Kitani K. What really declines with age? The Hayflick Lecture for 2006 35th American Aging Association.
AGE (DORDRECHT, NETHERLANDS) 2007;
29:1-14. [PMID:
19424826 PMCID:
PMC2267679 DOI:
10.1007/s11357-006-9014-8]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/25/2006] [Accepted: 08/28/2006] [Indexed: 05/11/2023]
Abstract
In order to understand the basic mechanisms underlying the organismic aging process, considerable efforts have been devoted in the last half-century to biochemical (enzyme activity) alterations in specific tissues and organs of various organisms associated with aging. When a decline in enzyme activities with age has been found in a study, especially for key enzymes such as antioxidant enzymes, the results have often been interpreted as a cause for the aging of the entire body. Retrospectively, however, these changes turned out to be so variable--depending on species, strains and sexes of animals--that the interpretation of these results in general terms of aging became invalid. Further, unlike the prediction for the whole human body, many enzyme activities in a vital organ, such as the liver, remained unchanged, as long as the old subjects remained healthy. However, enzyme activities in old animals and humans are often more susceptible to morbidities and frailties, which themselves are often accompanied by infections and malnutrition. Despite the rather stable enzyme functions in the liver with age, a distinct and progressive decline in the lateral diffusion coefficient of proteins of hepatocyte plasma membranes has been demonstrated by fluorescence recovery after photobleaching (FRAP), which was implicated as the cause for the decline of hepatocyte functions such as ouabain (and taurocholate) hepatic uptake and their eventual biliary excretion. Since a similar decline in protein diffusion coefficients was observed in brain and muscle cells, it is likely that these changes are occurring in common with many cell types of the body, thus causing a delay in transmembrane transport of endogenous and exogenous substances whose transports are mediated by membrane proteins. In attempts to prolong the life spans of animals other than by calorie restriction, but instead using deprenyl or tetrahydrocurcumin, works by the author and coworkers are introduced and discussed. Despite limited success along these lines thus far, further attempts are encouraged, primarily to understand the mechanisms underlying organismic aging processes and to find a practical way to prolong the health span of the elderly.
Collapse