1
|
Benoit JB, Michalkova V, Didion EM, Xiao Y, Baumann AA, Attardo GM, Aksoy S. Rapid autophagic regression of the milk gland during involution is critical for maximizing tsetse viviparous reproductive output. PLoS Negl Trop Dis 2018; 12:e0006204. [PMID: 29385123 PMCID: PMC5809099 DOI: 10.1371/journal.pntd.0006204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/12/2018] [Accepted: 01/02/2018] [Indexed: 12/03/2022] Open
Abstract
Tsetse flies are important vectors of human and animal trypanosomiasis. Ability to reduce tsetse populations is an effective means of disease control. Lactation is an essential component of tsetse’s viviparous reproductive physiology and requires a dramatic increase in the expression and synthesis of milk proteins by the milk gland organ in order to nurture larval growth. In between each gonotrophic cycle, tsetse ceases milk production and milk gland tubules undergo a nearly two-fold reduction in width (involution). In this study, we examined the role autophagy plays during tsetse fly milk gland involution and reproductive output. Autophagy genes show elevated expression in tissues associated with lactation, immediately before or within two hours post-parturition, and decline at 24-48h post-parturition. This expression pattern is inversely correlated with that of the milk gland proteins (lactation-specific protein coding genes) and the autophagy inhibitor fk506-bp1. Increased expression of Drosophila inhibitor of apoptosis 1, diap1, was also observed in the milk gland during involution, when it likely prevents apoptosis of milk gland cells. RNAi-mediated knockdown of autophagy related gene 8a (atg8a) prevented rapid milk gland autophagy during involution, prolonging gestation, and reducing fecundity in the subsequent gonotrophic cycle. The resultant inhibition of autophagy reduced the recovery of stored lipids during the dry (non-lactating) periods by 15–20%. Ecdysone application, similar to levels that occur immediately before birth, induced autophagy, and increased milk gland involution even before abortion. This suggests that the ecdysteroid peak immediately preceding parturition likely triggers milk gland autophagy. Population modeling reveals that a delay in involution would yield a negative population growth rate. This study indicates that milk gland autophagy during involution is critical to restore nutrient reserves and allow efficient transition between pregnancy cycles. Targeting post-birth phases of reproduction could be utilized as a novel mechanism to suppress tsetse populations and reduce trypanosomiasis. Tsetse flies are vectors for trypanosomes that cause both African sleeping sickness in humans and Nagana in animals. The reduction of tsetse populations is the most efficient way to reduce the prevalence of this economically important disease with current control methods including pesticide application, traps, and sterile insect techniques. Tsetse pregnancy and milk production represent a species-specific target for population control and milk gland transition during each larval growth cycle could represent a novel target for tsetse control. Within one day after birth, the milk gland organ, essential for provisioning nutrients to the intrauterine larva, undergoes involution marked by an ecdysone driven increase in autophagy that allows breakdown of this gland. Inhibiting the process of autophagy prevents the timely transition from the lactation phase to the dry phase, triggering a delay in subsequent pregnancy cycle. This misregulation of milk gland involution leads to an overall decrease in the number of offspring that each female can produce per lifetime. This study has determined the molecular components of this process, and reveals new targets of interference for vector control.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States.,Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States.,Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Biological Sciences, Florida International University, Miami, Florida, United States
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States
| | - Aaron A Baumann
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States
| | - Geoffrey M Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States.,Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States
| |
Collapse
|
2
|
Schlattner U, Vafopoulou X, Steel CGH, Hormann RE, Lezzi M. Non-genomic ecdysone effects and the invertebrate nuclear steroid hormone receptor EcR--new role for an "old" receptor? Mol Cell Endocrinol 2006; 247:64-72. [PMID: 16455191 DOI: 10.1016/j.mce.2005.12.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2005] [Indexed: 11/18/2022]
Abstract
The ecdysteroids (Ec), invertebrate steroid hormones, elicit genomic but also non-genomic effects. By analogy to vertebrates, non-genomic responses towards Ec may be mediated not only by distinct membrane-integrated but also by membrane-associated receptors like the classical nuclear ecdysteroid receptor (EcR) of arthropods. This is supported by a comparison of physiological properties between invertebrate and vertebrate steroid hormone systems and recent findings on the subcellular localization of EcR. The measured or predicted high degree of conformational flexibility of both Ec and the ligand binding domain (LBD) of EcR give rise to a conformational compatibility model: the compatibility between conformations of the cognate receptor's ligand binding domain and structures or conformations of the ligand would determine their interaction and eventually the initiation of genomic versus non-genomic pathways. This model could also explain why specific non-genomic effects are generally not observed with non-steroidal agonists of the bisacylhydrazine group.
Collapse
Affiliation(s)
- Uwe Schlattner
- Institute of Cell Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
3
|
Warren JT, Dai JD, Gilbert LI. Can the insect nervous system synthesize ecdysteroids? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:571-579. [PMID: 10406093 DOI: 10.1016/s0965-1748(99)00033-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The term "neurosteroid" refers to both classic and unique steroid molecules that are synthesized from cholesterol (C) by the central and peripheral nervous systems of higher vertebrates. Therein, they accumulate and modulate nervous activity by a variety of mechanisms other than the classic steroid receptor-mediated modulation of genomic activity, although such may also be involved. Since the insect nervous system expresses ecdysteroid receptors and responds both directly and developmentally to ecdysteroids, the possibility of ecdysteroidogenesis in the pupal and adult central and peripheral nervous system of Manduca sexta and the nervous system of Drosophila melanogaster larvae was investigated. The endogenous concentrations of the critical, dietary-derived delta 5,7-sterols ergosterol and 7-dehydrocholesterol (7dC) remained 10 to 20-fold higher in the Manduca pupal and adult nervous tissues than was found in the larval hemolymph at the cessation of feeding. In addition, it was determined that the Manduca pupal nervous system, but not that of the adult, could synthesize 3H/14C-7dC or 3H-7-dehydro-25-hydroxycholesterol (3H-7d25C) from 3H/14C-cholesterol (3H/14C-C) or the polar sterol substrate 3H-25-hydroxycholesterol (3H-25C), respectively. However, none of the nervous system samples from the two species and the several stages analyzed, a small window of neural development in these insects, were capable of incorporating any of the above tracer precursor sterols into a radiolabelled ecdysteroid, i.e. less than 0.0005%. Thus, the absence of neurosteroidogenesis by the insect nervous system stands in sharp contrast to previously described nervous system steroid hormone biosynthesis by the mammalian nervous system.
Collapse
Affiliation(s)
- J T Warren
- Department of Biology, University of North Carolina at Chapel Hill 27599-3280, USA
| | | | | |
Collapse
|
5
|
HOFFMANN KLAUSH, SORGE DORIAN, SCHWARZENBERGER DIETER. Effects of juvenile hormone analogues and ecdysteroid biosynthesis effectors on egg production in crickets,Gryllus bimaculatusde Geer (Ensifera, Gryllidae). INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Tanaka Y, Asaoka K, Takeda S. Different feeding and gustatory responses to ecdysone and 20-hydroxyecdysone by larvae of the silkworm,Bombyx mori. J Chem Ecol 1994; 20:125-33. [DOI: 10.1007/bf02065995] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/1993] [Accepted: 09/08/1993] [Indexed: 11/25/2022]
|
8
|
ROBERT ALAIN, STRAMBI COLETTE, STRAMBI ALAIN, DELBECQUE JEANPAUL. Ecdysteroids during the development of the tsetse fly. INVERTEBR REPROD DEV 1991. [DOI: 10.1080/07924259.1991.9672158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|