenetic mechanisms. We found no sex differences in the VPA stimulation of total brain Bdnf mRNA as indicated by probing for the BDNF protein coding sequence (exon 9); however, stimulation of individual transcripts containing two of the nine 5'-untranslated exons (5'UTEs) in Bdnf (exons 1 and 4) by VPA was greater in female fetal brains. These Bdnf transcripts have been associated with different cell types or subcellular compartments within neurons. Since VPA is a histone deacetylase inhibitor, covalent histone modifications at Bdnf 5'UTEs in the fetal brain were analyzed by chromatin immunoprecipitation. VPA increased the acetylation of multiple H3 and H4 lysine residues in the vicinity of exons 1, 2, 4, and 6; minimal differences between the sexes were observed. H3 lysine 4 trimethylation (H3K4me3) at those exons was also stimulated by VPA. Moreover, the VPA-induced increase in H3K4me3 at exons 1, 4, and 6 was significantly greater in females than in males, i.e., sexually dimorphic stimulation of H3K4me3 by VPA correlated with Bdnf transcripts containing exons 1 and 4, but not 6. Neither H3K27me3 nor cytosine methylation at any of the 117 CpGs in the vicinity of the transcription start sites of exons 1, 4, and 6 was affected by VPA. Thus, of the 6 epigenetic marks analyzed, only H3K4me3 can account for the sexually dimorphic expression of Bdnf transcripts induced by VPA in the fetal brain. Preferential expression of exon 1- and exon 4-Bdnf transcripts in females may contribute to sex differences in ASDs by protecting females from the adverse effects of genetic variants or environmental factors such as VPA on the developing brain.
Collapse
Affiliation(s)
- Melissa A Konopko
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| | | | - Bruce K. Krueger
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| |
Collapse
|
25
|
Picut CA, Ziejewski MK, Stanislaus D. Comparative Aspects of Pre- and Postnatal Development of the Male Reproductive System. Birth Defects Res 2017; 110:190-227. [PMID: 29063715 DOI: 10.1002/bdr2.1133] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
This review describes pre- and postnatal development of the male reproductive system in humans and laboratory animals, and highlights species differences in the timing and control of hormonal and morphologic events. Major differences are that the fetal testis is dependent on gonadotropins in humans, but is independent of such in rats; humans have an extended postnatal quiescent period, whereas rats exhibit no quiescence; and events such as secretion by the prostate and seminal vesicles, testicular descent, and the appearance of spermatogonia are all prenatal events in humans, but are postnatal events in rats. Major differences in the timing of the developmental sequence between rats and humans include: gonocyte transformation period (rat: postnatal day 0-9; human: includes gestational week 22 to 9 months of age); masculinization programming window (rat: gestational day 15.5-17.5; human: gestational week 9-14); and mini-puberty (rat: 0-6 hr after birth; human: 3-6 months of age). Endocrine disruptors can cause unique lesions in the prenatal and early postnatal testis; therefore, it is important to consider the differences in the timing of the developmental sequence when designing preclinical studies as identification of windows of sensitivity for endocrine disruption or toxicants will aid in interpretation of results and provide clues to a mode of action. Birth Defects Research 110:190-227, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Catherine A Picut
- Charles River Laboratories, Pathology Associates, Durham, North Carolina
| | - Mary K Ziejewski
- GlaxoSmithKline Research & Development, King of Prussia, Pennsylvania
| | - D Stanislaus
- GlaxoSmithKline Research & Development, King of Prussia, Pennsylvania
| |
Collapse
|
26
|
Haase M, Laube M, Thome UH. Sex-specific effects of sex steroids on alveolar epithelial Na + transport. Am J Physiol Lung Cell Mol Physiol 2017; 312:L405-L414. [PMID: 28062481 DOI: 10.1152/ajplung.00275.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/16/2016] [Accepted: 12/29/2016] [Indexed: 01/10/2023] Open
Abstract
Alveolar fluid clearance mediates perinatal lung transition to air breathing in newborn infants, which is accomplished by epithelial Na+ channels (ENaC) and Na-K-ATPase. Male sex represents a major risk factor for developing respiratory distress, especially in preterm infants. We previously showed that male sex is associated with reduced epithelial Na+ transport, possibly contributing to the sexual dimorphism in newborn respiratory distress. This study aimed to determine sex-specific effects of sex steroids on epithelial Na+ transport. The effects of testosterone, 5α-dihydrotestosterone (DHT), estradiol, and progesterone on Na+ transport and Na+ channel expression were determined in fetal distal lung epithelial (FDLE) cells of male and female rat fetuses by Ussing chamber and mRNA expression analyses. DHT showed a minor effect only in male FDLE cells by decreasing epithelial Na+ transport. However, flutamide, an androgen receptor antagonist, did not abolish the gender imbalance, and testosterone lacked any effect on Na+ transport in male and female FDLE cells. In contrast, estradiol and progesterone increased Na+ transport and Na+ channel expression especially in females, and prevented the inhibiting effect of DHT in males. Estrogen receptor inhibition decreased Na+ channel expression and eliminated the sex differences. In conclusion, female sex steroids stimulate Na+ transport especially in females and prevent the inhibitory effect of DHT in males. The ineffectiveness of testosterone suggests that Na+ transport is largely unaffected by androgens. Thus, the higher responsiveness of female cells to female sex steroids explains the higher Na+ transport activity, possibly leading to a functional advantage in females.
Collapse
Affiliation(s)
- Melanie Haase
- Center for Pediatric Research Leipzig, Division of Neonatology, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Mandy Laube
- Center for Pediatric Research Leipzig, Division of Neonatology, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Division of Neonatology, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
Picut CA, Remick AK. Impact of Age on the Male Reproductive System from the Pathologist’s Perspective. Toxicol Pathol 2016; 45:195-205. [DOI: 10.1177/0192623316672744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Age, and in particular young age, can significantly impact the response to toxicants in animals and can greatly influence the interpretation of tissue changes by the toxicologic pathologist. Although this applies to multiple organ systems, the current review focuses on the male reproductive system. When performing microscopic evaluation of male reproductive organs, the toxicologic pathologist must be aware of the dynamic changes in histomorphology, predominantly driven by timed hormonal alterations, at various life stages. Specific challenges pathologists face are understanding the appearance of male reproductive tissues throughout the neonatal, infantile, and juvenile developmental periods, recognizing when normal looks abnormal during tissue development, defining sexual maturity, and working with high interanimal variability in maturation rate and histologic appearance in developing large laboratory animals, such as nonhuman primates, dogs, and pigs. This review describes postnatal development of the male reproductive system in the rat, demonstrates how assessing toxicity during a defined window of postnatal development in the rat may improve definition of toxicant timing and targets, and discusses challenges associated with the interpretation of toxicity in immature large animal species. The emphasis is on key age-related characteristics that influence the interpretation of tissue changes by the toxicologic pathologist.
Collapse
Affiliation(s)
- Catherine A. Picut
- Charles River Laboratories, Pathology Associates, Durham, North Carolina, USA
| | - Amera K. Remick
- Charles River Laboratories, Pathology Associates, Durham, North Carolina, USA
| |
Collapse
|
28
|
|
29
|
Kaltofen T, Haase M, Thome UH, Laube M. Male Sex is Associated with a Reduced Alveolar Epithelial Sodium Transport. PLoS One 2015; 10:e0136178. [PMID: 26291531 PMCID: PMC4546327 DOI: 10.1371/journal.pone.0136178] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/31/2015] [Indexed: 01/01/2023] Open
Abstract
Respiratory distress syndrome (RDS) is the most frequent pulmonary complication in preterm infants. RDS incidence differs between genders, which has been called the male disadvantage. Besides maturation of the surfactant system, Na+ transport driven alveolar fluid clearance is crucial for the prevention of RDS. Na+ transport is mediated by the epithelial Na+ channel (ENaC) and the Na,K-ATPase, therefore potential differences in their expression or activity possibly contribute to the gender imbalance observed in RDS. Fetal distal lung epithelial (FDLE) cells of rat fetuses were separated by sex and analyzed regarding expression and activity of the Na+ transporters. Ussing chamber experiments showed a higher baseline short-circuit current (ISC) and amiloride-sensitive ΔISC in FDLE cells of female origin. In addition, maximal amiloride-sensitive ΔISC and maximal ouabain-sensitive ΔISC of female cells were higher when measured in the presence of a permeabilized basolateral or apical membrane, respectively. The number of FDLE cells per fetus recoverable during cell isolation was also significantly higher in females. In addition, lung wet-to-dry weight ratio was lower in fetal and newborn female pups. Female derived FDLE cells had higher mRNA levels of the ENaC- and Na,K-ATPase subunits. Furthermore, estrogen (ER) and progesterone receptor (PR) mRNA levels were higher in female cells, which might render female cells more responsive, while concentrations of placenta-derived sex steroids do not differ between both genders during fetal life. Inhibition of ER-β abolished the sex differences in Na+ transport and female cells were more responsive to estradiol stimulation. In conclusion, a higher alveolar Na+ transport, possibly attributable to a higher expression of hormone receptors in female FDLE cells, provides an explanation for the well known sex-related difference in RDS occurrence and outcome.
Collapse
Affiliation(s)
- Till Kaltofen
- Center for Pediatric Research Leipzig, Division of Neonatology, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Melanie Haase
- Center for Pediatric Research Leipzig, Division of Neonatology, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Ulrich H. Thome
- Center for Pediatric Research Leipzig, Division of Neonatology, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Mandy Laube
- Center for Pediatric Research Leipzig, Division of Neonatology, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
30
|
Hormonal programming of rat social play behavior: Standardized techniques will aid synthesis and translation to human health. Neurosci Biobehav Rev 2015; 55:184-97. [DOI: 10.1016/j.neubiorev.2015.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/02/2015] [Accepted: 04/29/2015] [Indexed: 12/21/2022]
|
31
|
Kovacs CS. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol Rev 2014; 94:1143-218. [PMID: 25287862 DOI: 10.1152/physrev.00014.2014] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mineral and bone metabolism are regulated differently in utero compared with the adult. The fetal kidneys, intestines, and skeleton are not dominant sources of mineral supply for the fetus. Instead, the placenta meets the fetal need for mineral by actively transporting calcium, phosphorus, and magnesium from the maternal circulation. These minerals are maintained in the fetal circulation at higher concentrations than in the mother and normal adult, and such high levels appear necessary for the developing skeleton to accrete a normal amount of mineral by term. Parathyroid hormone (PTH) and calcitriol circulate at low concentrations in the fetal circulation. Fetal bone development and the regulation of serum minerals are critically dependent on PTH and PTH-related protein, but not vitamin D/calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, the serum calcium falls and phosphorus rises before gradually reaching adult values over the subsequent 24-48 h. The intestines are the main source of mineral for the neonate, while the kidneys reabsorb mineral, and bone turnover contributes mineral to the circulation. This switch in the regulation of mineral homeostasis is triggered by loss of the placenta and a postnatal fall in serum calcium, and is followed in sequence by a rise in PTH and then an increase in calcitriol. Intestinal calcium absorption is initially a passive process facilitated by lactose, but later becomes active and calcitriol-dependent. However, calcitriol's role can be bypassed by increasing the calcium content of the diet, or by parenteral administration of calcium.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
32
|
Eladak S, Grisin T, Moison D, Guerquin MJ, N'Tumba-Byn T, Pozzi-Gaudin S, Benachi A, Livera G, Rouiller-Fabre V, Habert R. A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil Steril 2014; 103:11-21. [PMID: 25475787 DOI: 10.1016/j.fertnstert.2014.11.005] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
Bisphenol A (BPA) is a widely studied typical endocrine-disrupting chemical, and one of the major new issues is the safe replacement of this commonly used compound. Bisphenol S (BPS) and bisphenol F (BPF) are already or are planned to be used as BPA alternatives. With the use of a culture system that we developed (fetal testis assay [FeTA]), we previously showed that 10 nmol/L BPA reduces basal testosterone secretion of human fetal testis explants and that the susceptibility to BPA is at least 100-fold lower in rat and mouse fetal testes. Here, we show that addition of LH in the FeTA system considerably enhances BPA minimum effective concentration in mouse and human but not in rat fetal testes. Then, using the FeTA system without LH (the experimental conditions in which mouse and human fetal testes are most sensitive to BPA), we found that, as for BPA, 10 nmol/L BPS or BPF is sufficient to decrease basal testosterone secretion by human fetal testes with often nonmonotonic dose-response curves. In fetal mouse testes, the dose-response curves were mostly monotonic and the minimum effective concentrations were 1,000 nmol/L for BPA and BPF and 100 nmol/L for BPS. Finally, 10,000 nmol/L BPA, BPS, or BPF reduced Insl3 expression in cultured mouse fetal testes. This is the first report describing BPS and BPF adverse effects on a physiologic function in humans and rodents.
Collapse
Affiliation(s)
- Soria Eladak
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Tiphany Grisin
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Delphine Moison
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Marie-Justine Guerquin
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Thierry N'Tumba-Byn
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Stéphanie Pozzi-Gaudin
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Hôpital A. Béclère, Université Paris Sud, Clamart, France
| | - Alexandra Benachi
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Hôpital A. Béclère, Université Paris Sud, Clamart, France
| | - Gabriel Livera
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Virginie Rouiller-Fabre
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - René Habert
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France.
| |
Collapse
|
33
|
Habert R, Livera G, Rouiller-Fabre V. Man is not a big rat: concerns with traditional human risk assessment of phthalates based on their anti-androgenic effects observed in the rat foetus. Basic Clin Androl 2014; 24:14. [PMID: 25780587 PMCID: PMC4349750 DOI: 10.1186/2051-4190-24-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022] Open
Abstract
Phthalates provide one of the most documented example evidencing how much we must be cautious when using the traditional paradigm based on extrapolation of experimental data from rodent studies for human health risk assessment of endocrine disruptors (EDs). Since foetal testis is known as one of the most sensitive targets of EDs, phthalate risk assessment is routinely based on the capacity of such compounds to decrease testosterone production by the testis or to impair masculinization in the rat during foetal life. In this paper, the well-established inhibiting effects of phthalates of the foetal Leydig cells function in the rat are briefly reviewed. Then, data obtained in humans and other species are carefully analysed. Already in January 2009, using the organotypic culture system named Fetal Testis Assay (FeTA) that we developed, we reported that phthalates might not affect testosterone production in human foetal testes. Several recent experimental studies using xenografts confirm the absence of detectable anti-androgenic effect of phthalates in the human foetal testes. Epidemiological studies led to contradictory results. Altogether, these findings suggest that phthalates effects on foetal Leydig cells are largely species-specific. Consequently, the phthalate threshold doses that disturb foetal steroidogenesis in rat testes and that are presently used to define the acceptable daily intake levels for human health protection must be questioned. This does not mean that phthalates are safe because these compounds have many deleterious effects upon germ cell development that may be common to the different studied species including human. More generally, the identification of common molecular, cellular or/and phenotypic targets in rat and human testes should precede the choice of the toxicological endpoint in rat to accurately assess the safety threshold of any ED in humans.
Collapse
Affiliation(s)
- René Habert
- Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, University Paris Diderot, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; INSERM, Unité 967, F-92265 Fontenay aux Roses, France ; Stem Cells and Radiation Unit, LDG / SCSR / iRCM / DSV, Centre CEA, BP6, F-92265 Fontenay aux Roses, France
| | - Gabriel Livera
- Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, University Paris Diderot, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; INSERM, Unité 967, F-92265 Fontenay aux Roses, France
| | - Virginie Rouiller-Fabre
- Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, University Paris Diderot, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; INSERM, Unité 967, F-92265 Fontenay aux Roses, France
| |
Collapse
|
34
|
Vandormael-Pournin S, Guigon CJ, Ishaq M, Coudouel N, Avé P, Huerre M, Magre S, Cohen-Tannoudji J, Cohen-Tannoudji M. Oocyte-specific inactivation of Omcg1 leads to DNA damage and c-Abl/TAp63-dependent oocyte death associated with dramatic remodeling of ovarian somatic cells. Cell Death Differ 2014; 22:108-17. [PMID: 25168238 DOI: 10.1038/cdd.2014.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/11/2014] [Accepted: 07/13/2014] [Indexed: 11/09/2022] Open
Abstract
Aberrant loss of oocytes following cancer treatments or genetic mutations leads to premature ovarian insufficiency (POI) associated with endocrine-related disorders in 1% of women. Therefore, understanding the mechanisms governing oocyte death is crucial for the preservation of female fertility. Here, we report the striking reproductive features of a novel mouse model of POI obtained through oocyte-specific inactivation (ocKO) of Omcg1/Zfp830 encoding a nuclear zinc finger protein involved in pre-mRNA processing. Genetic ablation of OMCG1 in early growing oocytes leads to reduced transcription, accumulation of DNA double-strand breaks and subsequent c-Abl/TAp63-dependent oocyte death, thus uncovering the key role of OMCG1 for oocyte genomic integrity. All adult Omcg1(ocKO) females displayed complete elimination of early growing oocytes and sterility. Unexpectedly, mutant females exhibited a normal onset of puberty and sexual receptivity. Detailed studies of Omcg1(ocKO) ovaries revealed that the ovarian somatic compartment underwent a dramatic structural and functional remodeling. This allowed the cooperation between oocyte-depleted follicles and interstitial tissue to produce estradiol. Moreover, despite early folliculogenesis arrest, mutant mice exhibited sexual cyclicity as shown by cyclical changes in estrogen secretion, vaginal epithelium cytology and genital tract weight. Collectively, our findings demonstrate the key role of Omcg1 for oocyte survival and highlight the contribution of p63 pathway in damaged oocyte elimination in adulthood. Moreover, our findings challenge the prevailing view that sexual cyclicity is tightly dependent upon the pace of folliculogenesis and luteal differentiation.
Collapse
Affiliation(s)
- S Vandormael-Pournin
- 1] Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France [2] CNRS URA 2578, Paris F-75015, France
| | - C J Guigon
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - M Ishaq
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - N Coudouel
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - P Avé
- Institut Pasteur, Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Paris F-75015, France
| | - M Huerre
- Institut Pasteur, Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Paris F-75015, France
| | - S Magre
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - J Cohen-Tannoudji
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - M Cohen-Tannoudji
- 1] Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France [2] CNRS URA 2578, Paris F-75015, France
| |
Collapse
|
35
|
Habert R, Muczynski V, Grisin T, Moison D, Messiaen S, Frydman R, Benachi A, Delbes G, Lambrot R, Lehraiki A, N'tumba-Byn T, Guerquin MJ, Levacher C, Rouiller-Fabre V, Livera G. Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors. Reproduction 2014; 147:R119-29. [PMID: 24497529 PMCID: PMC3959776 DOI: 10.1530/rep-13-0497] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk.
Collapse
Affiliation(s)
- René Habert
- Unit of Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, BP 6, 92265 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zambrano E, Guzmán C, Rodríguez-González GL, Durand-Carbajal M, Nathanielsz PW. Fetal programming of sexual development and reproductive function. Mol Cell Endocrinol 2014; 382:538-549. [PMID: 24045010 DOI: 10.1016/j.mce.2013.09.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/15/2022]
Abstract
The recent growth of interest in developmental programming of physiological systems has generally focused on the cardiovascular system (especially hypertension) and predisposition to metabolic dysfunction (mainly obesity and diabetes). However, it is now clear that the full range of altered offspring phenotypes includes impaired reproductive function. In rats, sheep and nonhuman primates, reproductive capacity is altered by challenges experienced during critical periods of development. This review will examine available experimental evidence across commonly studied experimental species for developmental programming of female and male reproductive function throughout an individual's life-course. It is necessary to consider events that occur during fetal development, early neonatal life and prior to and during puberty, during active reproductive life and aging as reproductive performance declines.
Collapse
Affiliation(s)
- Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México.
| | - Carolina Guzmán
- HIPAM, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM)/Hospital General de México, México
| | - Guadalupe L Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México
| | - Marta Durand-Carbajal
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México
| | - Peter W Nathanielsz
- Center for Pregnancy and Newborn Research, Department of Obstetrics, University of Texas Health Sciences Center San Antonio, TX, United States
| |
Collapse
|
37
|
Christante CM, Taboga SR, Pinto-Fochi ME, Góes RM. Maternal obesity disturbs the postnatal development of gonocytes in the rat without impairment of testis structure at prepubertal age. Reproduction 2013; 146:549-58. [PMID: 24043845 DOI: 10.1530/rep-13-0037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we evaluated whether maternal obesity (MO) affects testis development and gonocyte differentiation in the rat from 0.5 to 14.5 postnatal days. Male Wistar rats were used at 0.5, 4.5, 7.5, and 14.5 days post partum (dpp). These rats were born from obese mothers, previously fed with a high-fat diet (20% saturated fat), for 15 weeks, or normal mothers that had received a balanced murine diet (4% lipids). MO did not affect testis weight or histology at birth but changed the migratory behavior of gonocytes. The density of relocated cells was higher in MO pups at 0.5 dpp, decreased at 4.5 dpp, and differed from those of control pups, where density increased exponentially from 0.5 to 7.5 dpp. The numerical density of gonocytes within seminiferous cords did not vary in MO, in relation to control neonates, for any age considered, but the testis weight was 50% lower at 4.5 dpp. A wide variation in plasmatic testosterone and estrogen levels was observed among the groups during the first week of age and MO pups exhibited higher steroid concentrations at 4.5 dpp, in comparison with controls. At this age, higher estrogen levels of MO pups impaired the gonocyte proliferation. At 7.5 dpp, the testicular size and other parameters of gonocyte development are retrieved. In conclusion, MO and saturated lipid diets disturb gonocyte development and sexual steroid levels during the first days of life, with recovery at prepubertal age.
Collapse
Affiliation(s)
- Caroline Maria Christante
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP 15054-000 São José do Rio Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
38
|
Migrenne S, Moreau E, Pakarinen P, Dierich A, Merlet J, Habert R, Racine C. Mouse testis development and function are differently regulated by follicle-stimulating hormone receptors signaling during fetal and prepubertal life. PLoS One 2012; 7:e53257. [PMID: 23300903 PMCID: PMC3531970 DOI: 10.1371/journal.pone.0053257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/27/2012] [Indexed: 12/30/2022] Open
Abstract
It is currently admitted that Follicle-Stimulating Hormone (FSH) is physiologically involved in the development and function of fetal/neonatal Sertoli cells in the rat but not the mouse. However, FSH is produced by both species from late fetal life onwards. We thus reinvestigated the role of FSH in mouse testis development at day 0 (birth) 6, 8 and 10 post-partum (dpp) by using mice that lack functional FSH receptors (FSH-R−/−). At birth, the number and proliferative index of Sertoli cells were significantly lower in FSH-R−/− mice than in wild type neonates. Claudin 11 mRNA expression also was significantly reduced in FSH-R−/− testes at 0 and 8 dpp, whereas the mRNA levels of other Sertoli cell markers (Transferrin and Desert hedgehog) were comparable in FSH-R−/− and wild type testes. Conversely, AMH mRNA and protein levels were higher at birth, comparable at 6 dpp and then significantly lower in FSH-R−/− testes at 8–10 dpp in FSH-R−/− mice than in controls. Although the plasma concentration of LH and the number of Leydig cells were similar in FSH-R−/− and control (wild type), testosterone concentration and P450c17 mRNA expression were significantly increased in FSH-R−/− testes at birth. Conversely, at 10 dpp when adult Leydig cells appear, expression of the steroidogenic genes P450scc, P450c17 and StAR was lower in FSH-R−/− testes than in controls. In conclusion, our results show that 1) like in the rat, signaling via FSH-R controls Sertoli cell development and function during late fetal life in the mouse as well; 2) paracrine factors produced by Sertoli cells are involved in the FSH-R-dependent regulation of the functions of fetal Leydig cells in late fetal life; and 3) the role of FSH-R signaling changes during the prepubertal period.
Collapse
Affiliation(s)
- Stéphanie Migrenne
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay-aux-Roses, France
| | - Evelyne Moreau
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay-aux-Roses, France
| | - Pirjo Pakarinen
- University of Turku, Institute of Biomedicine, Department of Physiology, Turku, Finland
| | - Andrée Dierich
- CNRS 7104, IGBMC, Illkirch, France
- INSERM, U964, Illkirch , France
| | - Jorge Merlet
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay-aux-Roses, France
| | - René Habert
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay-aux-Roses, France
- * E-mail:
| | - Chrystèle Racine
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay-aux-Roses, France
| |
Collapse
|
39
|
N'Tumba-Byn T, Moison D, Lacroix M, Lecureuil C, Lesage L, Prud'homme SM, Pozzi-Gaudin S, Frydman R, Benachi A, Livera G, Rouiller-Fabre V, Habert R. Differential effects of bisphenol A and diethylstilbestrol on human, rat and mouse fetal leydig cell function. PLoS One 2012; 7:e51579. [PMID: 23284716 PMCID: PMC3524173 DOI: 10.1371/journal.pone.0051579] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/01/2012] [Indexed: 01/23/2023] Open
Abstract
Endocrine disruptors (ED) have been incriminated in the current increase of male reproductive alterations. Bisphenol A (BPA) is a widely used weak estrogenic environmental ED and it is debated whether BPA concentrations within the average internal exposure are toxic. In the present study we investigated the effects of 10(-12) to 10(-5) M BPA concentrations on fetal Leydig cell function, as fetal life is a critical period of sensitivity to ED effects on male reproductive function. To this aim, fetal testes from human at 6.5-10.5 gestational weeks (GW) or from rat and mouse at a comparable critical period of development (14.5 days post-coitum (dpc) for rat and 12.5 dpc for mouse) were explanted and cultured using our validated organotypic culture system in the presence or absence of BPA for 1-3 days. BPA concentrations as low as 10(-8) M reduced testosterone secretion by human testes from day 1 of culture onwards, but not by mouse and rat testes where concentrations equal to 10(-5) M BPA were required. Similarly, 10(-8) M BPA reduced INSL3 mRNA levels only in human cultured testes. On the contrary, 10(-5) and 10(-6) M diethylstilbestrol (DES), a classical estrogenic compound, affected testosterone secretion only in rat and mouse testis cultures, but not in human testis cultures. Lastly, contrarily to the DES effect, the negative effect of BPA on testosterone produced by the mouse fetal testis was maintained after invalidation of estrogen receptor α (ERα). In conclusion, these results evidenced i) a deleterious effect of BPA on fetal Leydig cells function in human for concentrations from 10(-8) M upwards, ii) species-specific differences raising concerns about extrapolation of data from rodent studies to human risk assessment, iii) a specific signaling pathway for BPA which differs from the DES one and which does not involve ERα.
Collapse
Affiliation(s)
- Thierry N'Tumba-Byn
- Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tartarin P, Moison D, Guibert E, Dupont J, Habert R, Rouiller-fabre V, Frydman N, Pozzi S, Frydman R, Lecureuil C, Froment P. Metformin exposure affects human and mouse fetal testicular cells. Hum Reprod 2012; 27:3304-14. [DOI: 10.1093/humrep/des264] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
41
|
Horstman KA, Naciff JM, Overmann GJ, Foertsch LM, Richardson BD, Daston GP. Effects of transplacental 17-α-ethynyl estradiol or bisphenol A on the developmental profile of steroidogenic acute regulatory protein in the rat testis. ACTA ACUST UNITED AC 2012; 95:318-25. [PMID: 22752971 DOI: 10.1002/bdrb.21020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/06/2012] [Indexed: 11/08/2022]
Abstract
Previous research from our laboratory has determined the transcript profiles for developing fetal rat female and male reproductive tracts following transplacental exposure to estrogens. Prenatal exposure to bisphenol A (BPA) or 17-α-ethynyl estradiol (EE) significantly affects steroidogenic acute regulatory (StAR) protein transcript levels in the developing male rat reproductive tract. The purpose of this study was to establish the intratesticular distribution and temporal expression pattern of StAR, a key gene involved in steroidogenesis. Beginning on gestation day (GD) 11, pregnant Sprague-Dawley rats were exposed daily to 10μg/kg/day EE and fetal testes were harvested at GD16, 18, or 20. Quantitative reverse transcriptase PCR (QRT-PCR) demonstrated no significant difference in StAR transcript levels present at GD16. However, at GD18, StAR transcripts were significantly decreased following exposure. Immunohistochemistry demonstrated similar StAR protein levels in interstitial region of GD16 testes and an obvious decrease in StAR protein levels in the interstitial region of GD18 testes. Moreover, starting at GD11 additional dams were dosed with 0.001 or 0.1 μg/kg/day EE or 0.02, 0.5, 400 mg/kg/day BPA via subcutaneous injections. QRT-PCR validated previous microarray dose-related decreases in StAR transcripts at GD20, whereas immunohistochemistry results demonstrated decreases in StAR protein levels in the interstitial region at the highest EE and BPA doses only. Neither EE nor BPA exposure caused morphological changes in the developing seminiferous cords, Sertoli cells, gonocytes, or the interstitial region or Leydig cells at GD16-20. High levels of estrogens decrease StAR expression in the fetal rat testis during late gestation.
Collapse
Affiliation(s)
- Karla A Horstman
- Mason Business Center, The Procter and Gamble Company, Mason, OH, USA
| | | | | | | | | | | |
Collapse
|
42
|
Johnson KJ, Heger NE, Boekelheide K. Of mice and men (and rats): phthalate-induced fetal testis endocrine disruption is species-dependent. Toxicol Sci 2012; 129:235-48. [PMID: 22700540 DOI: 10.1093/toxsci/kfs206] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
For over 15 years, reproductive toxicologists have explored the physiological outcomes and mechanism of fetal phthalate exposure to determine the risk posed to human male reproductive health. This review examines the fetal male reproductive system response to phthalate exposure across species including rat, mouse, and human, with emphasis on the testis. In the rat, in utero phthalate exposure causes male reproductive tract malformations, in large part, by targeting the testis and inhibiting fetal Leydig cell hormone production. Despite mouse phthalate pharmacokinetics being similar to the rat, inhibition of fetal Leydig cell hormone synthesis is not observed in the mouse. The species-specific differences in testicular response following in utero phthalate exposure and the discordant reaction of the rodent fetal testis when exposed to phthalates ex vivo versus in vivo have made determining risk to humans difficult, yet critically important. The recent use of fetal testis xenotransplants to study phthalate toxicity suggests that the human fetal testis responds like the mouse fetal testis; it appears refractory to phthalate-induced inhibition of testosterone production. Although this result is unfulfilling from the perspective of identifying environmental contributions to human reproductive maldevelopment, it has important implications for phthalate risk assessment.
Collapse
Affiliation(s)
- Kamin J Johnson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | | | |
Collapse
|
43
|
Effect of mono-(2-ethylhexyl) phthalate on human and mouse fetal testis: In vitro and in vivo approaches. Toxicol Appl Pharmacol 2012; 261:97-104. [PMID: 22484159 DOI: 10.1016/j.taap.2012.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 12/21/2022]
Abstract
The present study was conducted to determine whether exposure to the mono-(2-ethylhexyl) phthalate (MEHP) represents a genuine threat to male human reproductive function. To this aim, we investigated the effects on human male fetal germ cells of a 10⁻⁵ M exposure. This dose is slightly above the mean concentrations found in human fetal cord blood samples by biomonitoring studies. The in vitro experimental approach was further validated for phthalate toxicity assessment by comparing the effects of in vitro and in vivo exposure in mouse testes. Human fetal testes were recovered during the first trimester (7-12 weeks) of gestation and cultured in the presence or not of 10⁻⁵ M MEHP for three days. Apoptosis was quantified by measuring the percentage of Caspase-3 positive germ cells. The concentration of phthalate reaching the fetal gonads was determined by radioactivity measurements, after incubations with ¹⁴C-MEHP. A 10⁻⁵ M exposure significantly increased the rate of apoptosis in human male fetal germ cells. The intratesticular MEHP concentration measured corresponded to the concentration added in vitro to the culture medium. Furthermore, a comparable effect on germ cell apoptosis in mouse fetal testes was induced both in vitro and in vivo. This study suggests that this 10⁻⁵ M exposure is sufficient to induce changes to the in vivo development of the human fetal male germ cells.
Collapse
|
44
|
Weisser J, Landreh L, Söder O, Svechnikov K. Steroidogenesis and steroidogenic gene expression in postnatal fetal rat Leydig cells. Mol Cell Endocrinol 2011; 341:18-24. [PMID: 21458522 DOI: 10.1016/j.mce.2011.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
We studied steroidogenesis and the regulation of Leydig cell-specific gene expression in primary cultures of highly purified postnatal fetal Leydig cells (PFLCs). PFLCs activated by hCG and (Bu)(2)cAMP demonstrated transient capacity to produce testosterone (T) in vitro. A time dependent decline in T production by (Bu)(2)cAMP-stimulated PFLCs was observed and associated with the accumulation of progesterone in the culture media and complete suppression of P450c17 expression at the translational but not transcriptional level. PFLCs was found to lose their capacity to express Leydig cell-related genes (e.g., 3βHSD, P450c17, Insl3), which was restored by treatment with (Bu)(2)cAMP. It was also found that PDGFα alone and in combination with (Bu)(2)cAMP significantly stimulated proliferation of the isolated PFLCs in vitro. Our data indicate that cAMP-activated signaling pathway(s) play an important role in the regulation of PFLC differentiation and function.
Collapse
Affiliation(s)
- Judith Weisser
- Department of Women's and Children's Health, Pediatric Endocrinology Unit Q2:08, Karolinska Institutet & University Hospital, SE-17176, Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
Lehraiki A, Chamaillard C, Krust A, Habert R, Levacher C. Genistein impairs early testosterone production in fetal mouse testis via estrogen receptor alpha. Toxicol In Vitro 2011; 25:1542-7. [PMID: 21624456 DOI: 10.1016/j.tiv.2011.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
The widespread consumption of soy-based products raises the issue of the reproductive toxicity of phytoestrogens. Indeed, it is well known that genistein, an isoflavone found in soybeans and soy products, mimics the actions of estrogens and that the fetal testis is responsive to estrogens. Therefore we investigated whether genistein could have deleterious effects on fetal testis. Using organ cultures of fetal testes from wild type and ERα or ERβ knock-out mice we show that genistein inhibits testosterone secretion by fetal Leydig cells during early fetal development (E12.5), within the "masculinization programming window". This effect occurs through an ERα-dependent mechanism and starting at 10 nM genistein, a concentration which is compatible with human consumption. No effect of genistein on the number of gonocytes was detected at any of the studied developmental stages. These results suggest that fetal exposure to phytoestrogens can affect the development and function of the male reproductive system.
Collapse
Affiliation(s)
- Abdelali Lehraiki
- Laboratory of Gonad Differentiation and Radiobiology, Stem Cells and Radiation Service, Institute of Cellular and Molecular Radiation Biology, Life Sciences Division, Commissariat à l'Energie Atomique, B.P. 6, 92265 Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
46
|
Chen H, Stanley E, Jin S, Zirkin BR. Stem Leydig cells: from fetal to aged animals. ACTA ACUST UNITED AC 2011; 90:272-83. [PMID: 21181888 DOI: 10.1002/bdrc.20192] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Leydig cells are the testosterone-producing cells of the testis. The adult Leydig cell (ALC) population ultimately develops from undifferentiated mesenchymal-like stem cells present in the interstitial compartment of the neonatal testis. Distinct stages of ALC development have been identified and characterized. These include stem Leydig cells (SLCs), progenitor Leydig cells, immature Leydig cells, and ALCs. This review describes our current understanding of the SLCs in the fetal, prenatal, peripubertal, adult, and aged rat testis, as well as recent studies of the differentiation of steroidogenic cells from the stem cells of other organs.
Collapse
Affiliation(s)
- Haolin Chen
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
47
|
Lehraiki A, Messiaen S, Berges R, Canivenc-Lavier MC, Auger J, Habert R, Levacher C. Antagonistic effects of gestational dietary exposure to low-dose vinclozolin and genistein on rat fetal germ cell development. Reprod Toxicol 2010; 31:424-30. [PMID: 21172421 DOI: 10.1016/j.reprotox.2010.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/08/2010] [Accepted: 12/14/2010] [Indexed: 01/23/2023]
Abstract
Continuous, low-dose exposure to a phytoestrogen (1 mg/kg/day genistein) and/or to an antiandrogenic food contaminant (1 mg/kg/day vinclozolin) has been recently reported to affect male reproductive tract and fertility [1] in adults. We investigated whether alterations of the testis are already present at the end of in utero exposure using the same rat model and doses following exposure from conception to delivery. After vinclozolin exposure, we observed in the neonate a slight but significant alteration of steroidogenesis and gametogenesis with a reduction of testosterone secretion and of the number of gonocytes. In contrast, genistein exposure had no effect. While the vinclozolin-genistein mixture acts in a synergistic manner to induce the most significant alterations in the adult, interestingly, genistein antagonized the deleterious effect of vinclozolin on germ cells in the neonate. This difference emphasizes the importance of studying the effects of endocrine disruptors during various developmental stages to understand their effects.
Collapse
Affiliation(s)
- Abdelali Lehraiki
- Laboratory of Gonad Differentiation and Radiobiology, Stem Cells and Radiation Service, Institute of Cellular and Molecular Radiation Biology, Life Sciences Division, Commissariat à l'Energie Atomique, BP 6, 92265 Fontenay-aux-Roses, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Boucher E, Provost PR, Devillers A, Tremblay Y. Levels of Dihydrotestosterone, Testosterone, Androstenedione, and Estradiol in Canalicular, Saccular, and Alveolar Mouse Lungs. Lung 2010; 188:229-33. [DOI: 10.1007/s00408-010-9231-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/26/2010] [Indexed: 11/29/2022]
|
49
|
Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev 2009; 30:883-925. [PMID: 19887492 DOI: 10.1210/er.2009-0016] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Masculinization depends on adequate production of testosterone by the fetal testis within a specific "masculinization programming window." Disorders resulting from subtle deficiencies in this process are common in humans, and environmental exposures/lifestyle could contribute causally because common therapeutic and environmental compounds can affect steroidogenesis. This evidence derives mainly from rodent studies, but because there are major species differences in regulation of steroidogenesis in the fetal testis, this may not always be a guide to potential effects in the human. In addition to direct study of the effects of compounds on steroidogenesis, information also derives from study of masculinization disorders that result from mutations in genes in pathways regulating steroidogenesis. This review addresses this issue by critically reviewing the comparative timing of production and regulation of steroidogenesis in the fetal testis of humans and of rodents and its susceptibility to disruption; where there is limited information for the fetus, evidence from effects on steroidogenesis in the adult testis is considered. There are a number of fundamental regulatory differences between the human and rodent fetal testis, most notably in the importance of paracrine vs. endocrine drives during masculinization such that inactivating LH receptor mutations block masculinization in humans but not in rodents. Other large differences involve the steroidogenic response to estrogens and GnRH analogs and possibly phthalates, whereas for other compounds there may be differences in sensitivity to disruption (ketoconazole). This comparison identifies steroidogenic targets that are either vulnerable (mitochondrial cholesterol transport, CYP11A, CYP17) or not (cholesterol uptake) to chemical interference.
Collapse
Affiliation(s)
- Hayley M Scott
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | |
Collapse
|
50
|
Macleod DJ, Sharpe RM, Welsh M, Fisken M, Scott HM, Hutchison GR, Drake AJ, van den Driesche S. Androgen action in the masculinization programming window and development of male reproductive organs. ACTA ACUST UNITED AC 2009; 33:279-87. [PMID: 20002220 DOI: 10.1111/j.1365-2605.2009.01005.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have shown previously that deficient androgen action within a masculinization programming window (MPW; e15.5-e18.5 in rats) is important in the origin of male reproductive disorders and in programming male reproductive organ size, but that androgen action postnatally may be important to achieve this size. To further investigate importance of the MPW, we used two rat models, in which foetal androgen production or action was impaired during the MPW by exposing in utero to either di(n-butyl) phthalate (DBP) or to flutamide. Reduced anogenital distance (AGD) was used as a monitor of androgen production/action during the MPW. Offspring were evaluated in early puberty (Pnd25) to establish if reproductive organ size was altered. The testes, penis, ventral prostate (VP) and seminal vesicles (SV) were weighed and penis length measured. Both DBP and flutamide exposure in the MPW significantly reduced penis, VP and SV size along with AGD at Pnd25; AGD and organ size were highly correlated. In DBP-, but not flutamide-, exposed animals, testis weight was also reduced and correlated with AGD. Intratesticular testosterone was also measured in control and DBP-exposed males during (e17.5) or after (e21.5) the MPW and related to AGD at e21.5. To evaluate the importance of postnatal androgen action in reproductive organ growth, the effect of combinations of prenatal and postnatal maternal treatments on AGD and penis size at Pnd25 was evaluated. In prenatally DBP-exposed animals, further postnatal exposure to either DBP or flutamide significantly reduced AGD and penis size in comparison with prenatal DBP exposure alone. In comparison, rats exposed postnatally to testosterone propionate after prenatal vehicle-exposure showed considerable increase in these parameters vs. controls. In conclusion, we show that the size of all male reproductive organs is programmed by androgen exposure in the MPW, but that growth towards this size is dependent on androgen action postnatally.
Collapse
Affiliation(s)
- D J Macleod
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|