1
|
Karachaliou CE, Kalbacher H, Voelter W, Tsitsilonis OE, Livaniou E. In Vitro Immunodetection of Prothymosin Alpha in Normal and Pathological Conditions. Curr Med Chem 2020; 27:4840-4854. [PMID: 31389310 DOI: 10.2174/0929867326666190807145212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/20/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Prothymosin alpha (ProTα) is a highly acidic polypeptide, ubiquitously expressed in almost all mammalian cells and tissues and consisting of 109 amino acids in humans. ProTα is known to act both, intracellularly, as an anti-apoptotic and proliferation mediator, and extracellularly, as a biologic response modifier mediating immune responses similar to molecules termed as "alarmins". Antibodies and immunochemical techniques for ProTα have played a leading role in the investigation of the biological role of ProTα, several aspects of which still remain unknown and contributed to unraveling the diagnostic and therapeutic potential of the polypeptide. This review deals with the so far reported antibodies along with the related immunodetection methodology for ProTα (immunoassays as well as immunohistochemical, immunocytological, immunoblotting, and immunoprecipitation techniques) and its application to biological samples of interest (tissue extracts and sections, cells, cell lysates and cell culture supernatants, body fluids), in health and disease states. In this context, literature information is critically discussed, and some concluding remarks are presented.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", 15310 Agia Paraskevi, Athens, Greece
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Wolfgang Voelter
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Ourania E Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Evangelia Livaniou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", 15310 Agia Paraskevi, Athens, Greece
| |
Collapse
|
2
|
Prothymosin Alpha and Immune Responses: Are We Close to Potential Clinical Applications? VITAMINS AND HORMONES 2016; 102:179-207. [PMID: 27450735 PMCID: PMC7126549 DOI: 10.1016/bs.vh.2016.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The thymus gland produces soluble molecules, which mediate significant immune functions. The first biologically active thymic extract was thymosin fraction V, the fractionation of which led to the isolation of a series of immunoactive polypeptides, including prothymosin alpha (proTα). ProTα displays a dual role, intracellularly as a survival and proliferation mediator and extracellularly as a biological response modifier. Accordingly, inside the cell, proTα is implicated in crucial intracellular circuits and may serve as a surrogate tumor biomarker, but when found outside the cell, it could be used as a therapeutic agent for treating immune system deficiencies. In fact, proTα possesses pleiotropic adjuvant activity and a series of immunomodulatory effects (eg, anticancer, antiviral, neuroprotective, cardioprotective). Moreover, several reports suggest that the variable activity of proTα might be exerted through different parts of the molecule. We first reported that the main immunoactive region of proTα is the carboxy-terminal decapeptide proTα(100-109). In conjunction with data from others, we also revealed that proTα and proTα(100-109) signal through Toll-like receptor 4. Although their precise molecular mechanism of action is yet not fully elucidated, proTα and proTα(100-109) are viewed as candidate adjuvants for cancer immunotherapy. Here, we present a historical overview on the discovery and isolation of thymosins with emphasis on proTα and data on some immune-related new activities of the polypeptide and smaller immunostimulatory peptides thereof. Finally, we propose a compiled scenario on proTα's mode of action, which could eventually contribute to its clinical application.
Collapse
|
3
|
Karachaliou CE, Liolios C, Triantis C, Zikos C, Samara P, Tsitsilonis OE, Kalbacher H, Voelter W, Papadopoulos M, Pirmettis I, Livaniou E. Specific in vitro binding of a new (99m)Tc-radiolabeled derivative of the C-terminal decapeptide of prothymosin alpha on human neutrophils. Int J Pharm 2015; 486:1-12. [PMID: 25796124 DOI: 10.1016/j.ijpharm.2015.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
Prothymosin alpha (ProTα) is a conserved mammalian polypeptide with intracellular functions associated with cell proliferation and apoptosis and an extracellular role associated with immunopotentiation. The N-terminal fragment [1-28], which is identical with the immunostimulating peptide thymosin α1 (Tα1), was earlier considered as the immunoactive region of the polypeptide; however, recent data suggest that ProTα may exert a discrete immunomodulating action through its central or C-terminal region, via targeting Toll-like receptor- 4 (TLR4). In this work, a derivative of the C-terminal fragment ProTα[100-109] (ProTα-D1) that can be radiolabeled with (99m)Tc was developed. The biological activity of the non-radioactive (185/187)rhenium-complex of this derivative ([(185/187)Re]ProTα-D1, structurally similar with [(99m)Tc]ProTα-D1) was verified through suitable in vitro bioassays on human neutrophils. Subsequent cell-binding studies revealed specific, time-dependent and saturable binding of [(99m)Tc]ProTα-D1 on neutrophils, which was inhibited by intact ProTα and ProTα[100-109], as well as by a "prototype" TLR4-ligand (lipopolysaccharide from Escherichia coli). Overall, our results support the existence of ProTα-binding sites on human neutrophils, recognizing [(99m)Tc]ProTα-D1, which might involve TLR4. [(99m)Tc]ProTα-D1 may be a useful tool for conducting further in vitro and in vivo studies, aiming to elucidate the extracellular mode of action of ProTα and, eventually, develop ProTα-based immunotherapeutics.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Christos Liolios
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Charalampos Triantis
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Christos Zikos
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Pinelopi Samara
- Faculty of Biology, University of Athens, Athens 15784, Greece
| | | | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen 72076, Germany
| | - Wolfgang Voelter
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen 72076, Germany
| | - Minas Papadopoulos
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Ioannis Pirmettis
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Evangelia Livaniou
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), National Center for Scientific Research "Demokritos", Athens 15310, Greece.
| |
Collapse
|
4
|
Data on the Interaction Between Prothymosin α and TLR4 May Help to the Design of New Antiviral Compounds. J Acquir Immune Defic Syndr 2011; 56:e110-1. [DOI: 10.1097/qai.0b013e31820a4aa7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Salgado FJ, Piñeiro A, Canda-Sánchez A, Lojo J, Nogueira M. Prothymosin alpha-receptor associates with lipid rafts in PHA-stimulated lymphocytes. Mol Membr Biol 2005; 22:163-76. [PMID: 16096260 DOI: 10.1080/09687860500063506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lipid rafts are specialized plasma membrane microdomains in which glycosphingolipids and cholesterol are major structural components. Their relative insolubility to nonionic detergents is the most widely used method to purify these structures. Several signalling proteins are associated with these microdomains in T lymphocytes, including receptors for growth factors and cytokines. ProTalpha is a highly conserved and widely distributed protein whose physiological functions remain elusive. In previous works we identified, by means of affinity cross-linking, affinity chromatography and fluorescence microscopy, a set of binding proteins for ProTalpha in human lymphoblasts. Now, this work goes deeply in that ProTalpha receptor description revealing, by different experimental approaches, its presence in lipid rafts. Moreover, our results fit a model in which a tyrosine phosphorylation signalling cascade confined to rafts is initiated upon ProTalpha receptor recognition, which represents an important and promising finding in the research for elucidating the molecular mechanisms underlying the immunomodulatory functions of ProTalpha.
Collapse
Affiliation(s)
- Francisco J Salgado
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Campus Sur s/n, 15782 Santiago de Compostela, A Coruña, Spain
| | | | | | | | | |
Collapse
|
6
|
Piñeiro A, Begoña Bugia M, Pilar Arias M, Cordero OJ, Nogueira M. Identification of receptors for prothymosin alpha on human lymphocytes. Biol Chem 2001; 382:1473-82. [PMID: 11727831 DOI: 10.1515/bc.2001.181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prothymosin alpha (ProTalpha) is a highly conserved and widely distributed protein whose physiological functions remain elusive. In previous work we identified high and low affinity-binding sites for ProTalpha in lymphoid cells. Here we demonstrate, by affinity cross-linking and affinity chromatography, the existence of three binding partners (31, 29, and 19 kDa) for ProTalpha in the membrane of PHA-activated lymphoblasts. These surface molecules possess the expected affinity and specificity for a ProTalpha receptor. Examination of the expression of this complex of molecules by flow cytometry reveals that they bind ProTalpha in a specific and saturable way. In addition, the distribution of the receptor on the cell surface was studied by fluorescence microscopy; a cap-like structure at one of the poles of the cells was identified. These results represent a new and promising approach in the research on ProTalpha, opening the way toward the understanding of the molecular mechanism of action of this protein.
Collapse
Affiliation(s)
- A Piñeiro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
7
|
Abstract
Prothymosin alpha (ProTalpha) is a highly acidic and small protein of only 111 amino acids with an unusual primary structure. One would expected it to play an essential role in the organism, as it has a wide distribution and is high conserved among mammals, yet its exact function remains elusive. Despite the number of effects described for ProTalpha, intracellular and extracellular, none are accepted as its physiological role. Furthermore, many other aspects of its biology still remain obscure. In this review, we discuss the structural properties, location, gene family, functions and immunomodulatory activities of and cellular receptors for ProTalpha. These topics are addressed in an attempt to reconcile opposing outlooks while emphasizing those points where scant investigations do exist. We have also re-evaluated some previous results in light of the structural properties of ProTalpha and have found that molecular mimetism could be the underlying basis. This molecular mimicry hypothesis provides a clue that must not be overlooked for a realistic appraisal of future results.
Collapse
Affiliation(s)
- A Piñeiro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela. 15706, Santiago de Compostela, Spain
| | | | | |
Collapse
|