1
|
The regulatory role of GABA A receptor in Actinia equina nervous system and the possible effect of global ocean acidification. Pflugers Arch 2021; 473:1851-1858. [PMID: 34633524 PMCID: PMC8599403 DOI: 10.1007/s00424-021-02628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Global warming and connected acidification of the world ocean attract a substantial amount of research efforts, in particular in a context of their impact on behaviour and metabolism of marine organisms, such as Cnidaria. Nevertheless, mechanisms underlying Cnidarians’ neural signalling and behaviour and their (possible) alterations due to the world ocean acidification remain poorly understood. Here we researched for the first time modulation of GABAA receptors (GABAARs) in Actinia equina (Cnidaria: Anthozoa) by pH fluctuations within a range predicted by the world ocean acidification scenarios for the next 80–100 years and by selective pharmacological activation. We found that in line with earlier studies on vertebrates, both changes of pH and activation of GABAARs with a selective allosteric agonist (diazepam) modulate electrical charge transfer through GABAAR and the whole-cell excitability. On top of that, diazepam modifies the animal behavioural reaction on startle response. However, despite behavioural reactions displayed by living animals are controlled by GABAARs, changes of pH do not alter them significantly. Possible mechanisms underlying the species resistance to acidification impact are discussed.
Collapse
|
2
|
Goel T, Wang R, Martin S, Lanphear E, Collins EMS. Linalool acts as a fast and reversible anesthetic in Hydra. PLoS One 2019; 14:e0224221. [PMID: 31648269 PMCID: PMC6812832 DOI: 10.1371/journal.pone.0224221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/08/2019] [Indexed: 01/23/2023] Open
Abstract
The ability to make transgenic Hydra lines has allowed for quantitative in vivo studies of Hydra regeneration and physiology. These studies commonly include excision, grafting and transplantation experiments along with high-resolution imaging of live animals, which can be challenging due to the animal’s response to touch and light stimuli. While various anesthetics have been used in Hydra studies, they tend to be toxic over the course of a few hours or their long-term effects on animal health are unknown. Here, we show that the monoterpenoid alcohol linalool is a useful anesthetic for Hydra. Linalool is easy to use, non-toxic, fast acting, and reversible. It has no detectable long-term effects on cell viability or cell proliferation. We demonstrate that the same animal can be immobilized in linalool multiple times at intervals of several hours for repeated imaging over 2–3 days. This uniquely allows for in vivo imaging of dynamic processes such as head regeneration. We directly compare linalool to currently used anesthetics and show its superior performance. Linalool will be a useful tool for tissue manipulation and imaging in Hydra research in both research and teaching contexts.
Collapse
Affiliation(s)
- Tapan Goel
- Department of Physics, University of California San Diego, La Jolla, CA, United States of America
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Rui Wang
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Sara Martin
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Elizabeth Lanphear
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Eva-Maria S. Collins
- Department of Physics, University of California San Diego, La Jolla, CA, United States of America
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
- * E-mail:
| |
Collapse
|
3
|
Hufnagel LA, Pierobon P, Kass-Simon G. Immunocytochemical localization of a putative strychnine-sensitive glycine receptor in Hydra vulgaris. Cell Tissue Res 2019; 377:177-191. [PMID: 30976918 DOI: 10.1007/s00441-019-03011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/26/2019] [Indexed: 12/01/2022]
Abstract
Previous biochemical studies have identified strychnine-sensitive glycine receptors in membrane preparations of Hydra vulgaris (Cnidaria: Hydrozoa). Electrophysiological and behavioral evidence has shown that these receptors play a role in modulating pacemaker activity and feeding behavior. Here, we present our genomic analysis that revealed hydra proteins having strong homology with the strychnine-binding region of the human receptor protein, GlyRα1. We further present immunocytochemical evidence for the specific labeling of cell and tissue preparations of hydra by a commercially available polyclonal anti-GlyRα1 antibody, selected through our genomic analysis. Tissue pieces and cell macerates from the upper and lower thirds of the body and ablated tentacles were double-labeled with this antibody and with an antibody specific for α-tubulin, to identify the glycine receptors and microtubules, respectively. Extensive receptor labeling was evident on the membranes, cell bodies and myonemes of endodermal and ectodermal epithelial cells, cell bodies and neurites of nerve cells, cnidocytes and interstitial cells. Labeling of the membranes of epithelial cells frequently corresponded to conspicuous varicosities (presumptive presynaptic sites) in the associated nerve net. Our findings support the idea that glycine receptors form an integral part of the nerve and effector systems that control hydra behavior.
Collapse
Affiliation(s)
- Linda A Hufnagel
- Department of Cell and Molecular Biology & Interdisciplinary Neurosciences Program, University of Rhode Island, Flagg Road, Kingston, RI, 02881, USA.
| | - Paola Pierobon
- Institute of Applied Sciences and Intelligent Systems E. Caianiello, CNR, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Gabriele Kass-Simon
- Department of Biological Sciences & Interdisciplinary Neurosciences Program, University of Rhode Island, Flagg Road, Kingston, RI, 02881, USA.
| |
Collapse
|
4
|
Neuroactive compounds induce larval settlement in the scleractinian coral Leptastrea purpurea. Sci Rep 2019; 9:2291. [PMID: 30783133 PMCID: PMC6381176 DOI: 10.1038/s41598-019-38794-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/07/2019] [Indexed: 11/08/2022] Open
Abstract
Settlement of pelagic coral larvae is commonly induced by chemical cues that originate from biofilms and coralline algae. These natural settlement cues initiate signal pathways leading to attachment and metamorphosis of the coral larva. In order to investigate the settlement process and its natural inducers, it is necessary to gain a better understanding of these signal pathways. At present, the pathways and neurotransmitters involved in this signal transduction are still widely unknown. In this study, we exposed larvae of the brooding coral Leptastrea purpurea to five neuroactive compounds known to be present in cnidarians, and K+ Ions. All compounds were applied at different dilutions and settlement behavior of the larvae was documented over 48 h. Dopamine, glutamic acid and epinephrine significantly induced settlement in the coral larvae. The highest observed metamorphosis response was 54% in 10-5 M dopamine. Serotonin, L-DOPA and K+ ions did not have an influence on settlement behavior in our experiments. Exposing larvae to settlement-inducing neurotransmitters and thus bypassing the initial induction could be utilized in coral aquaculture. The active neurotransmitters should be used to further study the settlement process in L. purpurea in greater detail. Their role and relevance should also be assessed for other coral species as they may represent or reveal a universal inducer for coral settlement.
Collapse
|
5
|
Lauro BM, Kass-Simon G. Hydra's feeding response: Effect of GABA B ligands on GSH-induced electrical activity in the hypostome of H. vulgaris. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:83-93. [PMID: 30036674 DOI: 10.1016/j.cbpa.2018.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/17/2022]
Abstract
The feeding response in the Cnidarian, hydra, consists of mouth opening, tentacle writhing, and the cessation of pacemaker-controlled tentacle and body contractions. The behavior can be induced by reduced glutathione (GSH), contained in body fluids that leak from prey impaled by hydra's cnidocysts. Mouth, tentacle, and body-contraction behavior is carried out by hydra's ectodermal and endodermal epitheliomuscular cells. Here, we present the first evidence of GSH-induced electrical activity in the hypostome and its modification by GABA and GABAB ligands. The 'heads' of hydra were ablated and the tentacles removed. Suction electrodes, positioned on the mouth, recorded electrical activity produced by GSH, contained either within the electrode, or in the surrounding bath, the mouth being shielded. Recorded impulses were characterized, according to size and temporal pattern, as small, medium and (large) pacemaker impulses. GSH applied in the bath caused a frequency increase of small and medium impulses and a decrease in pacemaker bursts. The changes in frequencies of medium and pacemaker bursts, though not obviously affected by GABA, were counteracted by blocking GABAB inhibition with phaclofen. Only the highest concentration of GSH applied at the mouth potentially decreased pacemaker frequency and potentially increased medium impulses, without affecting small impulses. GABA caused a significant increase in small and medium impulses relative to GSH which was counteracted by baclofen and/or baclofen plus phaclofen. The results indicate that considerable GSH-receptor circuitry is located in hypostomal tissue proximal to hydra's mouth, and substantiate GABA and GABAB inhibition within the neuroeffector network of the feeding response.
Collapse
Affiliation(s)
- B M Lauro
- University of Rhode Island, Interdisciplinary Neuroscience Program, USA
| | - G Kass-Simon
- University of Rhode Island, Interdisciplinary Neuroscience Program, USA; University of Rhode Island, Department of Biological Sciences, USA.
| |
Collapse
|
6
|
Immunochemical Localization of GABA A Receptor Subunits in the Freshwater Polyp Hydra vulgaris (Cnidaria, Hydrozoa). Neurochem Res 2016; 41:2914-2922. [PMID: 27450241 DOI: 10.1007/s11064-016-2010-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
γ-aminobutyric acid (GABA) receptors, responding to GABA positive allosteric modulators, are present in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa), one of the most primitive metazoans to develop a nervous system. We examined the occurrence and distribution of GABAA receptor subunits in Hydra tissues by western blot and immunohistochemistry. Antibodies against different GABAA receptor subunits were used in Hydra membrane preparations. Unique protein bands, inhibited by the specific peptide, appeared at 35, 60, ∼50 and ∼52 kDa in membranes incubated with α3, β1, γ3 or δ antibodies, respectively. Immunohistochemical screening of whole mount Hydra preparations revealed diffuse immunoreactivity to α3, β1 or γ3 antibodies in tentacles, hypostome, and upper part of the gastric region; immunoreactive fibers were also present in the lower peduncle. By contrast, δ antibodies revealed a strong labeling in the lower gastric region and peduncle, as well as in tentacles. Double labeling showed colocalization of α3/β1, α3/γ3 and α3/δ immunoreactivity in granules or cells in tentacles and gastric region. In the peduncle, colocalization of both α3/β1 and α3/γ3 immunoreactivity was found in fibers running horizontally above the foot. These data indicate that specific GABAA receptor subunits are present and differentially distributed in Hydra body regions. Subunit colocalization suggests that Hydra GABA receptors are heterologous multimers, possibly sub-serving different physiological activities.
Collapse
|
7
|
Hufnagel LA, Kass-Simon G. The two nerve rings of the hypostomal nervous system of Hydra vulgaris-an immunohistochemical analysis. Cell Tissue Res 2016; 366:255-269. [PMID: 27344671 DOI: 10.1007/s00441-016-2447-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 06/02/2016] [Indexed: 01/08/2023]
Abstract
In Hydra vulgaris, physiological and pharmacological evidence exists for a hypostomal circumferential neuro-effector pathway that initiates ectodermal pacemaker activity at tentacular-hypostomal loci coordinating body and tentacle contractions. Here, we describe an ectodermal nerve ring that runs below and between the tentacles, and an anti-GABAB receptor antibody-labeled ring coincident with it. The location of this ring is consistent with the physiology of the hypostomal pacemaker systems of hydra. We also describe a distally located, ectodermal ring of nerve fibers that is not associated with anti-GABAB receptor antibody labeling. The neurites and cell bodies of sensory cells contribute to both rings. The location of the distal ring and its sensory cell neurites suggests an involvement in the behavior of the mouth. Between the two rings is a network of anastomosing sensory and ganglion cell bodies and their neurites. Phase contrast, darkfield, and antibody-labeled images reveal that the mouth of hydra comprises five or six epithelial folds whose endoderm extensively labels with anti-GABAB receptor antibody, suggesting that endodermal metabotrobic GABA receptors are also involved in regulating mouth behavior.
Collapse
Affiliation(s)
- L A Hufnagel
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA.,Interdisciplinary Neurosciences Program, University of Rhode Island, Kingston, RI 02881, USA
| | - G Kass-Simon
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA. .,Interdisciplinary Neurosciences Program, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
8
|
Reduced heterotrophy in the stony coral Galaxea fascicularis after life-long exposure to elevated carbon dioxide. Sci Rep 2016; 6:27019. [PMID: 27255977 PMCID: PMC4891704 DOI: 10.1038/srep27019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/12/2016] [Indexed: 11/09/2022] Open
Abstract
Ocean acidification imposes many physiological, energetic, structural and ecological challenges to stony corals. While some corals may increase autotrophy under ocean acidification, another potential mechanism to alleviate some of the adverse effects on their physiology is to increase heterotrophy. We compared the feeding rates of Galaxea fascicularis colonies that have lived their entire lives under ocean acidification conditions at natural carbon dioxide (CO2) seeps with colonies living under present-day CO2 conditions. When provided with the same quantity and composition of zooplankton as food, corals acclimatized to high CO2 showed 2.8 to 4.8 times depressed rates of zooplankton feeding. Results were consistent over four experiments, from two expeditions and both in field and chamber measurements. Unless replenished by other sources, reduced zooplankton uptake in G. fascicularis acclimatized to ocean acidification is likely to entail a shortage of vital nutrients, potentially jeopardizing their health and survival in future oceans.
Collapse
|
9
|
Pierobon P. Regional modulation of the response to glutathione in Hydra vulgaris. ACTA ACUST UNITED AC 2015; 218:2226-32. [PMID: 25987735 DOI: 10.1242/jeb.120311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022]
Abstract
In the presence of prey, or upon exposure to reduced glutathione (GSH), Hydra polyps open a mouth to ingest the captured prey and close it after feeding; at rest the mouth is not evident. In previous papers we have shown that GABA, glycine and NMDA modulate the mechanisms of mouth closure through ligand-gated-ion-channel receptors that are similar to their mammalian analogues in terms of biochemical and pharmacological properties. In order to study the regional distribution of these receptors, we have applied the GSH assay to polyps amputated at different levels of the body column. The response to 1-10 µmol l(-1) GSH of polyps lacking either peduncle and foot or the entire body columns (heads) was not different from control, whole animals. In the presence of GABA or muscimol, duration of the response was significantly decreased in heads; the decrease was suppressed by the GABA antagonists gabazine and bicuculline. By contrast, in animals lacking peduncle and foot, duration of the response did not vary upon GABA administration. Conversely, in the presence of glycine, duration of the response in heads preparations was similar to control, whereas in footless polyps, it was significantly reduced. The decrease was mimicked by the glycine agonists taurine and β-alanine, and counteracted by strychnine. These results suggest a regional distribution of receptors to GABA and glycine in the neuromuscular circuitry modulating the feeding behaviour.
Collapse
Affiliation(s)
- Paola Pierobon
- Institute of Cybernetics 'E. Caianiello' C.N.R., Pozzuoli, Naples 80078, Italy
| |
Collapse
|
10
|
Sidorov AV. Evolution of cell-to-cell communication and the structural brain organization. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012040019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Abstract
There is abundant evidence for the presence of endogenous cannabinoid signaling systems in many nonmammalian species, including several classes of invertebrates. Interest in the study of these animals largely relates to their production of distinct and measurable specialized behaviors. The ability to alter these behaviors through manipulation of cannabinoid signaling has provided important insight into both the phylogenetic history and physiological relevance of this essential neuromodulatory system.This chapter presents a review of literature relevant to cannabinoid-altered behaviors in nonmammalian species from insects through advanced vocal learning avian species. Integration of findings supports a common role for endocannabinoid (ECB) modulation of ingestive and locomotor behaviors, with interesting contrasting agonist effects that distinguish vertebrate and invertebrate classes. Studies in amphibians and birds suggest that ECB signaling may function as a behavioral switch, allowing redirection from less- to more-essential behaviors in response to emergent environmental changes. Overall, the studies provide evidence for cannabinoid modulation of aggression, emesis, feeding behavior, locomotor activity, reproductive behaviors, vocal learning, sensory perception and stress responses.
Collapse
|
12
|
Ramoino P, Ledda FD, Ferrando S, Gallus L, Bianchini P, Diaspro A, Fato M, Tagliafierro G, Manconi R. Metabotropic γ-aminobutyric acid (GABAB) receptors modulate feeding behavior in the calcisponge Leucandra aspera. ACTA ACUST UNITED AC 2010; 315:132-40. [PMID: 21370481 DOI: 10.1002/jez.657] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 10/12/2010] [Accepted: 11/03/2010] [Indexed: 11/07/2022]
Abstract
Here, we report the presence of the γ-aminobutyric acid (GABA)-ergic system in the calcisponge Leucandra aspera and examine the cellular localization of the components of this system, including GABA-like receptors using immunofluorescence and confocal microscopy. Furthermore, we demonstrate for the first time that GABA plays a functional role as a messenger in regulating sponge-feeding behavior. We found that both GABA(B) R1 and R2 subunits are present in the choanocytes of sponges as well as in the eso- and endopinacocytes. The functional role of GABA in the feeding behavior of this sponge was tested. The involvement of GABA receptors in the endocytic processes in L. aspera was demonstrated with dextran conjugated to Texas Red as a marker for material ingestion and by treating isolated sponge cells with a GABA(B) receptor agonist and an antagonist. The amount of dextran that was ingested increased in dissociated sponge cells when the GABA(B) receptor agonist baclofen was used, and this stimulatory effect was prevented by treatment with the GABA(B) receptor antagonist phaclofen. The baclofen effect on uptake was blocked by treatment with pertussis toxin, thus indicating a role for G proteins in modulating feeding behavior in L. aspera. Moreover, we found evidence that GABA receptors are involved in the consumption of dissolved organic matter by sponge cells. These findings suggest that GABA receptors and their functional role are highly conservative traits in the animal kingdom prenervous system evolution.
Collapse
Affiliation(s)
- Paola Ramoino
- Dipartimento per lo Studio del Territorio e delle sue Risorse (DIPTERIS), Università di Genova, Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Anctil M. Chemical transmission in the sea anemone Nematostella vectensis: A genomic perspective. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 4:268-289. [PMID: 20403752 DOI: 10.1016/j.cbd.2009.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/30/2009] [Accepted: 07/07/2009] [Indexed: 12/30/2022]
Abstract
The sequencing of the starlet sea anemone (Nematostella vectensis) genome provides opportunities to investigate the function and evolution of genes associated with chemical neurotransmission and hormonal signaling. This is of particular interest because sea anemones are anthozoans, the phylogenetically basal cnidarians least changed from the common ancestors of cnidarians and bilaterian animals, and because cnidarians are considered the most basal metazoans possessing a nervous system. This analysis of the genome has yielded 20 orthologues of enzymes and nicotinic receptors associated with cholinergic function, an even larger number of genes encoding enzymes, receptors and transporters for glutamatergic (28) and GABAergic (34) transmission, and two orthologues of purinergic receptors. Numerous genes encoding enzymes (14), receptors (60) and transporters (5) for aminergic transmission were identified, along with four adenosine-like receptors and one nitric oxide synthase. Diverse neuropeptide and hormone families are also represented, mostly with genes encoding prepropeptides and receptors related to varying closeness to RFamide (17) and tachykinin (14), but also galanin (8), gonadotropin-releasing hormones and vasopressin/oxytocin (5), melanocortins (11), insulin-like peptides (5), glycoprotein hormones (7), and uniquely cnidarian peptide families (44). Surprisingly, no muscarinic acetylcholine receptors were identified and a large number of melatonin-related, but not serotonin, orthologues were found. Phylogenetic tree construction and inspection of multiple sequence alignments reveal how evolutionarily and functionally distant chemical transmitter-related proteins are from those of higher metazoans.
Collapse
Affiliation(s)
- Michel Anctil
- Département de sciences biologiques and Centre de recherches en sciences neurologiques, Université de Montréal, Case postale 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7.
| |
Collapse
|
14
|
Kay JC, Kass-Simon G. Glutamatergic transmission in hydra: NMDA/D-serine affects the electrical activity of the body and tentacles of Hydra vulgaris (Cnidaria, Hydrozoa). THE BIOLOGICAL BULLETIN 2009; 216:113-125. [PMID: 19366922 DOI: 10.1086/bblv216n2p113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Previous electrophysiological studies on the early-evolved metazoan Hydra vulgaris provided evidence that glutamate, acting through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, affects hydra's pacemaker systems; immunocytochemical studies showed that N-methyl-d-aspartate (NMDA) receptors were present in hydra tentacles; behavioral studies demonstrated that NMDA/d-serine affected mouth opening induced by reduced glutathione, and with AMPA/kainate, discharge of nematocysts. In this study, extracellular recordings were made from the tentacle and peduncle of hydra during bath application of NMDA and d-serine (both at 1 x 10(-5) mol l(-1) to 1 x 10(-9) mol l(-1)) in the presence of 1 x 10(-7) mol l(-1) AMPA or kainate. NMDA/d-serine produced a significant increase in tentacle activity, increasing the rate of tentacle pacemaker pulses (TPs) at 1 x 10(-7) mol l(-1), and small, behaviorally uncorrelated tentacle pulses (SUTPs) at 1 x 10(-5) mol l(-1). The NMDA antagonist, d-2-amino-5-phosphonopentanoic acid (D-AP5), counteracted the effects. NMDA/d-serine (1 x 10(-7) mol l(-1)) also caused a potentially significant (trend) decrease in the rate of small, behaviorally uncorrelated electrical body pulses (SUBPs) and rhythmic potentials (RPs). The effect was counteracted by D-AP5. The ectodermal contraction burst (CB) pacemaker system was unaffected by NMDA/d-serine. Our results indicate that glutamate, acting on NMDA/AMPA-kainate receptors, may cause opposing effects on the coordinating systems of tentacle and body-exciting the tentacle effectors and potentially causing an inhibition in the body column.
Collapse
Affiliation(s)
- J C Kay
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | |
Collapse
|
15
|
Malvindi MA, Carbone L, Quarta A, Tino A, Manna L, Pellegrino T, Tortiglione C. Rod-shaped nanocrystals elicit neuronal activity in vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:1747-1755. [PMID: 18844306 DOI: 10.1002/smll.200800413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The development of novel nanomaterials has raised great interest in efforts to evaluate their effect on biological systems, ranging from single cells to whole animals. In particular, there exists an open question regarding whether nanoparticles per se can elicit biological responses, which could interfere with the phenomena they are intended to measure. Here it is reported that challenging the small cnidaria Hydra vulgaris in vivo with rod-shaped semiconductor nanoparticles, also known as quantum rods (QRs), results in an unexpected tentacle-writhing behavior, which is Ca(2+) dependent and relies on the presence of tentacle neurons. Due to the absence of surface functionalization of the QRs with specific ligands, and considering that spherical nanoparticles with same composition as the QRs fail to induce any in vivo behavior on the same experimental model, it is suggested that unique shape-tunable electrical properties of the QRs may account for the neuronal stimulation. This model system may represent a widely applicable tool for screening neuronal response to nanoparticles in vivo.
Collapse
Affiliation(s)
- Maria Ada Malvindi
- CNR, Istituto di Cibernetica E Caianiello, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Scappaticci AA, Kass-Simon G. NMDA and GABA B receptors are involved in controlling nematocyst discharge in hydra. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:415-22. [PMID: 18524656 DOI: 10.1016/j.cbpa.2008.04.606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
The role of chemical neurotransmission in nematocyst discharge was investigated by stimulating the cnidocils of nematocysts in ablated tentacles of Hydra vulgaris with a piezoelectrically-driven glass probe, in the presence of selected neurotransmitters. Acetylcholine, dopamine, epinephrine, glycine, and serotonin (10(-4), 10(-6), 10(-8) M) per se, did not alter stenotele and desmoneme discharge. gamma-Amino-butyric acid (GABA) significantly increased desmoneme discharge when the cnidocil of another desmoneme in the same or adjacent battery cell complex was stimulated without affecting the discharge rates of the directly stimulated desmonemes or stenoteles. Baclofen (GABA(B) agonist) mimicked the increase; its antagonist, phaclofen, counteracted it. GABA(A) agonists and antagonists did not alter discharge rates. Glutamate caused a dose-dependent increase in the discharge rate of directly stimulated stenoteles; distant stenotele and desmoneme discharge rates were unaffected. Kainate, AMPA, and NMDA, per se, did not alter discharge rates. Co-administration of NMDA and kainate mimicked glutamate's effects. AMPA plus NMDA increased discharge rates. DAP-5 (NMDA antagonist) and CNQX, (kainate/AMPA antagonist) counteracted the increase. The findings suggest that metabotropic GABA is involved in recruiting desmonemes by disinhibiting those previously inhibited, and that the NMDA/kainate-AMPA mechanism regulating Ca(++) entry in higher neuroeffector systems is an early-evolved process, which, in hydra, modulates nematocyst discharge.
Collapse
Affiliation(s)
- A A Scappaticci
- Department of Biological Sciences, 100 Flagg Road, Kingston, RI 02881, USA
| | | |
Collapse
|
17
|
Girosi L, Ferrando S, Beltrame F, Ciarcia G, Diaspro A, Fato M, Magnone M, Raiteri L, Ramoino P, Tagliafierro G. Gamma-aminobutyric acid and related molecules in the sea fan Eunicella cavolini (Cnidaria: Octocorallia): a biochemical and immunohistochemical approach. Cell Tissue Res 2007; 329:187-96. [PMID: 17429697 DOI: 10.1007/s00441-007-0408-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study has been the biochemical demonstration of the presence of gamma-aminobutyric acid (GABA) in the Mediterranean sea fan Eunicella cavolini by means of high-performance liquid chromatography, and the description of the distribution pattern of GABA and its related molecules, glutamic acid decarboxylase (GAD), vesicular GABA transporter (VGAT) and one of the GABA receptors (GABA(B) R) by immunohistochemical methods. The interrelationships of GABA, GAD and GABA receptor immunoreactivity have been established by using double-immunohistochemical methods and confocal microscopy. The immunodetection of monoclonal and/or polyclonal antibodies has revealed GABA immunoreactivity throughout the polyp tissue, both in neuronal and non-neuronal elements. GAD immunoreactivity has been mostly localized in the neuronal compartment, contacting epithelial and muscular elements. GABA(B) R immunoreactivity appears particularly intense in the nematocytes and in the oocyte envelope; its presence in GAD-immunoreactive neurons in the tentacles suggests an autocrine type of regulation. Western blot analysis has confirmed that a GABA(B) R, with a molecular weight of 142 kDa, similar to that of rat brain, is present in E. cavolini polyp tissue. The identification of the sites of the synthesis, vesicular transport, storage and reception of GABA strongly suggests the presence of an almost complete set of GABA-related molecules for the functioning of the GABAergic system in this simple nervous system. The distribution of these different immunoreactivities has allowed us to hypothesize GABA involvement in nematocyst discharge, in body wall and enteric muscular contraction, in neuronal integration and in male gametocyte differentiation.
Collapse
Affiliation(s)
- Laura Girosi
- Dipartimento Biologia, Università di Genova, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tarrant AM. Hormonal signaling in cnidarians: do we understand the pathways well enough to know whether they are being disrupted? ECOTOXICOLOGY (LONDON, ENGLAND) 2007; 16:5-13. [PMID: 17235668 DOI: 10.1007/s10646-006-0121-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cnidarians occupy a key evolutionary position as basal metazoans and are ecologically important as predators, prey and structure-builders. Bioregulatory molecules (e.g., amines, peptides and steroids) have been identified in cnidarians, but cnidarian signaling pathways remain poorly characterized. Cnidarians, especially hydras, are regularly used in toxicity testing, but few studies have used cnidarians in explicit testing for signal disruption. Sublethal endpoints developed in cnidarians include budding, regeneration, gametogenesis, mucus production and larval metamorphosis. Cnidarian genomic databases, microarrays and other molecular tools are increasingly facilitating mechanistic investigation of signaling pathways and signal disruption. Elucidation of cnidarian signaling processes in a comparative context can provide insight into the evolution and diversification of metazoan bioregulation. Characterizing signaling and signal disruption in cnidarians may also provide unique opportunities for evaluating risk to valuable marine resources, such as coral reefs.
Collapse
Affiliation(s)
- Ann M Tarrant
- Woods Hole Oceanographic Institution, Mailstop 32, Woods Hole, MA 02543, USA.
| |
Collapse
|
19
|
The neural net of Hydra and the modulation of its periodic activity. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/bfb0098167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Kass-Simon G, Pierobon P. Cnidarian chemical neurotransmission, an updated overview. Comp Biochem Physiol A Mol Integr Physiol 2006; 146:9-25. [PMID: 17101286 DOI: 10.1016/j.cbpa.2006.09.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/09/2006] [Accepted: 09/10/2006] [Indexed: 11/15/2022]
Abstract
The ultrastructural, histochemical, immunocytochemical, biochemical, molecular, behavioral and physiological evidence for non-peptidergic and peptidergic chemical neurotransmission in the Anthozoa, Hydrozoa, Scyphozoa and Cubozoa is surveyed. With the possible exception of data for the catecholamines and peptides in some animals, the set of cumulative data - the evidence from all methodologies - is incomplete. Taken together, the evidence from all experimental approaches suggests that both classical fast (acetylcholine, glutamate, GABA, glycine) and slow (catecholamines and serotonin) transmitters, as well as neuropeptides, are involved in cnidarian neurotransmission. Ultrastructural evidence for peptidergic, serotonergic, and catecholaminergic synaptic localization is available, but the presence of clear and dense-cored synaptic vesicles also suggests both fast and slow classical transmission. Immunocytochemical studies, in general, reveal a continuous, non-localized distribution of neuropeptides, suggesting a neuromodulatory role for them. Immunocytochemical and biochemical studies indicate the presence of glutamate, GABA, serotonin, catecholamines (and/or their receptors), RFamides, nitric oxide and eicosanoids in cnidarian neurons and tissues. Gene sequences for peptidergic preprohormones have been reported; putative gene homologies to receptor proteins for vertebrate transmitters have been found in Hydra. Behavioral and physiological studies implicate classical transmitters, neuropeptides, eicosanoids and nitric oxide in the coordination of the neuroeffector systems.
Collapse
Affiliation(s)
- G Kass-Simon
- Department of Biological Sciences, University of Rhode Island, 100 Flagg Road, Kingston, RI 02881, USA.
| | | |
Collapse
|
21
|
Parkefelt L, Skogh C, Nilsson DE, Ekström P. Bilateral symmetric organization of neural elements in the visual system of a coelenterate, Tripedalia cystophora (Cubozoa). J Comp Neurol 2006; 492:251-62. [PMID: 16217792 DOI: 10.1002/cne.20658] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cubozoans differ from other cnidarians by their body architecture and nervous system structure. In the medusa stage they possess the most advanced visual system within the phylum, located in sophisticated sensory structures, rhopalia. The rhopalium is a club-shaped structure with paired pit-shaped pigment cup eyes, paired slit-shaped pigment cup eyes, and two complex camera-type eyes: one small upper lens eye and one large lower lens eye. The medusa carries four rhopalia and visual processing and locomotor rhythm generation takes place in the rhopalia. We show here a bilaterally symmetric organization of neurons, with commissures connecting the two sides, in the rhopalium of the cubozoan Tripedalia cystophora. The fortuitous observation that a subset of neurons is strongly immunoreactive for a PCNA (proliferating cell nuclear antigen)-like epitope allowed us to analyze the organization of these neurons in detail. Distinct PCNA-immunoreactive (PCNA-ir) nuclei form six bilateral pairs that are associated with the slit eyes, pit eyes, upper lens eye, and the posterior wall of the rhopalium. Three commissures connect the clusters of the two sides and all clusters in the rhopalium have connections to the area around the base of the stalk. This neuronal system provides an anatomical substrate for integration of visual signals from the different eyes.
Collapse
Affiliation(s)
- Linda Parkefelt
- Department of Cell and Organism Biology, Lund University, S-223 62 Lund, Sweden
| | | | | | | |
Collapse
|
22
|
Ruggieri RD, Pierobon P, Kass-Simon G. Pacemaker activity in hydra is modulated by glycine receptor ligands. Comp Biochem Physiol A Mol Integr Physiol 2005; 138:193-202. [PMID: 15275654 DOI: 10.1016/j.cbpb.2004.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 03/24/2004] [Accepted: 03/25/2004] [Indexed: 11/16/2022]
Abstract
In the mammalian central nervous system, the neurotransmitter, glycine, acts both on an inhibitory, strychnine-sensitive receptor (GlyR) and an excitatory, strychnine-insensitive site at the NMDA receptor. Here we present electrophysiological evidence that the strychnine-sensitive glycine agonists, glycine and taurine, and the antagonist, strychnine, affect the endodermal rhythmic potential (RP) system and that the ectodermal contraction burst (CB) pacemaker system is modulated by glycine and strychnine in hydra. The RP and CB pacemaker systems are responsible for the respective elongation and contraction of hydra's body column. Activity of the CB system, quantified by the rate of contraction bursts (CBs), the number of pulses per contraction burst (P/CB), and the duration of bursts, was decreased by glycine. Glycine, coadministered with the strychnine-insensitive glycine site blocker, indole-2-carboxylic acid (I2CA), decreased RPs but not CBs or P/CB. The effect was mimicked by taurine. Strychnine increased the duration of RP production, and decreased CB duration. The effect of glycine with I2CA was counteracted by strychnine. The results support the idea that a vertebrate-like GlyR may be involved in modulating activity of the endodermal RP system and suggest that a glycine site on an NMDA receptor may be involved in the CB system.
Collapse
Affiliation(s)
- R D Ruggieri
- Department of Biological Sciences, University of Rhode Island, 100 Flagg Road, Kingston, RI 02881, USA
| | | | | |
Collapse
|
23
|
Kass-Simon G, Pannaccione A, Pierobon P. GABA and glutamate receptors are involved in modulating pacemaker activity in hydra. Comp Biochem Physiol A Mol Integr Physiol 2004; 136:329-42. [PMID: 14511752 DOI: 10.1016/s1095-6433(03)00168-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects of gamma-amino butyric acid (GABA) and glutamate, their ionotropic agonists and antagonists on hydra's ectodermal and endodermal pacemaker systems were studied. GABA decreased ectodermal body contraction bursts (CBs) and the number of pulses in a burst (P/CB) and endodermal rhythmic potentials (RPs); tentacle pulses (TPs) were not affected. The GABA(A) agonist, muscimol, and the benzodiazepine receptor agonist, diazepam, mimicked the effects of GABA on the endodermal system. The GABA(A) antagonist bicuculline counteracted GABA's effects. Low concentrations of glutamate increased CBs and RPs. Higher concentrations required concanavalin A (Con A) to produce the same effect on CBs and P/CB. TPs were increased by high concentrations of glutamate and kainate. The ionotropic glutamate agonist, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) also required Con A to increase CBs and RPs. The effects of AMPA were antagonized by 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX), which, per se, decreased CBs. The results indicate that GABA and glutamate, acting on their ionotropic receptors, modify the impulses of hydra's pacemaker systems. On the whole GABA decreased the outputs of both ectodermal and endodermal impulse generating systems, while glutamate increased them.
Collapse
Affiliation(s)
- G Kass-Simon
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| | | | | |
Collapse
|
24
|
Pierobon P, Minei R, Porcu P, Sogliano C, Tino A, Marino G, Biggio G, Concas A. Putative glycine receptors in Hydra: a biochemical and behavioural study. Eur J Neurosci 2001; 14:1659-66. [PMID: 11860460 DOI: 10.1046/j.0953-816x.2001.01792.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycine acts as an inhibitory transmitter in the lower brain stem and spinal cord of vertebrate species, while very few data are yet available to support a similar role in invertebrate nervous systems. Here we report the identification and characterization of glycine receptors in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa) by biochemical and behavioural studies. Saturation experiments revealed the occurrence of one population of binding sites of nanomolar affinity (KD = 33 nm) and low capacity (Bmax = 79 fmol/mg protein) for [(3)H]strychnine. The addition of glycine or taurine (0.1 microm-1 mm) produced a dose-dependent inhibition of [(3)H]strychnine binding. Beta-alanine (0.1-1 mm) did not significantly affect [(3)H]strychnine binding. The pharmacological properties of these receptors compare with those of vertebrate glycine receptors. Stimulation of Hydra polyps by reduced glutathione resulted in a significant increase in the duration of mouth opening in the presence of glycine, taurine or beta-alanine. The enhancement of the response was related both to amino acid (10-100 microm) and to glutathione concentration (1-10 microm). The effects of glycine or its agonists were suppressed by strychnine (1-10 microm). D-serine, a glycine agonist at the vertebrate NMDA receptor, produced opposite effects to those of glycine. The effects of d-serine were suppressed by 5,7-dichlorokynurenic acid but not by strychnine. In vitro, [(3)H]strychnine binding was not displaced by d-serine. These results indicate a dual action of glycine in Hydra tissues. The hypothesis that NMDA receptors may also be present in this elementary nervous system is proposed.
Collapse
Affiliation(s)
- P Pierobon
- Consiglio Nazionale Delle Ricerche, Istituto Di Cibernetica E. Caianiello, Comprensorio Olivetti, Building 70, via Campi Flegrei 34, I-80078 Pozzuoli, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
De Petrocellis L, Melck D, Bisogno T, Milone A, Di Marzo V. Finding of the endocannabinoid signalling system in Hydra, a very primitive organism: possible role in the feeding response. Neuroscience 1999; 92:377-87. [PMID: 10392859 DOI: 10.1016/s0306-4522(98)00749-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hydra (Cnidaria) is the first animal organism to have developed a neural network, which has been proposed to control, inter alia, the "feeding response", i.e. a mechanism through which the coelenterate opens and then closes its mouth in the presence of prey and/or glutathione. Here, we report that Hydra contains: (i) selective cannabinoid binding sites; (ii) the endogenous cannabinoid receptor ligand, anandamide (arachidonoylethanolamide); (iii) a fatty acid amide hydrolase-like activity catalysing anandamide hydrolysis; and (iv) the putative biosynthetic precursor of anandamide, N-arachidonoylphosphatidylethanolamine. We suggest that this "endogenous cannabinoid system" is involved in the modulation of the "feeding response". Anandamide (1 nM-1 microM) potently inhibited (up to 45%) the glutathione-induced "feeding response" by accelerating Hydra vulgaris mouth closure. The effect was maximal at 100 nM anandamide and was reversed by the selective antagonist of the CB1 subtype of mammalian cannabinoid receptors, SR 141716A (50-100 nM). Specific cannabinoid binding sites were detected in membranes from Hydra polyps by using [3H]SR 141716A (Kd= 1.87 nM, Bmax = 26.7 fmol/mg protein), and increasing anandamide concentrations were found to displace the binding of [3H]SR 141716A to these membranes (Ki = .505 nM). Hydra polyps were also found to contain amounts of anandamide (15.6 pmol/g) and N-arachidonoylphosphatidylethanolamine (32.4 pmol/g), as well as the other "endocannabinoid" 2-arachidonoylglycerol (11.2 nmol/g), comparable to those described previously for mammalian brain. Finally, a fatty acid amide hydrolase activity (Vmax = 3.4 nmol/min/mg protein), with subcellular distribution, pH dependency and sensitivity to inhibitors similar to those reported for the mammalian enzyme, but with a lower affinity for anandamide (Km = 400 microM), was also detected in Hydra polyps. These data suggest that the endocannabinoid signalling system plays a physiological role in Hydra that is to control the feeding response. Hydra is the simplest living organism described so far to use this recently discovered regulatory system.
Collapse
|
26
|
Concas A, Pierobon P, Mostallino MC, Porcu P, Marino G, Minei R, Biggio G. Modulation of gamma-aminobutyric acid (GABA) receptors and the feeding response by neurosteroids in Hydra vulgaris. Neuroscience 1998; 85:979-88. [PMID: 9639289 DOI: 10.1016/s0306-4522(97)00515-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gamma-Aminobutyric acid (GABA) receptors are present in membrane preparations from Hydra vulgaris, one of the most primitive organisms with a nervous system. These receptors are sensitive to muscimol and benzodiazepines and appear to be important in the regulation of the feeding response. The effects of neurosteroids, general anaesthetics, and GABA antagonists on GABA(A) receptors in membranes prepared from Hydra and on the feeding response have now been investigated. The neurosteroids tetrahydroprogesterone and tetrahydrodeoxycorticosterone increased [3H]GABA binding to hydra membranes with nanomolar potency (EC50, 141+/-11 and 623+/-36 nM, respectively) and high efficacy (maximal increase 79+/-6.5 and 62+/-4%, respectively), whereas the 3beta-hydroxy epimer of tetrahydroprogesterone was ineffective. The benzodiazepine receptor ligands diazepam (100 microM), clonazepam (100 microM) and abecarnil (30 microM) enhanced [3H]GABA binding to Hydra membranes by 22, 20 and 24%, respectively; effects abolished by the specific benzodiazepine antagonist flumazenil (100 microM). On the contrary, the peripheral benzodiazepine receptor ligand 4'chlorodiazepam failed to affect [3H]GABA binding to Hydra membranes. The general anaesthetics propofol and alphaxalone similarly increased (+38% and +30% respectively) [3H]GABA binding. Moreover, [3H]GABA binding to Hydra membranes was completely inhibited by the GABA(A) receptor antagonist SR 95531, whereas bicuculline was without effect. The modulation of GABA(A) receptors in vitro by these various drugs correlated with their effects on the glutathione-induced feeding response in the living animals. Tetrahydroprogesterone and tetrahydrodeoxy-corticosterone (1 to 10 microM) prolonged, in a dose-dependent manner, the duration of mouth opening induced by 10 microM glutathione, with maximal effects of +33 and +29%, respectively, apparent at 10 microM neurosteroid. Alphaxalone (10 microM) similarly increased (+33%) the effect of glutathione. The effects of steroids on the feeding response were inhibited by SR 95531 in a dose-dependent manner; t-butylbyclophosphorothyonate (1 microM), a specific Cl- channel blocker, which per se, like picrotoxin but not bicuculline, shortened the duration of the response, also counteracted the steroids effects at 1 microM. These results suggest that the modulation of GABA(A) receptors by steroids is an ancient characteristic of the animal kingdom and that the pharmacological properties of these receptors have been highly conserved through evolution.
Collapse
Affiliation(s)
- A Concas
- Department of Experimental Biology, University of Cagliari, Italy
| | | | | | | | | | | | | |
Collapse
|