Sandyk R, Derpapas K. The effects of external picoTesla range magnetic fields on the EEG in Parkinson's disease.
Int J Neurosci 1993;
70:85-96. [PMID:
8083028 DOI:
10.3109/00207459309000564]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report a 68 year old man with a 7 year history of Parkinson's disease (PD) who obtained little benefit from treatment by dopaminergic and anticholinergic agents. During the six months prior to presentation, he experienced more rapid deterioration in symptoms including memory functions, increasing depression, and dystonia of the foot. External application of picoTesla range magnetic fields (MF) resulted in rapid attenuation of tremor and foot dystonia with improvements in gait, postural reflexes, mood, anxiety, cognitive, and autonomic functions. Plasma prolactin and luteinizing hormone (LH) levels rose three days after initiation of treatment. In addition, distinct electroencephalographic (EEG) changes were recorded nine days after two treatments with MF and included enhancement of alpha and beta activities as well as resolution of the theta activity. These findings demonstrate, for the first time, objective EEG changes in response to picoTesla range MF in PD. Since the pineal gland is a magnetosensor and as some of the clinical effects produced by MF such as relaxation, sleepiness, mood elevation, increased dreaming, and enhancement of alpha and beta activities in the EEG have also been noted in healthy subjects administered melatonin, we propose that the clinical effects as well as the EEG changes noted after treatment with MF were mediated by the pineal gland which previously has been implicated in the pathophysiology of PD.
Collapse