1
|
Monteferrante CG, MacKichan C, Marchadier E, Prejean MV, Carballido-López R, van Dijl JM. Mapping the twin-arginine protein translocation network of Bacillus subtilis. Proteomics 2013. [PMID: 23180473 DOI: 10.1002/pmic.201200416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bacteria employ twin-arginine translocation (Tat) pathways for the transport of folded proteins to extracytoplasmic destinations. In recent years, most studies on bacterial Tat pathways addressed the membrane-bound TatA(B)C subunits of the Tat translocase, and the specific interactions between this translocase and its substrate proteins. In contrast, relatively few studies investigated possible coactors in the TatA(B)C-dependent protein translocation process. The present studies were aimed at identifying interaction partners of the Tat pathway of Bacillus subtilis, which is a paradigm for studies on protein secretion by Gram-positive bacteria. Specifically, 36 interaction partners of the TatA and TatC subunits were identified by rigorous application of the yeast two-hybrid (Y2H) approach. Our Y2H analyses revealed that the three TatA isoforms of B. subtilis can form homo- and heterodimers. Subsequently, the secretion of the Tat substrates YwbN and PhoD was tested in mutant strains lacking genes for the TatAC interaction partners identified in our genome-wide Y2H screens. Our results show that the cell wall-bound protease WprA is important for YwbN secretion, and that the HemAT and CsbC proteins are required for PhoD secretion under phosphate starvation conditions. Taken together, our findings imply that the Bacillus Tat pathway is embedded in an intricate protein-protein interaction network.
Collapse
Affiliation(s)
- Carmine G Monteferrante
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
2
|
van der Lelie D, Taghavi S, McCorkle SM, Li LL, Malfatti SA, Monteleone D, Donohoe BS, Ding SY, Adney WS, Himmel ME, Tringe SG. The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLoS One 2012; 7:e36740. [PMID: 22629327 PMCID: PMC3357426 DOI: 10.1371/journal.pone.0036740] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 04/11/2012] [Indexed: 02/01/2023] Open
Abstract
This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic ‘secretomes’ that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.
Collapse
Affiliation(s)
- Daniel van der Lelie
- Biology Department, Brookhaven National Laboratory, Upton, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Relaxed specificity of the Bacillus subtilis TatAdCd translocase in Tat-dependent protein secretion. J Bacteriol 2008; 191:196-202. [PMID: 18978042 DOI: 10.1128/jb.01264-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein translocation via the twin arginine translocation (TAT) pathway is characterized by the translocation of prefolded proteins across the hydrophobic lipid bilayer of the membrane. In Bacillus subtilis, two different Tat translocases are involved in this process, and both display different substrate specificities: PhoD is secreted via TatAdCd, whereas YwbN is secreted via TatAyCy. It was previously assumed that both TatAy and TatCy are essential for the translocation of the YwbN precursor. Through complementation studies, we now show that TatAy can be functionally replaced by TatAd when the latter is offered to the cells in excess amounts. Moreover, under conditions of overproduction, TatAdCd, in contrast to TatAyCy, shows an increased tolerance toward the acceptance of various Tat-dependent proteins.
Collapse
|
4
|
Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 2007; 73:3490-6. [PMID: 17416694 PMCID: PMC1932663 DOI: 10.1128/aem.02751-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural isolates of Bacillus subtilis are often difficult to transform due to their low genetic competence levels. Here we describe two methods that stimulate natural transformation. The first method uses plasmid pGSP12, which expresses the competence transcription factor ComK and stimulates competence development about 100-fold. The second method stimulates Campbell-type recombination of DNA ligation mixtures in B. subtilis by the addition of polyethylene glycol. We employed these novel methods to study the regulation of the synthetases for the lipopeptide antibiotics mycosubtilin (myc) and surfactin (srfA) in B. subtilis strain ATCC 6633. By means of lacZ reporter fusions, it was shown that the expression of srfA is >100 times lower in strain ATCC 6633 than in the laboratory strain B. subtilis 168. Expression of the myc operon was highest in rich medium, whereas srfA expression reached maximal levels in minimal medium. Further genetic analyses showed that the srfA operon is mainly regulated by the response regulator ComA, while the myc operon is primarily regulated by the transition-state regulator AbrB. Although there is in vitro evidence for a synergistic activity of mycosubtilin and surfactin, the expression of both lipopeptide antibiotics is clearly not coordinated.
Collapse
Affiliation(s)
- Erwin H Duitman
- Department of Genetics, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
van Roosmalen ML, Jongbloed JD, Dubois JY, Venema G, Bron S, van Dijl JM. Distinction between major and minor Bacillus signal peptidases based on phylogenetic and structural criteria. J Biol Chem 2001; 276:25230-5. [PMID: 11309398 DOI: 10.1074/jbc.m102099200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The processing of secretory preproteins by signal peptidases (SPases) is essential for cell viability. As previously shown for Bacillus subtilis, only certain SPases of organisms containing multiple paralogous SPases are essential. This allows a distinction between SPases that are of major and minor importance for cell viability. Notably, the functional difference between major and minor SPases is not reflected clearly in sequence alignments. Here, we have successfully used molecular phylogeny to predict major and minor SPases. The results were verified with SPases from various bacilli. As predicted, the latter enzymes behaved as major or minor SPases when expressed in B. subtilis. Strikingly, molecular modeling indicated that the active site geometry is not a critical parameter for the classification of major and minor Bacillus SPases. Even though the substrate binding site of the minor SPase SipV is smaller than that of other known SPases, SipV could be converted into a major SPase without changing this site. Instead, replacement of amino-terminal residues of SipV with corresponding residues of the major SPase SipS was sufficient for conversion of SipV into a major SPase. This suggests that differences between major and minor SPases are based on activities other than substrate cleavage site selection.
Collapse
Affiliation(s)
- M L van Roosmalen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
Mooibroek H, de Jong B, Venema G. Repair of UV damage in plasmid DNA by human fibroblasts. MOLECULAR & GENERAL GENETICS : MGG 1984; 195:175-9. [PMID: 6436647 DOI: 10.1007/bf00332742] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plasmid DNA from Bacillus subtilis was introduced into monolayers of human fibroblasts by means of a modification of the calcium phosphate coprecipitation technique, comprising centrifugation of the coprecipitate onto the cells and treatment with polyethyleneglycol. The amount of DNA resistant to removal from the monolayers ranged from 10% to 15% of the input DNA. By determination of the biological activity of the plasmid DNA, re-extracted after various periods following entry into the fibroblasts and subsequently used as donor for B. subtilis protoplasts, it was shown that the activity of the plasmid DNA was gradually lost. When ultraviolet light-inactivated plasmid DNA was used as donor, reactivation of the plasmid was observed, which was completed within 2 h. The dose-dependent incorporation of [14C]-thymidine suggests that DNA repair processes were involved in reactivation of the plasmid DNA.
Collapse
|
7
|
Stuy JH, Walter RB. Repair of ultraviolet-irradiated transforming DNA in a recA mutant of Haemophilus influenzae. Photochem Photobiol 1983; 37:391-4. [PMID: 6602347 DOI: 10.1111/j.1751-1097.1983.tb04491.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Hadden CT. Postreplication repair of ultraviolet-irradiated transforming deoxyribonucleic acid in Bacillus subtilis. J Bacteriol 1981; 145:434-41. [PMID: 6780518 PMCID: PMC217291 DOI: 10.1128/jb.145.1.434-441.1981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Repair of ultraviolet-irradiated transforming deoxyriboinucleic acid (DNA) in several strains of Bacillus subtilis was studied in order to determine the effects of excision repair and postreplication repair on transformation. Two mutations that cause a Uvr- and phenotype (uvr-1 and uvr-42) were shown to have strikingly different effects on repair of ultraviolet-irradiated transforming DNA. Genetic and kinetic evidence is presented to show that integrated DNA was apparently repaired by both excision and postreplication repair in wild-type and in uvr-1 recipients, although the latter excise pyrimidine dimers very slowly. In uvr-42 mutants, which are defective in incision at pyrimidine dimers, dimer-containing DNA was integrated. Postreplication repair apparently saved uvr-42 recipient cells from the lethal effects of integrated dimers, but the recombination events accompanying postreplication repair greatly reduced the linkage between closely linked genetic markers in the donor DNA. Repair of transforming DNA in a recG recipient, which does excision repair but not postreplication repair, was nearly as efficient as in wild-type cells. However, in this recipient linkage was altered only slightly, if at all, compared with wild-type cells. The apparent reduction in size of integrated regions of ultraviolet-irradiation transforming DNA probably results mainly from postreplication repair of larger integrated regions.
Collapse
|
9
|
Hoekstra WP, Bergmans HE, Zuidweg EM. Transformation in Escherichia coli: studies on the nature of donor DNA after uptake and integration. Genet Res (Camb) 1980; 35:279-89. [PMID: 7002728 DOI: 10.1017/s0016672300014142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
SUMMARYChromosomalE. coliDNA appears to be sensitive towardsin vivoDNA restriction when transformed to a restrictiveE. colirecipient. It is therefore concluded that transforming chromosomal donor DNA is present in a double-stranded form immediately after uptake.Genetic analysis ofE. colitransformants, obtained with UV-irradiated donor DNA under conditions that exclude photorepair, show, especially in auvrBrecipient, loss of donor DNA information compared with the situation where DNA was not subjected to UV-irradiation. Similar conclusions were arrived at after genetic analysis of transductants obtained with UV-irradiated particles of the generalized transducing phage P1. The processing inE. coliof DNA after P1 transduction is thus similar to that of transforming DNA. The observations are discussed and a possible explanation based on single-stranded DNA integration is presented in detail.
Collapse
|
10
|
Bresler SE, Kalinin VL, Kreneva RA. W-mutagenesis in competent cells of Bacillus subtilis. MOLECULAR & GENERAL GENETICS : MGG 1980; 177:691-8. [PMID: 6770228 DOI: 10.1007/bf00272681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The relative yield (Nm/N) of fluorescent mutants Ind- after the transformation of Bacillus subtilis cells by means of UV-irradiated DNA is much higher in an uvr- recipient than in an uvr+ strain, when compared at equal fluence, but practically identical at equal survival. Ind- mutations are induced by UV-irradiation of separated single strands of transforming DNA. The H-strand is much more sensitive to the mutagenic action of UV light. Preliminary irradiation of competent recipient cells by moderate UV fluences increases the survival of UV- or gamma-irradiated transforming DNA (W-reactivation) and the frequency of Ind- mutations (W-mutagenesis). During transfection of B. subtilis cells by UV-irradiated prophage DNA isolated from lysogenic cells B. subtilis (phi 105 c+) c-mutants of the phage are obtained in high yield only in conditions of W-mutagenesis, i.e. in UV-irradiated recipient cells. These data show that there is no substantial spontaneous induction of error-prone SOS-repair system in the competent cells of B. subtilis.
Collapse
|
11
|
Ganesan AT. DNA repair and its relation to recombination-deficient and other mutations in Bacillus subtilis. BASIC LIFE SCIENCES 1975; 5B:513-9. [PMID: 811208 DOI: 10.1007/978-1-4684-2898-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA repair processes operating in Bacillus subtilis are similar to other transformable bacterial systems. Radiation-sensitive, recombination-deficient mutants are blocked in distinct steps leading to recombination. DNA polymerase I is essential for the repair of X-ray-induced damage to DNA but not for recombination.
Collapse
|
12
|
De Goede P, Van der Voort-Molema L. Marker rescue from UV-irradiated bacteriophages: a UV-sensitive region in bacteriophage T2. Mutat Res 1974; 25:249-61. [PMID: 4437572 DOI: 10.1016/0027-5107(74)90053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Muhammed A, Setlow JK. Integration and repair of ultraviolet-irradiated transforming deoxyribonucleic acid in Haemophilus influenzae. J Bacteriol 1974; 118:514-22. [PMID: 4545328 PMCID: PMC246784 DOI: 10.1128/jb.118.2.514-522.1974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The extent of association between donor transforming deoxyribonucleic acid (DNA) and recipient DNA in Haemophilus influenzae as a function of ultraviolet (UV) dose to the transforming DNA has been measured by isopycnic analysis of lysates of (3)H-labeled recipient cells exposed to DNA labeled with (32)P and heavy isotopes. Except for doses above 15,000 ergs/mm(2), the results of these measurements are in good agreement with previous estimates made by another technique. Experiments with a mutant temperature sensitive for DNA synthesis and another mutant defective in excision of pyrimidine dimers suggest that the discrepancy between the methods of high doses results from DNA synthesis, in which portions of the associated donor DNA containing pyrimidine dimers are excised and broken down, and the components are reutilized for synthesis. Repair of UV-irradiated, transforming DNA during incubation of recipient cells is observed as an increase in transforming ability when fractions from CsCl gradients of cell lysates are assayed on excision-deficient cells. When transforming DNA containing markers of different UV sensitivities is used, repair of the UV-resistant nov marker by excision proficient cells takes place exclusively in the donor DNA that is associated with recipient DNA, and this repair is observed even in the absence of DNA synthesis. However, no repair is observed in the case of the more UV-sensitive str marker, possibly because excision events may remove a large fraction of the integrated str markers in addition to repairing a small fraction of the integrated DNA containing this marker.
Collapse
|
14
|
Notani NK, Setlow JK. Mechanism of bacterial transformation and transfection. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1974; 14:39-100. [PMID: 4152450 DOI: 10.1016/s0079-6603(08)60205-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Bron S, Venema G. Ultraviolet inactivation and excision-repair in Bacillus subtilis. 3. Sensitized photoinactivation of transforming DNA, and the effect of thymine dimers on differential marker inactivation and differential marker repair. Mutat Res 1972; 15:377-93. [PMID: 4625592 DOI: 10.1016/0027-5107(72)90003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|