1
|
Wendebourg MJ, Weigel M, Richter L, Gocheva V, Hafner P, Orsini AL, Crepulja V, Schmidt S, Huck A, Oechtering J, Blatow M, Haas T, Granziera C, Kappos L, Cattin P, Bieri O, Fischer D, Schlaeger R. Spinal Cord Gray Matter Atrophy is associated with functional decline in Post-Polio Syndrome. Eur J Neurol 2022; 29:1435-1445. [PMID: 35102676 PMCID: PMC9310958 DOI: 10.1111/ene.15261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
Objective To determine if patients with post‐polio syndrome (PPS) show spinal cord gray matter (SCGM) atrophy and to assess associations between SCGM atrophy, muscle strength and patient‐reported functional decline. Methods Twenty patients diagnosed with PPS (March of Dimes criteria) and 20 age‐ and sex‐matched healthy controls (HC) underwent 3T axial 2D‐rAMIRA magnetic resonance imaging at the intervertebral disc levels C2/C3–C6/C7, T9/T10 and the lumbar enlargement level (Tmax) (0.5 × 0.5 mm2 in‐plane resolution). SCGM areas were segmented manually by two independent raters. Muscle strength, self‐reported fatigue, depression and pain measures were assessed. Results Post‐polio syndrome patients showed significantly and preferentially reduced SCGM areas at C2/C3 (p = 0.048), C3/C4 (p = 0.001), C4/C5 (p < 0.001), C5/C6 (p = 0.004) and Tmax (p = 0.041) compared to HC. SCGM areas were significantly associated with muscle strength in corresponding myotomes even after adjustment for fatigue, pain and depression. SCGM areaTmax together with age and sex explained 68% of ankle dorsiflexion strength variance. No associations were found with age at or time since infection. Patients reporting PPS‐related decline in arm function showed significant cervical SCGM atrophy compared to stable patients adjusted for initial disease severity. Conclusions Patients with PPS show significant SCGM atrophy that correlates with muscle strength and is associated with PPS‐related functional decline. Our findings suggest a secondary neurodegenerative process underlying SCGM atrophy in PPS that is not explained by aging or residua of the initial infection alone. Confirmation by longitudinal studies is needed. The described imaging methodology is promising for developing novel imaging surrogates for SCGM diseases.
Collapse
Affiliation(s)
- Maria Janina Wendebourg
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Laura Richter
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Vanya Gocheva
- Division of Paediatric Neurology, University of Basel Children's Hospital, Basel, Switzerland
| | - Patricia Hafner
- Division of Paediatric Neurology, University of Basel Children's Hospital, Basel, Switzerland
| | - Anna-Lena Orsini
- Division of Paediatric Neurology, University of Basel Children's Hospital, Basel, Switzerland
| | - Valentina Crepulja
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Simone Schmidt
- Division of Paediatric Neurology, University of Basel Children's Hospital, Basel, Switzerland
| | - Antal Huck
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Johanna Oechtering
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Maria Blatow
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tanja Haas
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Philippe Cattin
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Dirk Fischer
- Division of Paediatric Neurology, University of Basel Children's Hospital, Basel, Switzerland
| | - Regina Schlaeger
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Zakrasek EC, Jaramillo JP, Lateva ZC, Punj V, Kiratli BJ, McGill KC. Quantitative electrodiagnostic patterns of damage and recovery after spinal cord injury: a pilot study. Spinal Cord Ser Cases 2019; 5:101. [PMID: 31871766 PMCID: PMC6908655 DOI: 10.1038/s41394-019-0246-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Study design Prospective observational pilot study. Objectives To compare quantitative electromyographic (EMG), imaging and strength data at two time points in individuals with cervical spinal cord injury (SCI). Setting SCI center, Veterans Affairs Health Care System, Palo Alto, California, USA. Methods Subjects without suspected peripheral nerve injury were recruited within 3 months of injury. Needle EMG examination was performed in myotomes above, at, and below the SCI level around 11- and 12-months post injury. EMG data were decomposed using custom software into constituent motor unit trains and each distinct motor unit was analyzed for firing rate and amplitude. Strength measurements were made with dynamometry and according to the International Standard of Neurologic Classification of SCI (ISNCSCI). Cervical magnetic resonance images (MRI) were evaluated by two neuroradiologists for gray and white matter damage around the SCI. Here, we compare the EMG, strength, and imaging findings of the one of the four participants who completed both 3- and 12-month EMG evaluations. Results There was an increase in force generation in all muscles tested at 1 year. Localized findings of very fast firing motor units helped localize spinal cord damage and revealed gray matter damage in spinal segments where MRI was normal. Meanwhile, improvement in strength over time corresponded with different electrophysiologic patterns. Conclusions Electromyographic decomposition at two time points provides valuable information about localization of spinal cord damage, integrity of motor neuron pools and may provide a unique understanding of neural recovery mechanisms.
Collapse
Affiliation(s)
- Elissa C. Zakrasek
- Spinal Cord Injury Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | | | - Zoia C. Lateva
- Spinal Cord Injury Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | - Vandana Punj
- Spinal Cord Injury Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | - B. Jenny Kiratli
- Spinal Cord Injury Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | - Kevin C. McGill
- Spinal Cord Injury Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| |
Collapse
|
3
|
Li Hi Shing S, Chipika RH, Finegan E, Murray D, Hardiman O, Bede P. Post-polio Syndrome: More Than Just a Lower Motor Neuron Disease. Front Neurol 2019; 10:773. [PMID: 31379723 PMCID: PMC6646725 DOI: 10.3389/fneur.2019.00773] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Post-polio syndrome (PPS) is a neurological condition that affects polio survivors decades after their initial infection. Despite its high prevalence, the etiology of PPS remains elusive, mechanisms of progression are poorly understood, and the condition is notoriously under-researched. While motor dysfunction is a hallmark feature of the condition, generalized fatigue, sleep disturbance, decreased endurance, neuropsychological deficits, sensory symptoms, and chronic pain are also often reported and have considerable quality of life implications in PPS. The non-motor aspects of PPS are particularly challenging to evaluate, quantify, and treat. Generalized fatigue is one of the most distressing symptoms of PPS and is likely to be multifactorial due to weight-gain, respiratory compromise, poor sleep, and polypharmacy. No validated diagnostic, monitoring, or prognostic markers have been developed in PPS to date and the mainstay of therapy centers on symptomatic relief and individualized rehabilitation strategies such as energy conservation and muscle strengthening exercise regimes. Despite a number of large clinical trials in PPS, no effective disease-modifying pharmacological treatments are currently available.
Collapse
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Deirdre Murray
- Computational Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 804] [Impact Index Per Article: 160.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
5
|
Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle 2018; 9:3-19. [PMID: 29151281 PMCID: PMC5803609 DOI: 10.1002/jcsm.12238] [Citation(s) in RCA: 445] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 02/06/2023] Open
Abstract
The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing.
Collapse
Affiliation(s)
- Michael Tieland
- Faculty of Sports and NutritionAmsterdam University of Applied SciencesDr. Meurerlaan 81067 SMAmsterdamthe Netherlands
| | - Inez Trouwborst
- Faculty of Sports and NutritionAmsterdam University of Applied SciencesDr. Meurerlaan 81067 SMAmsterdamthe Netherlands
| | - Brian C. Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI)Ohio University250 Irvine HallAthensOH 45701USA
- Department of Biomedical SciencesOhio UniversityAthensOH 45701USA
- Department of Geriatric MedicineOhio UniversityAthensOH 45701USA
| |
Collapse
|
6
|
Trevino MA, Herda TJ, Cooper MA. The effects of poliomyelitis on motor unit behavior during repetitive muscle actions: a case report. BMC Res Notes 2014; 7:611. [PMID: 25194883 PMCID: PMC4163171 DOI: 10.1186/1756-0500-7-611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background Acute paralytic poliomyelitis is caused by the poliovirus and usually results in muscle atrophy and weakness occurring in the lower limbs. Indwelling electromyography has been used frequently to investigate the denervation and innervation characteristics of the affected muscle. Recently developed technology allows the decomposition of the raw surface electromyography signals into the firing instances of single motor units. There is limited information regarding this electromyographic decomposition in clinical populations. In addition, regardless of electromyographic methods, no study has examined muscle activation parameters during repetitive muscle actions in polio patients. Therefore, the purpose of this study was to examine the motor unit firing rates and electromyographic amplitude and center frequency of the vastus lateralis during 20 repetitive isometric muscle actions at 50% maximal voluntary contraction in healthy subjects and one patient that acquired acute paralytic poliomyelitis. Case presentation One participant that acquired acute type III spinal poliomyelitis (Caucasian male, age = 29 yrs) at 3 months of age and three healthy participants (Caucasian females, age = 19.7 ± 2.1 yrs) participated in this study. The polio participant reported neuromuscular deficiencies as a result of disease in the hips, knees, buttocks, thighs, and lower legs. None of the healthy participants reported any current or ongoing neuromuscular diseases or musculoskeletal injuries. Conclusion An acute bout of poliomyelitis altered motor unit behavior, such as, healthy participants displayed greater firing rates than the polio patient. The reduction in motor unit firing rates was likely a fatigue protecting mechanism since denervation via poliomyelitis results in a reduction of motorneurons. In addition, the concurrent changes in motor unit firing rates, electromyography amplitude and frequency for the polio participant would suggest that the entire motorneuron pool was utilized in each contraction unlike for the healthy participants. Finally, healthy participants exhibited changes in all electromyographic parameters during the repetitive muscle actions despite successfully completing all contractions with only a slight reduction in force. Thus, caution is warranted when quantifying muscular fatigue via motor unit firing rates and other electromyographic parameters since the parameters changed despite successful completing of all contractions with only a moderate reduction in strength in healthy subjects.
Collapse
Affiliation(s)
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, Lawrence, KS, USA.
| | | |
Collapse
|
7
|
Examination of motor unit control properties of the vastus lateralis in an individual that had acute paralytic poliomyelitis. J Clin Neurophysiol 2014; 31:e11-5. [PMID: 25083857 DOI: 10.1097/wnp.0000000000000100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The purpose of the study was to examine motor unit (MU) recruitment and derecruitment thresholds and firing rates of the vastus lateralis between 2 healthy (HE) individuals (women, ages = 19 and 23 years) and 1 individual (man, age = 22 years) who acquired acute poliomyelitis (PO). Each participant performed submaximal isometric trapezoid muscle actions of the leg extensors from 20% to 90% maximal voluntary contraction in 10% increments with a sensor placed on the vastus lateralis to record electromyography. Electromyographic signals were decomposed into the firing events of single MUs. Linear regressions were performed on the firing rates at recruitment and peak firing rates versus the recruitment thresholds and the derecruitment versus recruitment thresholds. In addition, data were pooled together from all contractions to examine differences between PO and HE with independent samples t-tests calculated for firing rates at recruitment, peak firing rates, recruitment thresholds, derecruitment thresholds, and duration of MU activity. The results demonstrated systematic differences in MU control strategies between the PO and HE. There were differences in the recruitment thresholds (P < 0.001; HE = 30.5% ± 22.2% maximal voluntary contraction; PO = 14.5% ± 5.0% maximal voluntary contraction), firing rates at recruitment (P < 0.001; HE = 7.4 ± 2.5 pulses per second; PO = 6.2 ± 1.7 pulses per second) and peak firing rates across the force spectrum (P = 0.001; HE = 22.2 ± 5.8 pulses per second; PO = 20.3 ± 2.3 pulses per second), altered derecruitment versus recruitment relationships (HE slope = 0.82 derec/rec, PO slope = 1.78 derec/rec), and duration of MU activity (P < 0.001) between the PO (18.6 ± 2.4 seconds) and HE (15.3 ± 3.0 seconds). Future research should examine the possible differences in MU behavior between PO and HE as a result of fatigue to further elucidate disease-related changes in MU properties.
Collapse
|
8
|
|
9
|
Boyer FC, Tiffreau V, Rapin A, Laffont I, Percebois-Macadré L, Supper C, Novella JL, Yelnik AP. Post-polio syndrome: Pathophysiological hypotheses, diagnosis criteria, medication therapeutics. Ann Phys Rehabil Med 2010; 53:34-41. [DOI: 10.1016/j.rehab.2009.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 11/16/2009] [Indexed: 11/15/2022]
|
10
|
Larsson L, Wang X, Yu F, Höök P, Borg K, Chong SM, Jin JP. Adaptation by alternative RNA splicing of slow troponin T isoforms in type 1 but not type 2 Charcot-Marie-Tooth disease. Am J Physiol Cell Physiol 2008; 295:C722-31. [PMID: 18579801 DOI: 10.1152/ajpcell.00110.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Slow troponin T (TnT) plays an indispensable role in skeletal muscle function. Alternative RNA splicing in the NH(2)-terminal region produces high-molecular-weight (HMW) and low-molecular-weight (LMW) isoforms of slow TnT. Normal adult slow muscle fibers express mainly HMW slow TnT. Charcot-Marie-Tooth disease (CMT) is a group of inherited peripheral polyneuropathies caused by various neuronal defects. We found in the present study that LMW slow TnT was significantly upregulated in demyelination form type 1 CMT (CMT1) but not axonal form type 2 CMT (CMT2) muscles. Contractility analysis showed an increased specific force in single fibers isolated from CMT1 but not CMT2 muscles compared with control muscles. However, an in vitro motility assay showed normal velocity of the myosin motor isolated from CMT1 and CMT2 muscle biopsies, consistent with their unchanged myosin isoform contents. Supporting a role of slow TnT isoform regulation in contractility change, LMW and HMW slow TnT isoforms showed differences in the molecular conformation in conserved central and COOH-terminal regions with changed binding affinity for troponin I and tropomyosin. In addition to providing a biochemical marker for the differential diagnosis of CMT, the upregulation of LMW slow TnT isoforms under the distinct pathophysiology of CMT1 demonstrates an adaptation of muscle function to neurological disorders by alternative splicing modification of myofilament proteins.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
11
|
Li M, Lionikas A, Yu F, Tajsharghi H, Oldfors A, Larsson L. Muscle cell and motor protein function in patients with a IIa myosin missense mutation (Glu-706 to Lys). Neuromuscul Disord 2006; 16:782-91. [PMID: 17005402 PMCID: PMC1693964 DOI: 10.1016/j.nmd.2006.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/21/2006] [Accepted: 07/31/2006] [Indexed: 11/18/2022]
Abstract
The pathogenic events leading to the progressive muscle weakness in patients with a E706K mutation in the head of the myosin heavy chain (MyHC) IIa were analyzed at the muscle cell and motor protein levels. Contractile properties were measured in single muscle fiber segments using the skinned fiber preparation and a single muscle fiber in vitro motility assay. A dramatic impairment in the function of the IIa MyHC isoform was observed at the motor protein level. At the single muscle fiber level, on the other hand, a general decrease was observed in the number of preparations where the specific criteria for acceptance were fulfilled irrespective of MyHC isoform expression. Our results provide evidence that the pathogenesis of the MyHC IIa E706K myopathy involves defective function of the mutated myosin as well as alterations in the structural integrity of all muscle cells irrespective of MyHC isoform expression.
Collapse
Affiliation(s)
- M Li
- Department of Clinical Neurophysiology, Uppsala University, Uppsala SE-75185, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Frontera WR, Choi H, Krishnan G, Krivickas LS, Sabharwal S, Teng YD. Single muscle fiber size and contractility after spinal cord injury in rats. Muscle Nerve 2006; 34:101-4. [PMID: 16518854 DOI: 10.1002/mus.20530] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spinal cord injury (SCI) results in muscle weakness but the degree of impairment at the level of single fibers is not known. The purpose of this study was to examine the effects of T9-level SCI on single muscle fibers from the tibialis anterior of rats. Significant decreases in cross-sectional area (CSA), maximal force (Po), and specific force (SF = Po/CSA) were noted at 2 weeks. Atrophy and force-generating capacity were reversed at 4 weeks, but SF remained impaired. Maximum shortening velocity (Vo) did not change after injury. SCI thus appears to affect various contractile properties of single muscle fibers differently. Normal cage activity may partially restore function but new interventions are needed to restore muscle fiber quality.
Collapse
Affiliation(s)
- Walter R Frontera
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, 125 Nashua Street, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Pun S, Santos AF, Saxena S, Xu L, Caroni P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 2006; 9:408-19. [PMID: 16474388 DOI: 10.1038/nn1653] [Citation(s) in RCA: 505] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 01/25/2006] [Indexed: 11/09/2022]
Abstract
Neurodegenerative diseases can have long preclinical phases and insidious progression patterns, but the mechanisms of disease progression are poorly understood. Because quantitative accounts of neuronal circuitry affected by disease have been lacking, it has remained unclear whether disease progression reflects processes of stochastic loss or temporally defined selective vulnerabilities of distinct synapses or axons. Here we derive a quantitative topographic map of muscle innervation in the hindlimb. We show that in two mouse models of motoneuron disease (G93A SOD1 and G85R SOD1), axons of fast-fatiguable motoneurons are affected synchronously, long before symptoms appear. Fast-fatigue-resistant motoneuron axons are affected at symptom-onset, whereas axons of slow motoneurons are resistant. Axonal vulnerability leads to synaptic vesicle stalling and accumulation of BC12a1-a, an anti-apoptotic protein. It is alleviated by ciliary neurotrophic factor and triggers proteasome-dependent pruning of peripheral axon branches. Thus, motoneuron disease involves predictable, selective vulnerability patterns by physiological subtypes of axons, episodes of abrupt pruning in the target region and compensation by resistant axons.
Collapse
Affiliation(s)
- San Pun
- Friedrich Miescher Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Lionikas A, Li M, Larsson L. Human skeletal muscle myosin function at physiological and non-physiological temperatures. Acta Physiol (Oxf) 2006; 186:151-8. [PMID: 16497192 DOI: 10.1111/j.1748-1716.2005.01516.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The aim of the study was to assess the function of human skeletal muscle myosin across a wide range of temperatures, including physiological. METHODS We used a single fibre in vitro motility assay. The in vitro motility speed of actin filaments propelled by myosin extracted from fibres expressing type I myosin heavy chain (MyHC; n = 9), IIa MyHC (n = 6), IIax MyHC (n = 4) and I/IIa MyHC (n = 1) was measured at 15, 20, 25, 30 and 35 degrees C. RESULTS The motility speed between groups of fibres expressing different MyHC differed significantly (P << 0.001). The increase in motility speed with an increase in temperature was statistically significant (P << 0.001) between all temperatures. The relative difference in motility speed between the slow type I and the fast IIax MyHC fibres decreased with increasing temperature, i.e. a 7.5-fold difference at 15 degrees C was reduced to twofold at 35 degrees C. Furthermore, the twofold difference in motility speed between type IIa and IIax MyHC at 15 degrees C disappeared completely at 35 degrees C. The activation energy, E(A), and temperature coefficient, Q(10), over the 15-35 degrees C temperature range was higher for type I MyHC, 54.47 +/- 4.37 kJ mol(-1) and 2.09 +/- 0.12, respectively, than for type IIa MyHC, 45.41 +/- 3.12 kJ mol(-1) (P < 0.001) and 1.85 +/- 0.08 (P < 0.001), or IIax MyHC, 34.71 +/- 1.75 kJ mol(-1) (P << 0.001) and 1.60 +/- 0.04 (P << 0.001). CONCLUSION The present results suggest a significantly reduced difference in shortening velocity between different human muscle fibre types at physiological temperature than previously reported at lower temperatures (12 or 15 degrees C) with implications for human in vivo muscle function.
Collapse
Affiliation(s)
- A Lionikas
- Department of Clinical Neurophysiology, Uppsala University, Uppsala, SE, Sweden.
| | | | | |
Collapse
|
15
|
Marx JO, Olsson MC, Larsson L. Scaling of skeletal muscle shortening velocity in mammals representing a 100,000-fold difference in body size. Pflugers Arch 2005; 452:222-30. [PMID: 16333661 DOI: 10.1007/s00424-005-0017-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/05/2005] [Accepted: 10/31/2005] [Indexed: 11/28/2022]
Abstract
To fully understand the effect of scaling on skeletal muscle shortening velocity (V (0)), it is important to know which phenotypic characteristics drive the changes between species. The purpose of the current investigation was to compare the effects of body mass and femur length, as an estimate of total limb length, on V (0) in species that cover a 100,000-fold range of body masses. Using the slack test procedure, V (0) was determined for fibers expressing types I and IIa myosin heavy chain (MyHC) isoforms in the mouse, rat, dog, human, horse, and rhinoceros under identical experimental conditions. A significant scaling effect on V (0) was detected when compared to body mass (type I fibers, r=0.95, p<0.01; type IIa fibers, r=0.83, p<0.05). However, the horse's V (0) for both fiber types was faster than the human's, despite having a 5-fold greater body mass than the human. When V (0) was scaled vs limb length, the strength of the relationships improved in fibers expressing both types I and IIa MyHC (r=0.98, p<0.001, and r=0.89, p<0.05, respectively) and scaled with the expected relationship, with the species with the shorter femur, the horse, having the faster V (0). A similar effect can be seen with stride frequency scaling more closely with limb length than body mass. These results suggest that limb length, not body mass, is a more relevant factor driving the scaling effect on skeletal muscle shortening velocity.
Collapse
Affiliation(s)
- James O Marx
- Department of Biology, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
16
|
Krivickas LS, Frontera WR. Single Muscle Fiber Physiology in Neuromuscular Disease. Phys Med Rehabil Clin N Am 2005; 16:951-65, ix. [PMID: 16214053 DOI: 10.1016/j.pmr.2005.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lisa S Krivickas
- Harvard Medical School, Spaulding Rehabilitation Hospital, 125 Nashua Street, Boston, MA 02114, USA.
| | | |
Collapse
|
17
|
Krivickas LS, Amato AA, Krishnan G, Murray AV, Frontera WR. Preservation of in vitro muscle fiber function in dermatomyositis and inclusion body myositis: a single fiber study. Neuromuscul Disord 2005; 15:349-54. [PMID: 15833427 DOI: 10.1016/j.nmd.2005.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 01/05/2005] [Accepted: 01/13/2005] [Indexed: 11/21/2022]
Abstract
Five patients with untreated dermatomyositis, five with inclusion body myositis, and 16 healthy elderly volunteer subjects (controls) underwent open (dermatomyositis and inclusion body myositis) or percutaneous (controls) muscle biopsy. Biopsied muscles included deltoid, biceps and vastus lateralis. Chemically skinned single muscle fibers were activated with Ca(+2); the slack test was performed to determine maximal unloaded shortening velocity (Vo). Parameters measured include single fiber cross sectional area, maximal force, specific force and Vo. 429 Type I and 94 Type IIA fibers were studied. Cross sectional area and maximal force were greater in inclusion body myositis than dermatomyositis or control for Type I and IIA fibers. Specific force of Type I fibers was similar in inclusion body myositis and dermatomyositis but greater than in controls. Vo was greater in Type I, but not IIA, fibers in dermatomyositis compared with inclusion body myositis and controls. The force and velocity generating capacity of single muscle fibers is preserved in patients with dermatomyositis and inclusion body myositis suggesting that dysfunction of the contractile proteins does not contribute to clinical muscle weakness.
Collapse
Affiliation(s)
- Lisa S Krivickas
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, 125 Nashua St., Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
18
|
Sandberg A, Stålberg E. Changes in macro electromyography over time in patients with a history of polio: a comparison of 2 muscles. Arch Phys Med Rehabil 2004; 85:1174-82. [PMID: 15241770 DOI: 10.1016/j.apmr.2003.08.101] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate whether changes over time are different in a weight-bearing leg muscle than in a less heavily used arm muscle. DESIGN Prospective study. SETTING University hospital laboratory. PARTICIPANTS Twenty-three patients with a history of poliomyelitis. INTERVENTION Two investigations were performed 5 years apart, using macro electromyography and the patients' own assessments of symptoms in the tibial anterior and the biceps brachii muscles. Test-retest of macro electromyography was performed in controls and in patients with old polio. MAIN OUTCOME MEASURES Macro motor unit potential (MUP) and symptoms in the tibial anterior and biceps brachii over time. RESULTS The macro MUP amplitude increased by 24% (P<.05) in the tibial anterior but was unchanged in the biceps brachii muscle. CONCLUSIONS An increase in the macro MUP amplitude of the tibial anterior muscle, but not of the biceps brachii, most likely indicates a more pronounced ongoing denervation-reinnervation process over time in the tibial anterior. This difference could be activity dependent, but other factors cannot be excluded.
Collapse
Affiliation(s)
- Arne Sandberg
- Department of Clinical Neurophysiology, Uppsala University Hospital, ing 85, 3 tr., S-751 85 Uppsala, Sweden.
| | | |
Collapse
|
19
|
Sandberg A, Stålberg E. How to interpret normal electromyographic findings in patients with an alleged history of polio. J Rehabil Med 2004; 36:169-76. [PMID: 15370733 DOI: 10.1080/16501970410025135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE In some patients with a history of polio, the electromyography is normal, not showing the typical neurogenic signs. The aim of this study was to explain the normal findings in electromyography, especially in paralytic polio. DESIGN Retrospective study. SUBJECTS/METHODS Concentric needle electromyography, macro electromyography (including single fibre electromyography) and neurography were performed in various combinations in 688 patients with an alleged history of polio. RESULTS Thirty-five patients with paralytic polio had normal or minimally abnormal neurophysiology. In 6 patients the diagnosis of polio was rejected and was instead found to be other diagnoses. Three patients had a very atypical history. Of the 26 with possible paralytic polio, 17 showed a strong suspicion of previous paralytic polio without any neurophysiological signs of degeneration of the anterior horn cells. CONCLUSION If neurophysiological findings are normal in patients with a history of polio, the original diagnosis may be incorrect. However, the absence of electromyography changes does not entirely exclude a previous history of polio with transient functional loss without degeneration of anterior horn cells vulnerable for later functional impairment.
Collapse
Affiliation(s)
- Arne Sandberg
- Department of Clinical Neurophysiology, Uppsala University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
20
|
Chapter 8 Effects of aging on motor unit structure and function. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1567-4231(09)70118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Krivickas LS, Yang JI, Kim SK, Frontera WR. Skeletal muscle fiber function and rate of disease progression in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26:636-43. [PMID: 12402285 DOI: 10.1002/mus.10257] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The contractile properties of single muscle fibers reflect the functional status of muscle at the cellular level and have not been described in amyotrophic lateral sclerosis (ALS). Chemically skinned single muscle fibers (n = 173), obtained by needle biopsy from six men with ALS, were activated with Ca(2+), allowing maximal force measurements and specific force (SF) estimates. Maximum unloaded shortening velocity (V(o)) was determined using the slack test. The results were compared with muscle from healthy controls. Markers of disease progression included rate of change of ALS functional rating scale score, rate of change of forced vital capacity, and disease duration. Compared with controls, ALS patients had decreased whole muscle SF (measured by a combination of computerized tomography and isokinetic testing) but normal single fiber SF. The V(o) was greater for type I fibers in ALS. Patients with slower disease progression had increased single fiber size and a high percentage of hybrid fibers (expressing multiple myosin heavy chain isoforms). A needle biopsy obtained at the time of ALS diagnosis may assist with predicting rate of disease progression.
Collapse
Affiliation(s)
- Lisa S Krivickas
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, 125 Nashua St., Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
22
|
Marchand E, De Leyn P, Gayan-Ramirez G, Palecek F, de Bock V, Dom R, Decramer M. Lung volume reduction surgery does not improve diaphragmatic contractile properties or atrophy in hamsters with elastase-induced emphysema. Am J Respir Crit Care Med 2000; 162:1052-7. [PMID: 10988129 DOI: 10.1164/ajrccm.162.3.9911096] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is claimed that lung volume reduction surgery (LVRS) improves inspiratory muscle function. As diaphragm structure and function are not directly appraisable in patients, we studied the effects of LVRS on the diaphragm in vitro contractile properties and morphology in hamsters with elastase-induced emphysema. Four months after intratracheal instillation of elastase (40 U/100 g), hamsters underwent either bilateral LVRS (LVRS, n = 11) or a sham operation (SHAM, n = 8). Four animals died during the perioperative period in LVRS (n = 7). Hamsters instilled with saline served as control (CTL, n = 8). Animals were studied at the age of 9 mo. LVRS was associated with a significant 25% decrease in functional residual capacity compared to SHAM (p < 0.05). Compared with CTL, LVRS and SHAM showed a significant 18% and 14% reduction in diaphragm mass, respectively (p = 0.02). LVRS had a significantly decreased twitch tension compared to CTL and SHAM (p < 0.01). Both LVRS and SHAM showed increased resistance to muscle fatigue compared with CTL. The histochemical analysis revealed a significant shift from type IIx/b toward type IIa fibers in LVRS and SHAM compared with CTL. In conclusion, emphysema is associated with functional adaptations but LVRS does not appear to beneficially alter the diaphragm contractile and morphological characteristics in hamsters with elastase-induced emphysema.
Collapse
Affiliation(s)
- E Marchand
- Respiratory Muscle Research Unit, Laboratory of Pneumology and Respiratory Division, Thoracic Surgery Division, and Neuropathology Department, University Hospitals, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 2000. [PMID: 10729333 DOI: 10.1523/jneurosci.20-07-02534.2000] [Citation(s) in RCA: 465] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The addition or loss of synapses in response to changes in activity, disease, or aging is a major aspect of nervous system plasticity in the adult. The mechanisms that affect the turnover and maintenance of synapses in the adult are poorly understood and are difficult to investigate in the brain. Here, we exploited a unique anatomical arrangement in the neuromuscular system to determine whether subtypes of synapses can differ in anatomical plasticity and vulnerability. In three genetic mouse models of motoneuron disease of diverse origin and severity, we observed a gradual and selective loss of synaptic connections that begun long before the onset of clinical deficits and correlated with the timing of disease progression. A subgroup of fast-type (fast-fatiguable) neuromuscular synapses was highly vulnerable and was lost very early on. In contrast, slow-type synapses resisted up to the terminal phase of the disease. Muscle-specific differences were also evident. Similar selective losses were detected in aged mice. These selective vulnerability properties of synapses coincided with hitherto unrecognized major differences in stimulus-induced anatomical plasticity that could also be revealed in healthy mice. Using paralysis and/or growth-associated protein 43 overexpression to induce synaptic sprouting, we found that slow-type, disease-resistant synapses were particularly plastic. In contrast, fast-type synapses with the highest vulnerability failed to exhibit any stimulus-induced change. The results reveal pronounced subtype specificity in the anatomical plasticity and susceptibility to loss of neuromuscular synapses and suggest that degenerative motoneuron diseases involve a common early pathway of selective and progressive synaptic weakening also associated with aging.
Collapse
|
24
|
Abstract
Muscle fiber contractile dysfunction in myotonic dystrophy (MD) is poorly understood. We biopsied the tibialis anterior of two symptomatic and three asymptomatic subjects (aged 21-31 years) with the MD mutation. Biopsies were freeze dried. A total of 103 single muscle fibers were activated with Ca(++), allowing maximal force measurements and specific force (SF) estimates. The slack test was performed to calculate maximum unloaded shortening velocity (V(o)). The myosin heavy chain composition of each fiber was determined using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Type I and IIA fibers of all subjects had reduced SF when compared with healthy control subjects (P < 0.001). In addition, the type I fibers of symptomatic subjects generated less SF than those of asymptomatic subjects (P < 0.001). Type I fibers from asymptomatic and symptomatic subjects did not differ in V(o), but V(o) was lower than in control subjects (P < 0.001). There was no significant difference in V(o) of type IIA fibers from symptomatic, asymptomatic, and control subjects. These results indicate that the MD mutation leads to a diminished force-generating capacity of the myofilaments in both symptomatic and asymptomatic individuals. The results further suggest that reduction in force-generating capacity at the cellular level develops prior to clinical weakness.
Collapse
Affiliation(s)
- L S Krivickas
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, 125 Nashua St., Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
25
|
Larsson L, Li X, Edström L, Eriksson LI, Zackrisson H, Argentini C, Schiaffino S. Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: mechanisms at the cellular and molecular levels. Crit Care Med 2000; 28:34-45. [PMID: 10667496 DOI: 10.1097/00003246-200001000-00006] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Long-term treatment with nondepolarizing neuromuscular blocking agents and corticosteroids in the intensive care unit is not benign, and an increasing number of patients with acute quadriplegic myopathy have been reported with increased use of these drugs. The purpose of this study was to investigate the mechanisms underlying acute quadriplegic myopathy. DESIGN Percutaneous muscle biopsy samples were obtained, and electrophysiologic examinations were performed during the acute phase and during recovery in patients with acute quadriplegic myopathy. Regulation of muscle contraction and myofibrillar protein synthesis was studied using cell physiologic techniques, ultrasensitive electrophoresis, in situ hybridization, and histopathologic techniques. SETTING All patients were seen in the intensive care unit of different university hospitals. PATIENTS All patients were critically ill with sepsis. They had been given massive doses of corticosteroids in combination with variable doses of neuromuscular blocking agents. All patients developed paralysis of spinal nerve-innervated muscles. On the other hand, cranial nerve-innervated muscle and sensory and cognitive functions were well maintained after discontinuation of treatment with neuromuscular blocking agents. INTERVENTION Muscle biopsy samples were obtained and electrophysiologic examinations were performed in all patients. MEASUREMENTS AND MAIN RESULTS The major observations in patients with acute quadriplegic myopathy were, as follows: a) a general decrease in myofibrillar protein content; b) specific but highly variable partial or complete loss of myosin and myosin-associated proteins; c) very low thick-filament/thin-filament protein ratios; d) absence of myosin messenger RNA; and e) a dramatically impaired muscle cell force-generating capacity in the acute phase of acute quadriplegic myopathy. During clinical improvement, normal expression of myosin messenger RNAs, reexpression of thick-filament proteins, and increased specific tension were observed. CONCLUSIONS Acute quadriplegic myopathy is associated with a specific decrease in thick-filament proteins related to an altered transcription rate. Although the decreased content of thick-filament proteins is important for prolonged muscle weakness, it is not the primary cause of muscle paralysis in the acute stage, during which impaired muscle membrane excitability probably plays a more significant role. Several factors contribute to this condition, but the action of corticosteroids seems to be the predominant one, along with potentiation by neuromuscular blocking agents, immobilization, and probably also concurrent sepsis.
Collapse
Affiliation(s)
- L Larsson
- Noll Physiological Research Center, Pennsylvania State University, University Park 16802-6900, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Yu F, Degens H, Larsson L. The influence of thyroid hormone on myosin isoform composition and shortening velocity of single skeletal muscle fibres with special reference to ageing and gender. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:313-6. [PMID: 10632632 DOI: 10.1046/j.1365-201x.1999.00620.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review summarizes the effects of altered thyroid hormone levels on the expression of myosin isoforms and contractility in single muscle fibres from fast- and slow-twitch muscles from young and old male and female rats. The differences between male and female hyperthyroid soleus muscles are suggested to be related to an interaction of thyroid hormones and sex hormones in the regulation of myosin gene expression. Additionally, the mismatch between the protein and mRNA levels of MyHCs between male and female hyperthyroid extensor digitorum longus (EDL) muscles raises the possibility of a gender-related difference in post-transcriptional, translational or post-translational regulation of MyHC isoforms by T3.
Collapse
Affiliation(s)
- F Yu
- Noll Physiological Research Center and Department of Cellular and Molecular Physiology, Pennsylvania State University, University Park, PA 16802-6900, USA
| | | | | |
Collapse
|
27
|
Frontera WR, Larsson L. Contractile studies of single human skeletal muscle fibers: a comparison of different muscles, permeabilization procedures, and storage techniques. Muscle Nerve 1997; 20:948-52. [PMID: 9236784 DOI: 10.1002/(sici)1097-4598(199708)20:8<948::aid-mus3>3.0.co;2-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The study of single muscle fibers has improved our understanding of muscle physiology and pathology. To compare three techniques for fiber preparation and storage, biopsies were obtained from the tibialis anterior and vastus lateralis muscles of a hemiparetic patient and a control subject. Single fibers were prepared with: (1) chemical skinning (CS) and storage at -20 degrees C; (2) chemical skinning followed by sucrose (SU) incubation and storage at -80 degrees C; or (3) freeze-drying (FD) and -80 degrees C storage. Cross-sectional area (CSA), resting, maximal (P0), and specific tension (P0/CSA), and maximum shortening velocity (V0) were determined in 189 cells. CSA was similar in all groups. Resting tension was higher and P0 and P0/CSA lower after FD. In general, V0 was the same in all groups. Our data suggest that CS and SU preserve the properties of single muscle fibers better than FD. SU may allow longer storage of fibers.
Collapse
Affiliation(s)
- W R Frontera
- Department of Clinical Neurophysiology, Karolinska Hospital, Stockholm, Sweden
| | | |
Collapse
|
28
|
Frontera WR, Grimby L, Larsson L. Firing rate of the lower motoneuron and contractile properties of its muscle fibers after upper motoneuron lesion in man. Muscle Nerve 1997; 20:938-47. [PMID: 9236783 DOI: 10.1002/(sici)1097-4598(199708)20:8<938::aid-mus2>3.0.co;2-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We studied motor unit (MU) firing rate and contractile properties and myosin isoform composition of single muscle fibers after upper motoneuron lesion. Single-MUs and surface electromyogram (EMG) were recorded during voluntary contractions and locomotion in the paretic (P) and nonparetic (NP) tibialis anterior (TA) of 15 hemiparetics. P TA low-threshold MUs fired within the lower end of their normal range. High-threshold MUs fired below their normal range or were not recruited. Surface EMG was abnormally low and high in the P TA and NP TA, respectively. On muscle cross sections stained with histochemical methods, type I fibers represented 99.4%, 74.3% and 66.6% of NP, P, and control TA, respectively. P TA fibers expressing type I myosin heavy chain (MyHC) were smaller, weaker, and slower. In conclusion, low MU firing rate and activity in the P TA was associated with slower type I MyHC fibers, while increased activity in NP TA resulted in homogenous expression of type I MyHC.
Collapse
Affiliation(s)
- W R Frontera
- Department of Clinical Neurophysiology, Karolinska Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
29
|
Larsson L, Li X, Frontera WR. Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C638-49. [PMID: 9124308 DOI: 10.1152/ajpcell.1997.272.2.c638] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Maximum unloaded shortening velocity (V0) and maximum force normalized to cross-sectional fiber area (specific tension) were determined in 400 single quadriceps muscle cells of young (n = 4, 25-31 yr) and old (n = 4, 73-81 yr) men. Two of the old men were physically very active, and the subjects were divided into young control, old control, and old physically active groups. The expressions of types I, IIa, and IIb myosin heavy chains (MHC) and essential and regulatory myosin light chains were determined by 6 and 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. V0 was highly dependent on the MHC isoform composition, and a gradient from slow to fast was observed in the sequence I, I-IIa, IIa, IIab, and IIb MHC cells. The V0 values and specific tensions of types I and IIa MHC fibers in the young control group were significantly higher than those in the old control and old physically active groups. Thus the present results provide evidence of qualitative changes in contractile properties of human skeletal muscle in old age, which probably play an important role in the age-related impairment of skeletal muscle function.
Collapse
Affiliation(s)
- L Larsson
- Department of Clinical Neurophysiology and Neurology, Karolinska Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
30
|
Larsson L, Li X, Yu F, Degens H. Age-related changes in contractile properties and expression of myosin isoforms in single skeletal muscle cells. Muscle Nerve 1997. [DOI: 10.1002/(sici)1097-4598(1997)5+<74::aid-mus18>3.0.co;2-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Abstract
This study was undertaken to investigate the mechanisms underlying fatigue of chronically overused motor units (MUs). The force of the tibialis anterior muscle (TA) and the firing properties of single MUs were studied during prolonged maximum voluntary effort in 10 prior polio patients selected such that daily living required all residual TA power. Almost all TA fibers were hypertrophic type I. Activities of intermyofibrillar succinate dehydrogenase (SDH) and calcium-stimulated myofibrillar adenosine triphosphatase (ATPase) were measured in single TA fibers from a representative patient. Neither insufficient motoneuron activation nor peripheral blocking of the electrical impulse played a major role in the loss of force during prolonged contraction or for slow recovery after contraction. The ratio of SDH to calcium-stimulated ATPase, representing the relation between energy resynthesis and energy utilization, was significantly (P < 0.001) lower in prior polio patients (0.230 +/- 0.096) compared to control (0.515 +/- 0.097) type I fibers.
Collapse
Affiliation(s)
- L Grimby
- Department of Neurology, Karolinska Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Larsson L, Li X, Berg HE, Frontera WR. Effects of removal of weight-bearing function on contractility and myosin isoform composition in single human skeletal muscle cells. Pflugers Arch 1996; 432:320-8. [PMID: 8662283 DOI: 10.1007/s004240050139] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The purpose of this study was to investigate the effects of a 6-week period without weight bearing, achieved by bed rest, on the contractile behaviour, myosin isoform expression and myofibrillar protein content of single human muscle fibres. Percutaneous biopsied specimens of the quadriceps muscle were taken from three healthy male volunteers before and at the end of the experimental period. Maximum force normalised to cross-sectional area (specific tension), maximum velocity of unloaded shortening (V0), and myosin heavy chain (MyHC) and light chain (MyLC) isoform composition were measured in single membrane-permeabilised muscle cells obtained from these specimens. At the end of the experimental period, specific tension was reduced (P < 0.001) by 40% and there was a parallel decline in myofibrillar protein content per muscle cell volume. V0 did not change significantly in response to bed rest when data from all muscle cells were pooled. In two of the subjects, however, V0 decreased (P < 0.01-0.001) in muscle cells expressing the beta/slow (type I) MyHC isoform, but there was no change in fibres expressing type IIA or a combination of type IIA and IIB MyHCs. The slowing in type I MyHC fibres was associated with a change in the isoform composition of the regulatory MyLC.
Collapse
Affiliation(s)
- L Larsson
- Department of Clinical Neurophysiology, Karolinska Hospital, S-104 01 Stockholm, Sweden
| | | | | | | |
Collapse
|