1
|
Hamill PG, Stevenson A, McMullan PE, Williams JP, Lewis ADR, S S, Stevenson KE, Farnsworth KD, Khroustalyova G, Takemoto JY, Quinn JP, Rapoport A, Hallsworth JE. Microbial lag phase can be indicative of, or independent from, cellular stress. Sci Rep 2020; 10:5948. [PMID: 32246056 PMCID: PMC7125082 DOI: 10.1038/s41598-020-62552-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/16/2020] [Indexed: 01/01/2023] Open
Abstract
Measures of microbial growth, used as indicators of cellular stress, are sometimes quantified at a single time-point. In reality, these measurements are compound representations of length of lag, exponential growth-rate, and other factors. Here, we investigate whether length of lag phase can act as a proxy for stress, using a number of model systems (Aspergillus penicillioides; Bacillus subtilis; Escherichia coli; Eurotium amstelodami, E. echinulatum, E. halophilicum, and E. repens; Mrakia frigida; Saccharomyces cerevisiae; Xerochrysium xerophilum; Xeromyces bisporus) exposed to mechanistically distinct types of cellular stress including low water activity, other solute-induced stresses, and dehydration-rehydration cycles. Lag phase was neither proportional to germination rate for X. bisporus (FRR3443) in glycerol-supplemented media (r2 = 0.012), nor to exponential growth-rates for other microbes. In some cases, growth-rates varied greatly with stressor concentration even when lag remained constant. By contrast, there were strong correlations for B. subtilis in media supplemented with polyethylene-glycol 6000 or 600 (r2 = 0.925 and 0.961), and for other microbial species. We also analysed data from independent studies of food-spoilage fungi under glycerol stress (Aspergillus aculeatinus and A. sclerotiicarbonarius); mesophilic/psychrotolerant bacteria under diverse, solute-induced stresses (Brochothrix thermosphacta, Enterococcus faecalis, Pseudomonas fluorescens, Salmonella typhimurium, Staphylococcus aureus); and fungal enzymes under acid-stress (Terfezia claveryi lipoxygenase and Agaricus bisporus tyrosinase). These datasets also exhibited diversity, with some strong- and moderate correlations between length of lag and exponential growth-rates; and sometimes none. In conclusion, lag phase is not a reliable measure of stress because length of lag and growth-rate inhibition are sometimes highly correlated, and sometimes not at all.
Collapse
Affiliation(s)
- Philip G Hamill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - James P Williams
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Abiann D R Lewis
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Sudharsan S
- Department of Chemistry, PGP College of Arts and Science, NH-7, Karur Main Road, Paramathi, Namakkal, Tamil Nadu, 637 207, India
| | - Kath E Stevenson
- Special Collections and Archives, McClay Library, Queen's University Belfast, 10 College Park Avenue, Belfast, BT7 1LP, Northern Ireland
| | - Keith D Farnsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Galina Khroustalyova
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Jon Y Takemoto
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan, UT, 84322, USA
| | - John P Quinn
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland.
| |
Collapse
|
2
|
Segal A, Solomon JJ, Mignano J, Dino J. The isolation and characterization of 3-(2-carboxyethyl)cytosine following in vitro reaction of beta-propiolactone with calf thymus DNA. Chem Biol Interact 1981; 35:349-61. [PMID: 7226279 DOI: 10.1016/0009-2797(81)90010-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The new adduct 3-(2-carboxyethyl)cytosine (3-CEC) was isolated following in vitro reaction of the carcinogen beta-propiolactone (BPL) with calf thymus DNA. The structure of 3-CEC was confirmed by synthesis from BPL and dCyd. Reaction of BPL with cCyd (pH 7.0-7.5, 37 degrees C) gave 3-(2-carboxyethyl)deoxycytidine (3-CEdCyd) (9% yield) and 3,N4-bis(2-carboxyethyl)deoxycytidine (3,N4-BCEdCyd) (0.6% yield). 3-CEdCyd and 3,N4-BCEdCyd were hydrolyzed (1.5 N HCl, 100 degrees C, 2 h) to 3-CEC and 3,N4-bis(2-carboxyethyl)cytosine (3,N4-BCEC), respectively. The structure of 3-CEC was assigned on the basis of UV and NMR spectra and the electron impact (EI) mass spectra of 3-CEC and a tri-trimethylsilyl (TMS) derivative of 3 CEC as well as deuterated (d27) tri-TMS derivative of 3-CEC. The structure of 3,N4-BCEC was assigned on the basis of UV spectra and the EI mass spectra of a tri-TMS derivative. Ei and isobutane chemical ionization mass spectra of 3-methylcytosine (3-MeCyt) and a di-TMs derivative of 3-MeCyt were obtained and were helpful in deducing the structures of 3-CEC and 3,N4-BCEC. This is the first report of the alkylation by BPL of an exocyclic atom on a base in DNA. Compound 3,N4-BCEC was not detected in BPL-reacted calf thymus DNA. The relative amounts of 1-(2-carboxyethyl)-adenine (1-CEA), 7-(2-carboxyethyl)guanine (7-CEG), 3-(2-carboxyethyl)-thymine (3-CET) and 3-CEC isolated from BPL-reacted DNA following perchloric acid hydrolysis were 0.23, 1.00, 0.39 and 0.41 respectively, when the alkylation reaction was conducted in phosphate buffer at 0-5 degrees C and pH 7.5 and 0.10, 1.00, 0.29 and 0.28 respectively when the reaction was conducted in H2O at 37b degrees C and pH 7.0-7.5.
Collapse
|
3
|
Segal A, Solomon JJ, Maté U. Esolation of 3-(2-carboxyethyl)thymine following in vitro reaction of beta-propiolactone with calf thymus DNA. Chem Biol Interact 1980; 29:335-46. [PMID: 6892614 DOI: 10.1016/0009-2797(80)90152-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
3-(2-Carboxyethyl)thymine (3-CET) was synthesized from beta-propiolactone (BPL) and dThd 5'P at pH 9.0--9.5 via the intermediate 3-(2-carboxyethyl)-thymidine-5'-monophosphoric acid (3-CEdThd5'P). 3-CEdThd5'P was converted to 3-CET by hydrolysis in 1.5 N HCl at 100 degrees C for 2 h. The structure of 3-CET was assigned on the basis of UV spectra, electron impact (EI) and isobutane chemical ionization mass spectra and the EI mass spectrum of a trimethylsilyl derivative of 3-CET. BPL was reacted in vitro with calf thymus DNA at pH 7.5. 100 A units of BPL-reacted DNA yielded, following perchloric acid hydrolysis and preparative paper chromatography, 3 A units of 3-CET. Reaction of BPL with the phosphodiester thymidylyl-(3'-5')-thymidine gave 3-(2-carboxyethyl)thymidylyl-(3'-5')-3-(2-carboxyethyl)-thymidine (approximately 3%). Phosphotriester formation was not detected.
Collapse
|