1
|
Ostler N, Britzen-Laurent N, Liebl A, Naschberger E, Lochnit G, Ostler M, Forster F, Kunzelmann P, Ince S, Supper V, Praefcke GJK, Schubert DW, Stockinger H, Herrmann C, Stürzl M. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor. Mol Cell Biol 2014; 34:196-209. [PMID: 24190970 PMCID: PMC3911287 DOI: 10.1128/mcb.00664-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/22/2013] [Accepted: 10/28/2013] [Indexed: 02/07/2023] Open
Abstract
Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.
Collapse
Affiliation(s)
- Nicole Ostler
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Liebl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Günter Lochnit
- Faculty of Medicine, Institute of Biochemistry, Justus Liebig University, Giessen, Germany
| | - Markus Ostler
- Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| | - Florian Forster
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Kunzelmann
- Institute of Polymer Materials, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Semra Ince
- Physical Chemistry I, Ruhr University Bochum, Bochum, Germany
| | - Verena Supper
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Dirk W. Schubert
- Institute of Polymer Materials, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hannes Stockinger
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Michael Stürzl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
2
|
Adams V, Lenk K, Schubert A, Gielen S, Schuler G, Hambrecht R. Differentially expressed genes in L6 rat skeletal muscle myoblasts after incubation with inflammatory cytokines. Cytokine 2001; 13:342-8. [PMID: 11292317 DOI: 10.1006/cyto.2000.0839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The mechanism underlying exercise intolerance in chronic heart failure is still unclear. An increased concentration of inflammatory cytokines could be detected in the serum of patients with chronic heart failure (CHF) exhibiting a correlation with the severity of the disease. The variety of molecular alterations triggered by these cytokines in the skeletal muscle is almost unknown. The study was designed to analyze the differential gene expression in skeletal muscle myoblasts after stimulation with inflammatory cytokines. METHODS L6 rat skeletal muscle myoblasts were incubated for 24 h with a combination of IL-1beta/IFN-gamma and the differential gene expression profile was determined by a PCR-based subtractive hybridization method. RESULTS Out of 173 picked clones 141 different sequences could be identified. By comparison with Genebank, the identity of 73 genes (51.7%) could be confirmed, whereas the rest did not show a homology to any known gene. Some of the identified genes are known to be altered in patients with CHF. CONCLUSION In summary, the results of this study provide information about changes in gene expression after exposure of skeletal muscle cells to inflammatory cytokines. This information may yield a new gene pool, worthwhile to be analyzed in skeletal muscle of patients with chronic heart failure.
Collapse
Affiliation(s)
- V Adams
- Department of Cardiology, Heart Center, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
3
|
Aránega AE, Velez C, Prados J, Melguizo C, Marchal JA, Arena N, Alvarez L, Aránega A. Modulation of alpha-actin and alpha-actinin proteins in cardiomyocytes by retinoic acid during development. Cells Tissues Organs 2000; 164:82-9. [PMID: 10352886 DOI: 10.1159/000016645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Early heart development is known to be sensitive to retinoid concentrations. Although the influence of retinoids on cardiac morphogenesis has been described previously, the effect of retinoids on cardiomyocyte differentiation during development has not been characterized. We quantified the effects of the retinoic acids all-trans RA and 13-cis RA on alpha-actin and alpha-actinin at the subcellular level in cultures of chick embryo cardiomyocytes obtained from Hamburger and Hamilton's (HH) stage 22, 32 and 40 embryos. The retinoids increased the concentration of alpha-actin and alpha-actinin in the cytoplasmic and cytoskeletal fractions of cells at all three stages of development. The effect was greatest in cardiomyocytes treated for 24 h with all-trans RA and in cells from HH22 embryos. The greatest increases in alpha-actin concentration occurred in the cytoskeletal fraction of HH22 cells cultured for 24 h with all-trans or 13-cis RA, whereas the greatest increases in alpha-actinin were found in the cytoplasmic fraction of HH22 cells exposed to retinoids for 24 h. We conclude that retinoic acid plays a role in the reorganization of the pattern of sarcomeric protein expression during cardiomyocyte differentiation.
Collapse
Affiliation(s)
- A E Aránega
- Department of Experimental Biology, University of Jaén, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Vélez C, Aránega AE, Marchal JA, Melguizo C, Prados JC, Carrillo E, Aránega A. Development of chick cardiomyocytes: modulation of intermediate filaments by basic fibroblast and platelet-derived growth factors. Cells Tissues Organs 2000; 167:163-70. [PMID: 10971040 DOI: 10.1159/000016779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent studies suggest that peptide growth factors play a functional role in cardiac muscle. To test whether embryonic cardiac muscle is a target for regulation by basic fibroblast growth factor and platelet-derived growth factor, we analyzed the effects of these peptides on the expression of the intermediate filaments desmin and vimentin at the subcellular level during development. Sodium dodecyl sulfate-gel electrophoresis, immunoblotting and fluorescence-activated cell sorting analysis were used to study the effect of basic fibroblast growth factor and platelet-derived growth factor on cultures of chick cardiomyocytes during development. Cytoplasmic and cytoskeletal concentrations of desmin and vimentin were dependent on the stage of embryonic development and on the type of growth factor added to the culture. The most significant finding was the increase in desmin expression in the cytoplasmic and cytoskeletal compartments after treatment with basic fibroblast growth factor (10 ng/ml) of chick heart cells at Hamburger and Hamilton stage 19. In more mature stages, basic fibroblast growth factor did not modify the levels of desmin expression. However, this factor led to a progressive deceleration in the rate of increase in vimentin expression. Platelet-derived growth factor increased vimentin expression in all stages studied, the greatest increases appearing in early stages of heart development. Our findings support the hypothesis that basic fibroblast growth factor plays a role in cardiomyocyte differentiation during the early stages of development, whereas platelet-derived growth factor has a dedifferentiating effect.
Collapse
Affiliation(s)
- C Vélez
- Department of Health Sciences, University of Almería, Spain
| | | | | | | | | | | | | |
Collapse
|