1
|
López-García P, Moreira D. The symbiotic origin of the eukaryotic cell. C R Biol 2023; 346:55-73. [PMID: 37254790 DOI: 10.5802/crbiol.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Eukaryogenesis represented a major evolutionary transition that led to the emergence of complex cells from simpler ancestors. For several decades, the most accepted scenario involved the evolution of an independent lineage of proto-eukaryotes endowed with an endomembrane system, including a nuclear compartment, a developed cytoskeleton and phagocytosis, which engulfed the alphaproteobacterial ancestor of mitochondria. However, the recent discovery by metagenomic and cultural approaches of Asgard archaea, which harbour many genes in common with eukaryotes and are their closest relatives in phylogenomic trees, rather supports scenarios based on the symbiosis of one Asgard-like archaeon and one or more bacteria at the origin of the eukaryotic cell. Here, we review the recent discoveries that led to this conceptual shift, briefly evoking current models of eukaryogenesis and the challenges ahead to discriminate between them and to establish a detailed, plausible scenario that accounts for the evolution of eukaryotic traits from those of their prokaryotic ancestors.
Collapse
|
2
|
Mariscal C, Doolittle WF. Eukaryotes first: how could that be? Philos Trans R Soc Lond B Biol Sci 2016; 370:20140322. [PMID: 26323754 DOI: 10.1098/rstb.2014.0322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the half century since the formulation of the prokaryote : eukaryote dichotomy, many authors have proposed that the former evolved from something resembling the latter, in defiance of common (and possibly common sense) views. In such 'eukaryotes first' (EF) scenarios, the last universal common ancestor is imagined to have possessed significantly many of the complex characteristics of contemporary eukaryotes, as relics of an earlier 'progenotic' period or RNA world. Bacteria and Archaea thus must have lost these complex features secondarily, through 'streamlining'. If the canonical three-domain tree in which Archaea and Eukarya are sisters is accepted, EF entails that Bacteria and Archaea are convergently prokaryotic. We ask what this means and how it might be tested.
Collapse
Affiliation(s)
- Carlos Mariscal
- Departments of Philosophy, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2 Biochemistry and Molecular Biology, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - W Ford Doolittle
- Biochemistry and Molecular Biology, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
3
|
The relative ages of eukaryotes and akaryotes. J Mol Evol 2014; 79:228-39. [PMID: 25179144 DOI: 10.1007/s00239-014-9643-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022]
Abstract
The Last Eukaryote Common Ancestor (LECA) appears to have the genetics required for meiosis, mitosis, nucleus and nuclear substructures, an exon/intron gene structure, spliceosomes, many centres of DNA replication, etc. (and including mitochondria). Most of these features are not generally explained by models for the origin of the Eukaryotic cell based on the fusion of an Archeon and a Bacterium. We find that the term 'prokaryote' is ambiguous and the non-phylogenetic term akaryote should be used in its place because we do not yet know the direction of evolution between eukaryotes and akaryotes. We use the term 'protoeukaryote' for the hypothetical stem group ancestral eukaryote that took up a bacterium as an endosymbiont that formed the mitochondrion. It is easier to make detailed models with a eukaryote to an akaryote transition, rather than vice versa. So we really are at a phylogenetic impasse in not being confident about the direction of change between eukaryotes and akaryotes.
Collapse
|
4
|
Brosius J. The persistent contributions of RNA to eukaryotic gen(om)e architecture and cellular function. Cold Spring Harb Perspect Biol 2014; 6:a016089. [PMID: 25081515 DOI: 10.1101/cshperspect.a016089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery.
Collapse
Affiliation(s)
- Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
5
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Egel R. Primal eukaryogenesis: on the communal nature of precellular States, ancestral to modern life. Life (Basel) 2012; 2:170-212. [PMID: 25382122 PMCID: PMC4187143 DOI: 10.3390/life2010170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/29/2011] [Accepted: 01/11/2012] [Indexed: 02/08/2023] Open
Abstract
This problem-oriented, exploratory and hypothesis-driven discourse toward the unknown combines several basic tenets: (i) a photo-active metal sulfide scenario of primal biogenesis in the porespace of shallow sedimentary flats, in contrast to hot deep-sea hydrothermal vent conditions; (ii) an inherently complex communal system at the common root of present life forms; (iii) a high degree of internal compartmentalization at this communal root, progressively resembling coenocytic (syncytial) super-cells; (iv) a direct connection from such communal super-cells to proto-eukaryotic macro-cell organization; and (v) multiple rounds of micro-cellular escape with streamlined reductive evolution-leading to the major prokaryotic cell lines, as well as to megaviruses and other viral lineages. Hopefully, such nontraditional concepts and approaches will contribute to coherent and plausible views about the origins and early life on Earth. In particular, the coevolutionary emergence from a communal system at the common root can most naturally explain the vast discrepancy in subcellular organization between modern eukaryotes on the one hand and both archaea and bacteria on the other.
Collapse
Affiliation(s)
- Richard Egel
- Department of Biology, University of Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
7
|
Kim KM, Caetano-Anollés G. The proteomic complexity and rise of the primordial ancestor of diversified life. BMC Evol Biol 2011; 11:140. [PMID: 21612591 PMCID: PMC3123224 DOI: 10.1186/1471-2148-11-140] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/25/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The last universal common ancestor represents the primordial cellular organism from which diversified life was derived. This urancestor accumulated genetic information before the rise of organismal lineages and is considered to be either a simple 'progenote' organism with a rudimentary translational apparatus or a more complex 'cenancestor' with almost all essential biological processes. Recent comparative genomic studies support the latter model and propose that the urancestor was similar to modern organisms in terms of gene content. However, most of these studies were based on molecular sequences, which are fast evolving and of limited value for deep evolutionary explorations. RESULTS Here we engage in a phylogenomic study of protein domain structure in the proteomes of 420 free-living fully sequenced organisms. Domains were defined at the highly conserved fold superfamily (FSF) level of structural classification and an iterative phylogenomic approach was used to reconstruct max_set and min_set FSF repertoires as upper and lower bounds of the urancestral proteome. While the functional make up of the urancestral sets was complex, they represent only 5-11% of the 1,420 FSFs of extant proteomes and their make up and reuse was at least 5 and 3 times smaller than proteomes of free-living organisms, repectively. Trees of proteomes reconstructed directly from FSFs or from molecular functions, which included the max_set and min_set as articial taxa, showed that urancestors were always placed at their base and rooted the tree of life in Archaea. Finally, a molecular clock of FSFs suggests the min_set reflects urancestral genetic make up more reliably and confirms diversified life emerged about 2.9 billion years ago during the start of planet oxygenation. CONCLUSIONS The minimum urancestral FSF set reveals the urancestor had advanced metabolic capabilities, was especially rich in nucleotide metabolism enzymes, had pathways for the biosynthesis of membrane sn1,2 glycerol ester and ether lipids, and had crucial elements of translation, including a primordial ribosome with protein synthesis capabilities. It lacked however fundamental functions, including transcription, processes for extracellular communication, and enzymes for deoxyribonucleotide synthesis. Proteomic history reveals the urancestor is closer to a simple progenote organism but harbors a rather complex set of modern molecular functions.
Collapse
Affiliation(s)
- Kyung Mo Kim
- Evolutionary Bioinformatics Laboratory, Department of Crop Science, University of Illinois, Urbana, IL 61801, USA
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Science, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
8
|
O'Malley MA. The first eukaryote cell: an unfinished history of contestation. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2010; 41:212-224. [PMID: 20934642 DOI: 10.1016/j.shpsc.2010.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The eukaryote cell is one of the most radical innovations in the history of life, and the circumstances of its emergence are still deeply contested. This paper will outline the recent history of attempts to reveal these origins, with special attention to the argumentative strategies used to support claims about the first eukaryote cell. I will focus on two general models of eukaryogenesis: the phagotrophy model and the syntrophy model. As their labels indicate, they are based on claims about metabolic relationships. The first foregrounds the ability to consume other organisms; the second the ability to enter into symbiotic metabolic arrangements. More importantly, however, the first model argues for the autogenous or self-generated origins of the eukaryote cell, and the second for its exogenous or externally generated origins. Framing cell evolution this way leads each model to assert different priorities in regard to cell-biological versus molecular evidence, cellular versus environmental influences, plausibility versus evolutionary probability, and irreducibility versus the continuity of cell types. My examination of these issues will conclude with broader reflections on the implications of eukaryogenesis studies for a philosophical understanding of scientific contestation.
Collapse
Affiliation(s)
- Maureen A O'Malley
- ESRC Research Centre for Genomics in Society (Egenis), University of Exeter, Byrne House, St. Germans Road, Exeter EX4 4PJ, UK. M.A.O’
| |
Collapse
|
9
|
|
10
|
Egel R, Penny D. On the Origin of Meiosis in Eukaryotic Evolution: Coevolution of Meiosis and Mitosis from Feeble Beginnings. RECOMBINATION AND MEIOSIS 2007. [DOI: 10.1007/7050_2007_036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Di Giulio M. The tree of life might be rooted in the branch leading to Nanoarchaeota. Gene 2007; 401:108-13. [PMID: 17689206 DOI: 10.1016/j.gene.2007.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/29/2007] [Accepted: 07/04/2007] [Indexed: 11/30/2022]
Abstract
It is suggested that the tree of life might be rooted in the domain of the Archaea, in the branch leading to the phylum of Nanoarchaeota. This hypothesis seems to be corroborated by the uniqueness and ancestrality of some traits possessed by Nanoarchaeum equitans, such as split genes separately codifying for the 5' and 3' halves of the tRNA molecule. These half genes are the oldest ancestral form of gene we have ever seen. This, along with the absence of operons from the genome of N. equitans, would seem to indicate that this genome is a molecular fossil of the evolutionary stage which the ancestral genomes had reached when the first lines of divergence were established. Moreover, the late appearance of DNA coinciding with the rooting of the universal phylogenetic tree would make the genome of N. equitans a witness to this fundamental event.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Via P. Castellino, 111, 80131 Naples, Napoli, Italy.
| |
Collapse
|
12
|
Abstract
Research into the origins of introns is at a critical juncture in the resolution of theories on the evolution of early life (which came first, RNA or DNA?), the identity of LUCA (the last universal common ancestor, was it prokaryotic- or eukaryotic-like?), and the significance of noncoding nucleotide variation. One early notion was that introns would have evolved as a component of an efficient mechanism for the origin of genes. But alternative theories emerged as well. From the debate between the "introns-early" and "introns-late" theories came the proposal that introns arose before the origin of genetically encoded proteins and DNA, and the more recent "introns-first" theory, which postulates the presence of introns at that early evolutionary stage from a reconstruction of the "RNA world." Here we review seminal and recent ideas about intron origins. Recent discoveries about the patterns and causes of intron evolution make this one of the most hotly debated and exciting topics in molecular evolutionary biology today.
Collapse
Affiliation(s)
- Francisco Rodríguez-Trelles
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | |
Collapse
|
13
|
Forterre P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci U S A 2006; 103:3669-74. [PMID: 16505372 PMCID: PMC1450140 DOI: 10.1073/pnas.0510333103] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Indexed: 11/18/2022] Open
Abstract
The division of the living world into three cellular domains, Archaea, Bacteria, and Eukarya, is now generally accepted. However, there is no consensus about the evolutionary relationships among these domains, because all of the proposed models have a number of more or less severe pitfalls. Another drawback of current models for the universal tree of life is the exclusion of viruses, otherwise a major component of the biosphere. Recently, it was suggested that the transition from RNA to DNA genomes occurred in the viral world, and that cellular DNA and its replication machineries originated via transfers from DNA viruses to RNA cells. Here, I explore the possibility that three such independent transfers were at the origin of Archaea, Bacteria, and Eukarya, respectively. The reduction of evolutionary rates following the transition from RNA to DNA genomes would have stabilized the three canonical versions of proteins involved in translation, whereas the existence of three different founder DNA viruses explains why each domain has its specific DNA replication apparatus. In that model, plasmids can be viewed as transitional forms between DNA viruses and cellular chromosomes, and the formation of different levels of cellular organization (prokaryote or eukaryote) could be traced back to the nature of the founder DNA viruses and RNA cells.
Collapse
Affiliation(s)
- Patrick Forterre
- Biologie Moléculaire du Gène Chez les Extrêmophiles, Institut Pasteur, 25, Rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
14
|
Daniel I, Oger P, Winter R. Origins of life and biochemistry under high-pressure conditions. Chem Soc Rev 2006; 35:858-75. [PMID: 17003893 DOI: 10.1039/b517766a] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Life on Earth can be traced back to as far as 3.8 billion years (Ga) ago. The catastrophic meteoritic bombardment ended between 4.2 and 3.9 Ga ago. Therefore, if life emerged, and we know it did, it must have emerged from nothingness in less than 400 million years. The most recent scenarios of Earth accretion predict some very unstable physico-chemical conditions at the surface of Earth, which, in such a short time period, would impede the emergence of life from a proto-biotic soup. A possible alternative would be that life originated in the depth of the proto-ocean of the Hadean Earth, under high hydrostatic pressure. The large body of water would filter harmful radiation and buffer physico-chemical variations, and therefore would provide a more stable radiation-free environment for pre-biotic chemistry. After a short introduction to Earth history, the current tutorial review presents biological and physico-chemical arguments in support of high-pressure origin for life on Earth.
Collapse
Affiliation(s)
- Isabelle Daniel
- Laboratoire de Sciences de la Terre, UMR 5570 CNRS-UCB Lyon1-ENS Lyon, Bât. Géode, 2 rue Raphael Dubois, F-69622 Villeurbanne cedex, France.
| | | | | |
Collapse
|
15
|
Abstract
The concept of evolvability covers a broad spectrum of, often contradictory, ideas. At one end of the spectrum it is equivalent to the statement that evolution is possible, at the other end are untestable post hoc explanations, such as the suggestion that current evolutionary theory cannot explain the evolution of evolvability. We examine similarities and differences in eukaryote and prokaryote evolvability, and look for explanations that are compatible with a wide range of observations. Differences in genome organisation between eukaryotes and prokaryotes meets this criterion. The single origin of replication in prokaryote chromosomes (versus multiple origins in eukaryotes) accounts for many differences because the time to replicate a prokaryote genome limits its size (and the accumulation of junk DNA). Both prokaryotes and eukaryotes appear to switch from genetic stability to genetic change in response to stress. We examine a range of stress responses, and discuss how these impact on evolvability, particularly in unicellular organisms versus complex multicellular ones. Evolvability is also limited by environmental interactions (including competition) and we describe a model that places limits on potential evolvability. Examples are given of its application to predator competition and limits to lateral gene transfer. We suggest that unicellular organisms evolve largely through a process of metabolic change, resulting in biochemical diversity. Multicellular organisms evolve largely through morphological changes, not through extensive changes to cellular biochemistry.
Collapse
Affiliation(s)
- Anthony M Poole
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
16
|
Caetano-Anollés G. Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res 2002; 30:2575-87. [PMID: 12034847 PMCID: PMC117177 DOI: 10.1093/nar/30.11.2575] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Revised: 03/19/2002] [Accepted: 04/02/2002] [Indexed: 11/12/2022] Open
Abstract
The elucidation of ribosomal structure has shown that the function of ribosomes is fundamentally confined to dynamic interactions established between the RNA components of the ribosomal ensemble. These findings now enable a detailed analysis of the evolution of ribosomal RNA (rRNA) structure. The origin and diversification of rRNA was studied here using phylogenetic tools directly at the structural level. A rooted universal tree was reconstructed from the combined secondary structures of large (LSU) and small (SSU) subunit rRNA using cladistic methods and considerations in statistical mechanics. The evolution of the complete repertoire of structural ribosomal characters was formally traced lineage-by-lineage in the tree, showing a tendency towards molecular simplification and a homogeneous reduction of ribosomal structural change with time. Character tracing revealed patterns of evolution in inter-subunit bridge contacts and tRNA-binding sites that were consistent with the proposed coupling of tRNA translocation and subunit movement. These patterns support the concerted evolution of tRNA-binding sites in the two subunits and the ancestral nature and common origin of certain structural ribosomal features, such as the peptidyl (P) site, the functional relay of the penultimate stem helix of SSU rRNA, and other structures participating in ribosomal dynamics. Overall results provide a rare insight into the evolution of ribosomal structure.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Laboratory of Molecular Ecology and Evolution and Division of Molecular Biology, Department of Biology, University of Oslo, N-0316 Oslo, Norway and Vital NRG, Knoxville, TN, USA
| |
Collapse
|
17
|
Musgrave D, Zhang X, Dinger M. Archaeal genome organization and stress responses: implications for the origin and evolution of cellular life. ASTROBIOLOGY 2002; 2:241-253. [PMID: 12530235 DOI: 10.1089/153110702762027835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
For DNA to be used as an informational molecule it must exist in the cell on the edge of stability because all genomic processes require local controlled melting. This presents mechanistic opportunities and problems for genomic DNA from hyperthermophilic organisms, whose unpackaged DNA could melt at optimal temperatures for growth. Hyperthermophiles are suggested to employ the novel positively supercoiling topoisomerase enzyme reverse gyrase (RG) to form positively supercoiled DNA that is intrinsically resistant to thermal denaturation. RG is presently the only archaeal gene that is uniquely found in hyperthermophiles and therefore is central to hypotheses suggesting a hypothermophilic origin of life. However, the suggestion that RG has evolved by the fusion of two pre-existing enzymes has led to hypotheses for a lower temperature for the origin of life. In addition to the action of topoisomerases, DNA packaging and the intracellular ionic environment can also manipulate DNA topology significantly. In the Euryarchaeota, nucleosomes containing minimal histones can adopt two alternate DNA topologies in a salt-dependent manner. From this we hypothesize that since internal salt concentrations are increased following an increase in temperature, the genomic effects of temperature fluctuations could also be accommodated by changes in nucleosome organization. In addition, stress-induced changes in the nucleoid proteins could also play a role in maintaining the genome in the optimal topological state in changing environments. The function of these systems could therefore be central to temperature adaptation and thus be implicated in origin of life scenarios involving hyperthermophiles.
Collapse
Affiliation(s)
- David Musgrave
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.
| | | | | |
Collapse
|
18
|
Abstract
Cytologically, prokaryotes appear simpler and thus evolutionarily 'older' than eukaryotes. In terms of RNA processing, however, prokaryotes are sophisticated and eukaryotes, which retain many features of an RNA-world, appear primitive. The last universal common ancestor may have been mesophilic and could have had many features of the eukaryote genome, but its cytology is unknown.
Collapse
Affiliation(s)
- D Penny
- Institute of Molecular BioSciences, Massey University, PO Box 11 222, New Zealand.
| | | |
Collapse
|
19
|
Abstract
The currently accepted universal tree of life based on molecular phylogenies is characterised by a prokaryotic root and the sisterhood of archaea and eukaryotes. The recent discovery that each domain (bacteria, archaea, and eucarya) represents a mosaic of the two others in terms of its gene content has suggested various alternatives in which eukaryotes were derived from the merging of bacteria and archaea. In all these scenarios, life evolved from simple prokaryotes to complex eukaryotes. We argue here that these models are biased by overconfidence in molecular phylogenies and prejudices regarding the primitive nature of prokaryotes. We propose instead a universal tree of life with the root in the eukaryotic branch and suggest that many prokaryotic features of the information processing mechanisms originated by simplification through gene loss and non-orthologous displacement.
Collapse
Affiliation(s)
- P Forterre
- Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
20
|
Forterre P. Looking for the most "primitive" organism(s) on Earth today: the state of the art. PLANETARY AND SPACE SCIENCE 1995; 43:167-177. [PMID: 11538431 DOI: 10.1016/0032-0633(94)00167-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular phylogenetic studies have revealed a tripartite division of the living world into two procaryotic groups, Bacteria and Archaea, and one eucaryotic group, Eucarya. Which group is the most "primitive"? Which groups are sister? The answer to these questions would help to delineate the characters of the last common ancestor to all living beings, as a first step to reconstruct the earliest periods of biological evolution on Earth. The current "Procaryotic dogma" claims that procaryotes are primitive. Since the ancestor of Archaea was most probably a hyperthermophile, and since bacteria too might have originated from hyperthermophiles, the procaryotic dogma has been recently connected to the hot origin of life hypothesis. However, the notion that present-day hyperthermophiles are primitive has been challenged by recent findings, in these unique microorganisms, of very elaborate adaptative devices for life at high temperature. Accordingly, I discuss here alternative hypotheses that challenge the procaryotic dogma, such as the idea of a universal ancestor with molecular features in between those of eucaryotes and procaryotes, or the origin of procaryotes via thermophilic adaptation. Clearly, major evolutionary questions about early cellular evolution on Earth remain to be settled before we can speculate with confidence about which kinds of life might have appeared on other planets.
Collapse
Affiliation(s)
- P Forterre
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| |
Collapse
|
21
|
|
22
|
Abstract
Does the "universal tree" based on small-subunit ribosomal RNA sequences show the phylogenetic relationship of all modern organisms? The answer is "yes" only if all these rRNAs are orthologous. Herein I argue that the major rRNA lineages (e.g. eubacterial, one or more archaebacterial and eukaryotic nucleocytoplasmic) probably arose from a divergent population of rRNAs in the progenote, antedating the universal common ancestral organism. Thus the major lineages of rRNA are probably not orthologous, but paralogous. The extrapolated date for the origin of the common ancestral small-subunit rRNA (3.6-4.7 x 10(9) years ago) is consistent with major rRNA lineages being paralogous. This perspective on the early evolution of genes and organisms rationalizes the presence of unexpected ribosomal characters in microsporidia, and bears on xenogenous and endogenous theories of the origin of the organelles in eukaryotes.
Collapse
Affiliation(s)
- M A Ragan
- Atlantic Research Laboratory, National Research Council of Canada, Halifax, Nova Scotia
| |
Collapse
|
23
|
|
24
|
Abstract
The proposal that RNA preceded DNA in evolution is more than 15 years old. In light of recent studies on RNA processing (including protein-free reactions), present knowledge about eukaryotic gene structure, and studies comparing ribosomal RNA sequences, we propose a train of events for precellular and early cellular evolution.
Collapse
|
25
|
Gray MW, Sankoff D, Cedergren RJ. On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res 1984; 12:5837-52. [PMID: 6462918 PMCID: PMC320035 DOI: 10.1093/nar/12.14.5837] [Citation(s) in RCA: 248] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To probe the earliest evolutionary events attending the origin of the five known genome types (archaebacterial, eubacterial, nuclear, mitochondrial and plastid), we have analyzed sequences corresponding to a ubiquitous, highly conserved core of secondary structure in small subunit rRNA. Our results support (i) the existence of three primary lineages (archaebacterial, eubacterial, and nuclear), (ii) a specific eubacterial ancestry for plastids and mitochondria (plant, animal, fungal), and (iii) an endosymbiotic, evolutionary origin of the two types of organelle from within distinct groups of eubacteria (blue-green algae (cyanobacteria) in the case of plastids, nonphotosynthetic aerobic bacteria in the case of mitochondria). In addition, our analysis suggests (iv) a biphyletic origin of mitochondria, with animal and fungal mitochondria branching together but separately from plant mitochondria, and (v) a monophyletic origin of plastids. The method described here provides a powerful and generally applicable molecular taxonomic approach towards a global phylogeny encompassing all organisms and organelles.
Collapse
|
26
|
|
27
|
|
28
|
Searcy DG, Stein DB, Searcy KB. A mycoplasma-like archaebacterium possibly related to the nucleus and cytoplasms of eukaryotic cells. Ann N Y Acad Sci 1981; 361:312-24. [PMID: 6941726 DOI: 10.1111/j.1749-6632.1981.tb46527.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Searcy DG, Stein DB, Searcy KB. A MYCOPLASMA-LIKE ARCHAEBACTERIUM POSSIBLY RELATED TO THE NUCLEUS AND CYTOPLASM OF EUKARYOTIC CELLS. Ann N Y Acad Sci 1981. [DOI: 10.1111/j.1749-6632.1981.tb54373.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Mahler HR. MITOCHONDRIAL EVOLUTION: ORGANIZATION AND REGULATION OF MITOCHONDRIAL GENES. Ann N Y Acad Sci 1981. [DOI: 10.1111/j.1749-6632.1981.tb54357.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Abstract
This paper reviews the relationship of mycoplasmas to eubacteria, the question of whether mycoplasmas and eubacteria have a cytoskeleton, and whether the unique ultrastructural features of certain mycoplasmas function as a mitotic-like apparatus. Although cytochalasins have inhibitory effects on some mycoplasmas and eubacteria, there are no data indicating that eubacteria have an actin-like protein or other cytoskeletal element. However, the situation for the mycoplasmas remain confusing. While mycoplasma may not contain actin, the data do suggest the presence of other cytoskeletal elements.
Collapse
|
32
|
Cedergren RJ, Sankoff D, LaRue B, Grosjean H. The evolving tRNA molecule. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1981; 11:35-104. [PMID: 7030617 DOI: 10.3109/10409238109108699] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The study of tRNA molecular evolution is crucial to understanding the origin and establishment of the genetic code as well as the differentiation and refinement of the machinery of protein synthesis in prokaryotes, eukaryotes, organelles, and phage systems. The small size of the molecule and its critical involvement in a multiplicity of roles distinguish its study from classical protein molecular evolution with respect to goals and methods. Here, the authors assess available and missing data, existing and needed methodology, and the impact of tRNA studies on current theories both of genetic code evolution and of the evolution of species. They analyze mutational "hot spots", the role of base modification, synthetase recognition, codon-anticodon interactions and the status of organelle tRNA.
Collapse
|
33
|
|
34
|
|
35
|
Reanney D. Extrachromosomal elements as possible agents of adaptation and development. BACTERIOLOGICAL REVIEWS 1976; 40:552-90. [PMID: 791235 PMCID: PMC413972 DOI: 10.1128/br.40.3.552-590.1976] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Abstract
Logarithmic distributions of nucleic acid contents per genome of species within major phylogenetic groups of organisms tend to form several peaks. These peaks appear to represent intragroup doublings of DNA or RNA which, in the case of eukaryotes, are independent of polyploidy. This phenomenon has been termed cryptopolyploidy. There are numerical similarities in peak values for different taxonomic groups. A high degree of order is suggested when minimum values for the major phylogenetic groups are plotted against a series of theoretical doublings. These data demonstrate the apparent existence of an exponential periodicity over eight orders of magnitude, leading us to suggest an evolutionary continuity of doublings of a basic ancestral genome (of about 300 nucleotides), these doublings being independent of both chromosome number and ploidy level. This proposed continuity encompasses most major life forms and is generally concomitant with increasing evolutionary complexity, particularly in the prokaryotes and lower eukaryotes. Our interpretation of the data presented here must currently be viewed as speculative, and we do not propose that genome doubling is the only mechanism for genome evolution. However, we feel that the evidence is sufficient to warrant serious scrutiny of our proposals. We hope that this approach to a synthesis of available data will provoke discussion and will stimulate further work toward either supporting, modifying, or disproving our hypothesis.
Collapse
|