1
|
Cuesta SA, Moreno M, López RA, Mora JR, Paz JL, Márquez EA. ElectroPredictor: An Application to Predict Mayr's Electrophilicity E through Implementation of an Ensemble Model Based on Machine Learning Algorithms. J Chem Inf Model 2023; 63:507-521. [PMID: 36594600 DOI: 10.1021/acs.jcim.2c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electrophilicity (E) is one of the most important parameters to understand the reactivity of an organic molecule. Although the theoretical electrophilicity index (ω) has been associated with E in a small homologous series, the use of w to predict E in a structurally heterogeneous set of compounds is not a trivial task. In this study, a robust ensemble model is created using Mayr's database of reactivity parameters. A combination of topological and quantum mechanical descriptors and different machine learning algorithms are employed for the model's development. The predictability of the model is assessed using different statistical parameters, and its validation is examined, including a training/test partition, an applicability domain, and a y-scrambling test. The global ensemble model presents a Q5-fold2 of 0.909 and a Qext2 of 0.912, demonstrating an excellent predictability performance of E values and showing that w is not a good descriptor for the prediction of E, especially for the case of neutral compounds. ElectroPredictor, a noncommercial Python application (https://github.com/mmoreno1/ElectroPredictor), is developed to predict E. QM9, a well-known large dataset containing 133885 neutral molecules, is used to perform a virtual screening (94.0% coverage). Finally, the 10 most electrophilic molecules are analyzed as possible new Mayr's electrophiles, which have not yet been experimentally tested. This study confirms the necessity to build an ensemble model using nonlinear machine learning algorithms, topographic descriptors, and separating molecules into charged and neutral compounds to predict E with precision.
Collapse
Affiliation(s)
- Sebastián A Cuesta
- Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito170901, Ecuador
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, U.K
| | - Martín Moreno
- Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito170901, Ecuador
| | - Romina A López
- Colegio San Ignacio de Loyola─Fe y Alegría, Ministerio de Educación, Quito170901, Ecuador
| | - José R Mora
- Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito170901, Ecuador
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Cercado de Lima, Lima15081, Peru
| | - Edgar A Márquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Exactas, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla081007, Colombia
| |
Collapse
|
2
|
Kim JY, Lee AR, Choi YJ, Back SM, Kim OH, Moon KS, Kim SK. In vitro and in vivo assessment of the genotoxic effects of ceric ammonium nitrate and 1,3-propane sultone. Toxicol Lett 2020; 332:202-212. [PMID: 32659469 DOI: 10.1016/j.toxlet.2020.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
A variety of methods have been developed for accurate and systematic evaluation of chemical genotoxicity. Ceric ammonium nitrate (CAN) and 1,3-propane sultone (1,3-PS) have been extensively applied in industrial fields. Although 1,3-PS, but not CAN, has been reported as a potent carcinogen, systematic assessment of the genotoxic properties of these chemicals has not been conducted. The purpose of this study was to establish a decision tree for evaluating genotoxicity based on the good laboratory practices (GLP) system using 1,3-PS and CAN as test chemicals. In vitro studies were performed including the bacterial reverse mutation assay, chromosomal aberration assay, and micronucleus assay. We conducted in vivo studies using a combined micronucleus and alkaline comet (MN-CMT) assay and the Pig-a gene mutation assay, which is a promising method for detecting gene mutations in vivo. CAN showed negative responses in all in vitro genotoxicity assays and the in vivo combined MN-CMT assay. Meanwhile, 1,3-PS had positive results in all in vitro and in vivo genotoxicity assays. In this study, we confirmed the genotoxicity of 1,3-PS and CAN using both in vitro and in vivo assays. We propose a decision tree for evaluating chemical-induced genotoxicity.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - A-Ram Lee
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Young Jae Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sen-Min Back
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Ok-Hee Kim
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
3
|
Motwani HV, Eriksson L, Göpfert L, Larsen K. Reaction kinetic studies for comparison of mutagenic potency between butadiene monoxide and glycidamide. Chem Biol Interact 2018; 288:57-64. [PMID: 29653098 DOI: 10.1016/j.cbi.2018.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022]
Abstract
DNA adducts can be formed from covalent binding of electrophilic reactive compounds to the nucleophilic N- and O-atoms of the biomolecule. The O-sites on DNA, with nucleophilic strength (n) of ca. 2, is recognized as a critical site for mutagenicity. Characterization of the reactivity of electrophilic compounds at the O-sites can be used to predict their mutagenic potency in relative terms. In the present study, reaction kinetic experiments were performed for butadiene monoxide (BM) in accordance with the Swain-Scott relation using model nucleophiles representing N- and O-sites on DNA, and earlier for glycidamide (GA) using a similar approach. The epoxide from the kinetic experiments was trapped by cob(I)alamin, resulting in formation of an alkylcobalamin which was analyzed by liquid chromatography tandem mass spectrometry. The Swain-Scott relationship was used to determine selectivity constant (s) of BM and GA as 0.86 and 1.0, respectively. The rate constant for the reaction at n of 2 was extrapolated to 0.023 and 0.038 M-1 h-1 for BM and GA, respectively, implying a higher mutagenic potency per dose unit of GA compared to BM. The reaction kinetic parameters associated with mutagenic potency were also estimated by a density functional theory approach, which were in accordance to the experimental determined values. These types of reaction kinetic measures could be useful in development of a chemical reactivity based prediction tool that could aid in reduction of animal experiments in cancer risk assessment procedures for relative mutagenicity.
Collapse
Affiliation(s)
- Hitesh V Motwani
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Lars Eriksson
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Lisa Göpfert
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kristian Larsen
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
4
|
Guérard M, Baum M, Bitsch A, Eisenbrand G, Elhajouji A, Epe B, Habermeyer M, Kaina B, Martus H, Pfuhler S, Schmitz C, Sutter A, Thomas A, Ziemann C, Froetschl R. Assessment of mechanisms driving non-linear dose–response relationships in genotoxicity testing. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:181-201. [DOI: 10.1016/j.mrrev.2014.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 01/15/2023]
|
5
|
Rana J, Huang H. Actions of the Klenow fragment of DNA polymerase I and some DNA glycosylases on chemically stable analogues of N7-methyl-2'-deoxyguanosine. Bioorg Med Chem 2013; 21:6886-92. [PMID: 24100157 DOI: 10.1016/j.bmc.2013.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/05/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
Abstract
N7-methyl-9-deaza-dG was synthesized and incorporated into oligonucleotides. Thermal melting studies showed that replacement of dG by N7-methyl-9-deaza-dG only slightly decreased DNA duplex stability. Replication of DNA templates containing N7-methyl-9-deaza-dG and the related 7-methyl-7-deaza-dG and 7-deaza-dG by the Klenow fragment of Escherichia coli DNA polymerase I was examined. The dNTP misinsertion frequencies on all three templates were comparably low, although the 7-methyl group significantly slowed down the turnover rates of the polymerase when dCTP was incorporated. The stabilities of N7-methyl-9-deaza-dG and 7-methyl-7-deaza-dG against the actions of formamidopyrimidine DNA glycosylase (Fpg) and human alkyladenine DNA glycosylase (hAAG) were also examined. N7-methyl-9-deaza-dG was stable in the presence of both enzymes. In contrast, 7-methyl-7-deaza-dG was cleaved by Fpg, and possibly by hAAG but at an extremely slow rate. This study suggests that N7-alkyl-9-deaza-dG is a better analogue than 7-alkyl-7-deaza-dG for cellular studies.
Collapse
Affiliation(s)
- Jagruti Rana
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | |
Collapse
|
6
|
Thaens D, Heinzelmann D, Böhme A, Paschke A, Schüürmann G. Chemoassay screening of DNA-reactive mutagenicity with 4-(4-nitrobenzyl)pyridine - application to epoxides, oxetanes, and sulfur heterocycles. Chem Res Toxicol 2012; 25:2092-102. [PMID: 22889134 DOI: 10.1021/tx3001412] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organic electrophiles have the potential to covalently attack DNA bases, and thus initiate mutagenic and carcinogenic processes. In this context, aromatic nitrogen sites of the DNA bases are often particularly nucleophilic, with guanine N7 being one of the most favored sites of adduct formation with electrophilic xenobiotics. Employing 4-(4-nitrobenzyl)pyridine (NBP) as model nucleophile with a respective aromatic ═N- unit, a new kinetic variant of a photometric chemoassay for sensing the DNA reactivity of organic compounds is introduced and applied to 21 three- and four-membered oxygen and sulfur heterocycles (15 epoxides, two thiiranes, three oxetanes, and one thietane). Besides six unreactive compounds (oxetanes, thietane, and aliphatic epoxides with six or more side-chain carbons), second-order rate constants of the electrophile-NBP reaction, k(NBP), were obtained for 15 compounds, ranging from (1.16 ± 0.05)·10⁻³ to (36.5 ± 0.6)·10⁻³ L mol⁻¹ min⁻¹ in a methanol/tris-HCl buffer (16/84 v/v) reaction medium. Solvolysis as confounding factor was addressed by determining respective first-order rate constants k(solv). Analysis of the k(NBP) values resulted in structure-reactivity relationships, and comparison with literature data from the Ames test bacterial strains TA100, TA1535, and TA97 (Salmonella typhimurium) as well as from WP2 uvrA (Escherichia coli) revealed significant log-log relationships between the mutagenic potency of the heterocycles and their reactivity toward NBP. The latter demonstrates the potential of the NBP chemoassay as a nonanimal component of integrated testing strategies for REACH, enabling an efficient screening of organic electrophiles with respect to their DNA reactivity and associated mutagenicity and carcinogenicity.
Collapse
Affiliation(s)
- Diana Thaens
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
7
|
Gómez-Bombarelli R, González-Pérez M, Calle E, Casado J. Potential of the NBP Method for the Study of Alkylation Mechanisms: NBP as a DNA-Model. Chem Res Toxicol 2012; 25:1176-91. [DOI: 10.1021/tx300065v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rafael Gómez-Bombarelli
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| | - Marina González-Pérez
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| | - Emilio Calle
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| | - Julio Casado
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| |
Collapse
|
8
|
Perera F, Li TY, Lin C, Tang D. Effects of prenatal polycyclic aromatic hydrocarbon exposure and environmental tobacco smoke on child IQ in a Chinese cohort. ENVIRONMENTAL RESEARCH 2012; 114:40-6. [PMID: 22386727 DOI: 10.1016/j.envres.2011.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 12/13/2011] [Accepted: 12/28/2011] [Indexed: 05/22/2023]
Abstract
OBJECTIVE This study of a birth cohort in the city of Tongliang in Chongqing, China, evaluated the relationship between two prenatal exposures (polycyclic aromatic hydrocarbons(PAH) and environmental tobacco smoke(ETS)) and child intelligence quotient (IQ) as measured by the Wechsler Preschool and Primary Scale of Intelligence at age 5 years. A coal-fired power plant was the major source of ambient PAH in this city. We tested the hypothesis that, after adjusting for potential confounders, prenatal exposure to these pollutants would be associated with lower IQ scores at 5 years of age. METHODS Nonsmoking mothers and children were enrolled before delivery. PAH exposure was measured by DNA adducts in umbilical cord white blood cells using High-Performance Liquid Chromatography-Fluorescence. Estimated exposure to environmental tobacco smoke was based on personal interview. At age 5 years, scores for verbal, performance, and full scale IQ were obtained. Multiple regression was used to test the main effects of adducts and environmental tobacco smoke on IQ and to explore the interactions between these exposures on IQ. RESULTS after adjusting for potential confounders, neither DNA adducts nor exposure to environmental tobacco smoke had significant main effects on IQ. However, significant interactions between adducts and environmental tobacco smoke were observed on full scale (p=0.025) and verbal (p=0.029) IQ scores, indicating that the adverse effects of prenatal PAH exposure became greater as exposure to environmental tobacco smoke increased. The interaction on performance IQ score was not significant (p=0.135). CONCLUSION These results suggest that exposure of pregnant women to emissions of PAHs from the coal-burning plant, in combination with prenatal exposure to envrionmental tobacco smoke, may have adversely affected cognitive function of children at age 5. The polluting coal-fired plant has since been closed by the government, with likely important benefits to child health and development.
Collapse
Affiliation(s)
- F Perera
- Department of Environmental Health Sciences, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
9
|
Perera FP, Li TY, Lin C, Tang D, Gilbert SG, Kang SK, Aschner M. Current needs and future directions of occupational safety and heath in a globalized world. Neurotoxicology 2011; 33:805-9. [PMID: 22037493 DOI: 10.1016/j.neuro.2011.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 12/09/2022]
Abstract
This summary provides a synopsis of talks included in a symposium entitled "Current Needs and Future Directions of Occupational Safety and Heath in a Globalized World". The purpose of the symposium was to (1) highlight national and international agencies with occupational health related activities; (2) address electronic (e-)waste issues in developing countries where exposures are secondary to the handling and scavenging of scrap; and (3) discuss the effects of hazardous materials, such as polycyclic aromatic hydrocarbon (PAH) and tobacco smoke on child intelligence quotient (IQ) in developing countries.
Collapse
Affiliation(s)
- Frederica P Perera
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | | | | | | | | | | | | |
Collapse
|
10
|
Mekenyan O, Patlewicz G, Dimitrova G, Kuseva C, Todorov M, Stoeva S, Kotov S, Donner EM. Use of Genotoxicity Information in the Development of Integrated Testing Strategies (ITS) for Skin Sensitization. Chem Res Toxicol 2010; 23:1519-40. [DOI: 10.1021/tx100161j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ovanes Mekenyan
- Laboratory of Mathematical Chemistry, “Prof. As. Zlatarov” University, Bourgas, Bulgaria, and DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, Delaware 19711
| | - Grace Patlewicz
- Laboratory of Mathematical Chemistry, “Prof. As. Zlatarov” University, Bourgas, Bulgaria, and DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, Delaware 19711
| | - Gergana Dimitrova
- Laboratory of Mathematical Chemistry, “Prof. As. Zlatarov” University, Bourgas, Bulgaria, and DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, Delaware 19711
| | - Chanita Kuseva
- Laboratory of Mathematical Chemistry, “Prof. As. Zlatarov” University, Bourgas, Bulgaria, and DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, Delaware 19711
| | - Milen Todorov
- Laboratory of Mathematical Chemistry, “Prof. As. Zlatarov” University, Bourgas, Bulgaria, and DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, Delaware 19711
| | - Stoyanka Stoeva
- Laboratory of Mathematical Chemistry, “Prof. As. Zlatarov” University, Bourgas, Bulgaria, and DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, Delaware 19711
| | - Stefan Kotov
- Laboratory of Mathematical Chemistry, “Prof. As. Zlatarov” University, Bourgas, Bulgaria, and DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, Delaware 19711
| | - E Maria Donner
- Laboratory of Mathematical Chemistry, “Prof. As. Zlatarov” University, Bourgas, Bulgaria, and DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, Delaware 19711
| |
Collapse
|
11
|
Gocke E, Müller L. In vivo studies in the mouse to define a threshold for the genotoxicity of EMS and ENU. Mutat Res 2009; 678:101-7. [PMID: 19376265 DOI: 10.1016/j.mrgentox.2009.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
The presence of ethyl methanesulfonate (EMS) in tablets of a HIV medication triggered non-clinical studies into the dose response for mutation analysis after chronic dosing. Although there are a multitude of in vitro and in vivo studies on the genotoxic activity of EMS, no lifetime carcinogenicity studies, repeat dose mutation data or exposure analysis are available to serve as a solid basis for risk assessment. For alkylators like EMS it is generally assumed that the dose response for mutagenicity (and by default for carcinogenicity) is linear - indicating that no 'safe' dose does exist. A recent in vitro genotoxicity study [S.H. Doak, G.J. Jenkins, G.E. Johnson, E. Quick, E.M. Parry, J.M. Parry, Mechanistic influences for mutation induction curves after exposure to DNA-reactive carcinogens, Cancer Res. 67 (2007) 3904-3911] provided evidence, however, that the dose-response curve for mutagenic and clastogenic activity of EMS was thresholded - in contrast to ethylnitrosourea (ENU) tested in parallel. For risk assessment we sought to verify the existence of a threshold for mutagenic and clastogenic activity in vivo using the micronucleus test (MNT) and gene mutation test (MutaMouse), with the aim to provide reassurance to the patients that their exposure to EMS did not carry a toxicological risk. Dose levels ranging from 1.25 to 260mg/(kgday) were applied for up to 28 days. As reference we included ENU at doses of 1.1-22mg/(kgday). Our studies showed that daily doses of EMS up to 25mg/(kgday) (bone marrow, GI tract) and 50mg/(kgday) (liver) did not induce mutations in the lacZ gene in the three organs tested. Doses of EMS up to 80mg/(kgday) did not induce micronuclei in mouse bone marrow. Only at higher dose levels the genotoxic activity of EMS became apparent. Dose fractionation of EMS (28 times 12.5mg/kg versus a single high dose 380mg/kg) in the MutaMouse study provided further convincing evidence for the thresholded dose response of EMS and showed that no accumulation below the threshold was occurring. For ENU no threshold was apparent and dose fractionation indicated additivity. However, there are arguments that a threshold in the dose region of about 0.4mg/(kgday) ENU might exist.
Collapse
Affiliation(s)
- Elmar Gocke
- Preclinical Research, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | | |
Collapse
|
12
|
Perera F, Li TY, Zhou ZJ, Yuan T, Chen YH, Qu L, Rauh VA, Zhang Y, Tang D. Benefits of reducing prenatal exposure to coal-burning pollutants to children's neurodevelopment in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1396-400. [PMID: 18941584 PMCID: PMC2569101 DOI: 10.1289/ehp.11480] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 07/10/2008] [Indexed: 05/03/2023]
Abstract
BACKGROUND Coal burning provides 70% of the energy for China's industry and power, but releases large quantities of polycyclic aromatic hydrocarbons (PAHs) and other pollutants. PAHs are reproductive and developmental toxicants, mutagens, and carcinogens. OBJECTIVE We evaluated the benefit to neurobehavioral development from the closure of a coal-fired power plant that was the major local source of ambient PAHs. METHODS The research was conducted in Tongliang, Chongqing, China, where a coal-fired power plant operated seasonally before it was shut down in May 2004. Two identical prospective cohort studies enrolled nonsmoking women and their newborns in 2002 (before shutdown) and 2005 (after shutdown). Prenatal PAH exposure was measured by PAH-DNA adducts (benzo[a]pyrene-DNA) in umbilical cord blood. Child development was assessed by the Gesell Developmental Schedules at 2 years of age. Prenatal exposure to other neurotoxicants and potential confounders (including lead, mercury, and environmental tobacco smoke) was measured. We compared the cohorts regarding the association between PAH-DNA adduct levels and neurodevelopmental outcomes. RESULTS Significant associations previously seen in 2002 between elevated adducts and decreased motor area developmental quotient (DQ) (p = 0.043) and average DQ (p = 0.047) were not observed in the 2005 cohort (p = 0.546 and p = 0.146). However, the direction of the relationship did not change. CONCLUSION The findings indicate that neurobehavioral development in Tongliang children benefited by elimination of PAH exposure from the coal-burning plant, consistent with the significant reduction in PAH-DNA adducts in cord blood of children in the 2005 cohort. The results have implications for children's environmental health in China and elsewhere.
Collapse
Affiliation(s)
- Frederica Perera
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tang D, Li TY, Liu JJ, Zhou ZJ, Yuan T, Chen YH, Rauh VA, Xie J, Perera F. Effects of prenatal exposure to coal-burning pollutants on children's development in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:674-9. [PMID: 18470301 PMCID: PMC2367664 DOI: 10.1289/ehp.10471] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Accepted: 01/28/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs), lead, and mercury are released by combustion of coal and other fossil fuels. OBJECTIVES In the present study we evaluated the association between prenatal exposure to these pollutants and child development measured by the Gesell Developmental Schedules at 2 years of age. METHODS The study was conducted in Tongliang, Chongqing, China, where a seasonally operated coal-fired power plant was the major source of ambient PAHs and also contributed lead and mercury to the air. In a cohort of nonsmoking women and their newborns enrolled between March 2002 and June 2002, we measured levels of PAH-DNA adducts, lead, and mercury in umbilical cord blood. PAH-DNA adducts (specifically benzo[a]pyrene adducts) provided a biologically relevant measure of PAH exposure. We also obtained developmental quotients (DQs) in motor, adaptive, language, and social areas. RESULTS Decrements in one or more DQs were significantly associated with cord blood levels of PAH-DNA adducts and lead, but not mercury. Increased adduct levels were associated with decreased motor area DQ (p = 0.043), language area DQ (p = 0.059), and average DQ (p = 0.047) after adjusting for cord lead level, environmental tobacco smoke, sex, gestational age, and maternal education. In the same model, high cord blood lead level was significantly associated with decreased social area DQ (p = 0.009) and average DQ (p = 0.038). CONCLUSION The findings indicate that exposure to pollutants from the power plant adversely affected the development of children living in Tongliang; these findings have implications for environmental health policy.
Collapse
Affiliation(s)
- Deliang Tang
- Mailman School of Public Health, Columbia University, Department of Environmental Health Sciences, Columbia University, New York, NY 10032 USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Snodin DJ. Residues of genotoxic alkyl mesylates in mesylate salt drug substances: Real or imaginary problems? Regul Toxicol Pharmacol 2006; 45:79-90. [PMID: 16564608 DOI: 10.1016/j.yrtph.2006.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Indexed: 10/24/2022]
Abstract
Mesylate esters of short-chain (n = 1-3) alcohols are reactive, direct-acting, genotoxic and possibly carcinogenic alkylating agents. Their chemical and biological properties appear to correlate well with Swain-Scott s constants; for example, high S(N)1 character (low s value) is associated with enhanced carcinogenic potential, but also a rapid hydrolysis rate. Concerns over the possible formation of such esters during the preparation of mesylate salt drug substances, by addition of methane sulfonic acid (MSA) to the free base dissolved in an alcoholic solvent, have led regulatory agencies to require applicants to demonstrate that the synthetic method employed does not lead to the presence of detectable levels of alkyl mesylates. Mechanistic considerations, relating mainly to the extremely low nucleophilicity of the mesylate anion, and experimental data, both indicate that alkyl mesylates should not be formed (except from MSA impurities) during mesylate salt synthesis. Mechanistic arguments also predict that residues of alkyl halides (possibly formed in the preparation of amine hydrochlorides or hydrobromides) could represent a similar or greater potential hazard than alkyl mesylates. The perceived risk of alkyl mesylate formation seems to rely on mistaken assumptions and so the concerns appear unjustified. Further reassurance could be achieved however by applying a variety of strategies during synthesis, including pH control, and use of high-purity MSA or of a non-hydroxylic reaction solvent.
Collapse
Affiliation(s)
- David J Snodin
- PAREXEL Drug Development Consulting, The Quays, 101-105 Oxford Road, Uxbridge, Middlesex, UB8 1LZ, UK.
| |
Collapse
|
15
|
Narang AS, Thoma L, Miller DD, Mahato RI. Cationic lipids with increased DNA binding affinity for nonviral gene transfer in dividing and nondividing cells. Bioconjug Chem 2005; 16:156-68. [PMID: 15656587 DOI: 10.1021/bc049818q] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effect of headgroup structure on catonic lipid-mediated transfection was investigated with either a (i) tertiary amine, (ii) quaternary amine with a hydroxyl, or (iii) quaternary amine with mesylate as headgroups. Liposomes were formulated using cholesterol or dioleoyl phosphatidyl ethanolamine (DOPE) as colipids, and transfection efficiencies were determined in rapidly dividing colon carcinoma (CT 26) and rat aortic smooth muscle (RASM) cells as well as in nondividing human pancreatic islets using luciferase and green fluorescent protein expression plasmids, pcDNA3-Luc and pCMS-EGFP, respectively. Liposome/pDNA complexes were evaluated for DNA conformational state by circular dichroism (CD), DNA condensation by electrophoretic mobility shift assay (EMSA), particle size and zeta potential by laser diffraction technique, and surface morphology by transmission electron microscopy (TEM). Encouraging transfection results were obtained with the mesylate headgroup based lipid in liposome formulations with DOPE as a colipid, which were higher than the commercially available Lipofectamine formulation. We hypothesize that the additional hydrogen bonding or covalent interactions of the headgroup with the plasmid DNA, leading to higher binding affinity of the cationic lipids to pDNA, results in higher transfection. This hypothesis is supported by TEM observations where elongated complexes were observed and more lipid was seen associated with the DNA.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
16
|
The chemistry and toxicology of bioactive compounds in bracken fern (Pteridium SSP), with special reference to chemical ecology and carcinogenesis. BIOACTIVE NATURAL PRODUCTS 2002. [DOI: 10.1016/s1572-5995(02)80017-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Eder E, Kütt W, Deininger C. On the role of alkylating mechanisms, O-alkylation and DNA-repair in genotoxicity and mutagenicity of alkylating methanesulfonates of widely varying structures in bacterial systems. Chem Biol Interact 2001; 137:89-99. [PMID: 11518566 DOI: 10.1016/s0009-2797(01)00211-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Ames test and the SOS-chromotest are widely used bacterial mutagenicity/genotoxicity assays to test potential carcinogens. Though the molecular mechanisms leading to backmutations and to the induction of SOS-repair are in principle known the role of alkylation mechanisms, of different DNA-lesions and of DNA-repair is in parts still unknown. In this study we investigated 14 monofunctional methanesulfonates of widely varying structures for mutagenicity in Salmonella typhimurium strain TA 1535 sensitive for O(6)-guanine alkylation for comparison with strain TA 100 in order to obtain additional information on the role of alkylation mechanisms, formation of the procarcinogenic DNA-lesion O(6)-alkylguanine and the role of DNA-repair in induction of backmutation. The substances were also tested in the SOS-chromotest with Escherichia coli strain PQ 37 and strain PQ 243 lacking alkyl base glycosylases important for base excision repair in order to examine the role of alkylation mechanisms, of base excision repair and the role of O-alkyl and N-alkyl DNA-lesions on the induction of SOS-repair. The secondary methanesulfonates with very high S(N)1-reactivity isopropyl methanesulfonate and 2-butyl methanesulfonate showed highest mutagenicities in both strains. The higher substituted methanesulfonates with very high S(N)1-reactivity had lower mutagenic activities because of reduced half lives due to their high hydrolysis rates. A clear increase in mutagenicities in strain TA 100 was observed for the primary compounds methyl methanesulfonate and allyl methanesulfonate with very high S(N)2-reactivity. The primary compound phenylethyl methanesulfonate has a relatively high mutagenicity in both Salmonella strains which can be explained by an increased S(N)1-reactivity and by low repair of the O(6)-phenylethylguanine. Highest SOSIPs (SOS inducing potency) in strains PQ 37 and PQ 243 were found for methyl methanesulfonate and for the secondary compounds with high S(N)1-reactivity. The ratios in the SOSIPs between strain PQ 243 and PQ 37, indirectly indicative for the role of O- and N-alkylation in the induction of SOS-repair, was high for the primary methanesulfonates and lower for the secondary, indicating that the SOS-repair is, to a certain extent, also induced by other lesions than O(6)-alkylation. The results indicate that O(6)-alkylation is also a predominant lesion for backmutation in strain TA 100 and that in the case of monofunctional alkylating agents high S(N)2-reactivities are required to induce error prone repair mediated backmutations. The O(6)-alkylguanine lesion is also important for induction of SOS-repair in the SOS-chromotest, however, other sites of alkylation which are repaired by the base pair excision repair system can also efficiently contribute to the induction of SOS-repair.
Collapse
Affiliation(s)
- E Eder
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
18
|
Yamada T, Odawara K, Kaneko H. Concurrent detection of gene mutations and chromosome aberrations induced by five chemicals in a CHL/IU cell line incorporating a gpt shuttle vector. Mutat Res 2000; 471:29-36. [PMID: 11080658 DOI: 10.1016/s1383-5718(00)00115-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously established a transgenic Chinese hamster CHL/IU cell line, designated as KN63, for concurrent analysis of gene mutations and chromosome aberrations. The KN63 cell line contains copies of a shuttle vector with the Escherichia coli gpt gene as a mutational target in its chromosome. To evaluate the sensitivity of the cell line to various types of mutagens, methyl methanesulfonate (MMS), N-ethyl-N-nitrosourea (ENU), mitomycin C (MMC), vincristine sulfate (VIN) and C.I. basic red 9 hydrochloride (CIB) were assayed. KN63 cells were treated with each test chemical and gene mutations were detected in the gpt gene of the shuttle vector rescued from the KN63 cell genome into an E. coli host. Chromosome aberrations were concurrently evaluated by conventional metaphase analysis. MMS, ENU and MMC induced both gene mutations and structural chromosome aberrations in KN63 cells, with more efficient induction of the latter. VIN, a well-known aneugen, produced only numerical changes to chromosomes, while CIB was negative for both types of alteration. KN63 cells were as sensitive to MMS, ENU, MMC and VIN as Chinese hamster cell lines such as CHL, CHO and V79 cells. The characteristics of test chemicals indicated by this system should be useful for understanding endpoints in chemical mutagenesis.
Collapse
Affiliation(s)
- T Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd., 1-98, 3-Chome, Kasugade-naka, Konohana-ku, Osaka 554-8558, Japan.
| | | | | |
Collapse
|
19
|
van Sittert NJ, Boogaard PJ, Natarajan AT, Tates AD, Ehrenberg LG, Törnqvist MA. Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment. Mutat Res 2000; 447:27-48. [PMID: 10686305 DOI: 10.1016/s0027-5107(99)00208-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethylene oxide (EO) is mutagenic in various in vitro and in vivo test systems and carcinogenic in rodents. EO forms different adducts upon reaction with DNA, N7-(2-hydroxyethyl)guanine (N7-HEG) being the main adduct. The major objectives of this study were: (a) to determine the formation and persistence of N7-HEG adducts in liver DNA of adult male rats exposed to 0, 50, 100 and 200 ppm by inhalation (4 weeks, 5 days/week, 6 h/day) and (b) to assess dose-response relationships for Hprt gene mutations and various types of chromosomal changes in splenic lymphocytes.N7-HEG adducts were measured 5, 21, 35 and 49 days after cessation of exposure. By extrapolation, the mean concentrations of N7-HEG immediately after cessation of exposure ('day 0') to 50, 100 and 200 ppm were calculated as 310, 558 and 1202 adducts/10(8) nucleotides, respectively, while the mean concentration in control rats was 2.6 adducts/10(8) nucleotides. At 49 days, N7-HEG values had returned close to background levels. The mean levels of N-(2-hydroxyethylvaline) adducts in haemoglobin were also determined and amounted 61.7, 114 and 247 nmol/g globin, respectively. Statistically significant linear relationships were found between mean N7-HEG levels ('day 0') and Hprt mutant frequencies at expression times 21/22 and 49/50 days and between mean N7-HEG ('day 0') and sister-chromatid exchanges (SCEs) or high frequency cells (HFC) measured 5 days post-exposure. At day 21 post-exposure, SCEs and HFCs in-part persisted and were significantly correlated with persistent N7-HEG adducts. No statistically significant dose effect relationships were observed for induction of micronuclei, nor for chromosome breaks or translocations. In conclusion, this study indicates that following sub-chronic exposure, EO is only weakly mutagenic in adult rats. Using the data of this study to predict cancer risk in man resulting from low level EO exposures in conjunction with other published data, i.e., those on (a) genotoxic effects of EO in humans and rats, (b) DNA binding of other carcinogens, (c) natural background DNA binding and (d) genotoxic potency of low energy transfer (LET) radiation, it is not expected that long term occupational exposure to airborne concentrations of EO at or below 1 ppm EO produces an unacceptable increased risk in man.
Collapse
Affiliation(s)
- N J van Sittert
- Department of Molecular Toxicology, Shell International Chemicals, Amsterdam, Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
Kaina B, Fritz G, Ochs K, Haas S, Grombacher T, Dosch J, Christmann M, Lund P, Gregel CM, Becker K. Transgenic systems in studies on genotoxicity of alkylating agents: critical lesions, thresholds and defense mechanisms. Mutat Res 1998; 405:179-91. [PMID: 9748564 DOI: 10.1016/s0027-5107(98)00135-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transgenic systems, both cell lines and mice with gain or loss of function, are being used in order to modulate the expression of DNA repair proteins, thus allowing to assess their contribution to the defense against genotoxic mutagens and carcinogens. In this review, questions have been addressed concerning the use of transgenic systems in elucidating critical primary DNA lesions, their conversion into genotoxic endpoints, low-dose effects, and the relative contribution of individual cellular functions in defense. It has been shown that the repair protein alkyltransferase (MGMT) is decisive for protection against methylating and chloroethylating compounds. Protection pertains also to tumor formation, as revealed by the response of MGMT transgenic and knockout mice. Overexpression of genes involved in base excision repair (N-methylpurine-DNA glycosylase, apurinic endonuclease, DNA polymerase beta) is in most cases not beneficial in increasing the protection level, whereas their down-modulation or inactivation increases cellular sensitivity. This indicates that non-repaired base N-alkylation lesions and/or repair intermediates possess genotoxic potential. Modulation of mismatch repair and poly(ADP)ribosyl transferase has also been shown to affect the cellular response to alkylating agents. Furthermore, the role of Fos, Jun and p53 in cellular defense against alkylating mutagens is discussed.
Collapse
Affiliation(s)
- B Kaina
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Whyatt RM, Santella RM, Jedrychowski W, Garte SJ, Bell DA, Ottman R, Gladek-Yarborough A, Cosma G, Young TL, Cooper TB, Randall MC, Manchester DK, Perera FP. Relationship between ambient air pollution and DNA damage in Polish mothers and newborns. ENVIRONMENTAL HEALTH PERSPECTIVES 1998; 106 Suppl 3:821-6. [PMID: 9646044 PMCID: PMC1533078 DOI: 10.1289/ehp.98106821] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Industrialized regions in Poland are characterized by high ambient pollution, including polycyclic aromatic hydrocarbons (PAHs) from coal burning for industry and home heating. In experimental bioassays, certain PAHs are transplacental carcinogens and developmental toxicants. Biologic markers can facilitate evaluation of effects of environmental PAHs on the developing infant. We measured the amount of PAHs bound to DNA (PAH-DNA adducts) in maternal and umbilical white blood cells. The cohort consisted of 70 mothers and newborns from Krakow, Poland, an industrialized city with elevated air pollution. Modulation of adduct levels by genotypes previously linked to risk of lung cancer, specifically glutathione S-transferase MI (GSTM1) and cytochrome P4501A1 (CYP1A1) Msp restriction fragment length polymorphism (RFLP), was also investigated. There was a dose-related increase in maternal and newborn adduct levels with ambient pollution at the women's place of residence among subjects who were not employed away from home (p < or = 0.05). Maternal smoking (active and passive) significantly increased maternal (p < or = 0.01) but not newborn adduct levels. Neither CYP1A1 Msp nor GSTM1 polymorphisms was associated with maternal adducts. However, adducts were significantly higher in newborns heterozygous or homozygous for the CYP1A1 Msp RFLP compared to newborns without the RFLP (p = 0.04). Results indicate that PAH-induced DNA damage in mothers and newborns is increased by ambient air pollution. In the fetus, this damage appears to be enhanced by the CYP1A1 Mspl polymorphism.
Collapse
Affiliation(s)
- R M Whyatt
- Columbia University School of Public Health, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vogel EW, Barbin A, Nivard MJ, Stack HF, Waters MD, Lohman PH. Heritable and cancer risks of exposures to anticancer drugs: inter-species comparisons of covalent deoxyribonucleic acid-binding agents. Mutat Res 1998; 400:509-40. [PMID: 9685708 DOI: 10.1016/s0027-5107(98)00060-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the past years, several methodologies were developed for potency ranking of genotoxic carcinogens and germ cell mutagens. In this paper, we analyzed six sub-classes of covalent deoxyribonucleic acid (DNA) binding antineoplastic drugs comprising a total of 37 chemicals and, in addition, four alkyl-epoxides, using four approaches for the ranking of genotoxic agents on a potency scale: the EPA/IARC genetic activity profile (GAP) database, the ICPEMC agent score system, and the analysis of qualitative and quantitative structure-activity and activity-activity relationships (SARs, AARs) between types of DNA modifications and genotoxic endpoints. Considerations of SARs and AARs focused entirely on in vivo data for mutagenicity in male germ cells (mouse, Drosophila), carcinogenicity (TD50s) and acute toxicity (LD50s) in rodents, whereas the former two approaches combined the entire database on in vivo and in vitro mutagenicity tests. The analysis shows that the understanding and prediction of rank positions of individual genotoxic agents requires information on their mechanism of action. Based on SARs and AARs, the covalent DNA binding antineoplastic drugs can be divided into three categories. Category 1 comprises mono-functional alkylating agents that primarily react with N7 and N3 moieties of purines in DNA. Efficient DNA repair is the major protective mechanism for their low and often not measurable genotoxic effects in repair-competent germ cells, and the need of high exposure doses for tumor induction in rodents. Due to cell type related differences in the efficiency of DNA repair, a strong target cell specificity in various species regarding the potency of these agents for adverse effects is found. Three of the four evaluation systems rank category 1 agents lower than those of the other two categories. Category 2 type mutagens produce O-alkyl adducts in DNA in addition to N-alkyl adducts. In general, certain O-alkyl DNA adducts appear to be slowly repaired, or even not at all, which make this kind of agents potent carcinogens and germ cell mutagens. Especially the inefficient repair of O-alkyl-pyrimidines causes the high mutational response of cells to these agents. Agents of this category give high potency scores in all four expert systems. The major determinant for the high rank positions on any scale of genotoxic of category 3 agents is their ability to induce primarily structural chromosomal changes. These agents are able to cross-link DNA. Their high intrinsic genotoxic potency appears to be related to the number of DNA cross-links per target dose unit they can induce. A confounding factor among category 3 agents is that often the genotoxic endpoints occur close to or at toxic levels, and that the width of the mutagenic dose range, i.e., the dose area between the lowest observed effect level and the LD50, is smaller (usually no more than 1 logarithmic unit) than for chemicals of the other two categories. For all three categories of genotoxic agents, strong correlations are observed between their carcinogenic potency, acute toxicity and germ cell specificity.
Collapse
Affiliation(s)
- E W Vogel
- Leiden University Medical Centre, Dept. Radiation Genetics and Chemical Mutagenesis, MGC, Wassenaarseweg 72, 2300 RA Leiden, Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Trukhanova LS, Hong HH, Sills RC, Bowser AD, Gaul B, Boorman GA, Turusov VS, Devereux TR, Dixon D. Predominant p53 G-->A transition mutation and enhanced cell proliferation in uterine sarcomas of CBA mice treated with 1,2-dimethylhydrazine. Toxicol Pathol 1998; 26:367-74. [PMID: 9608642 DOI: 10.1177/019262339802600310] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mouse uterine tumors were examined for genetic alterations in the ras proto-oncogene and p53 tumor suppressor gene and for other biologically relevant immunohistochemical markers that may increase our understanding of the events that occur in uterine cancer. Fourteen dimethylhydrazine (DMH)-induced uterine sarcomas, including 3 primary malignant fibrous histiocytomas (MFH), 7 transplanted MFH, 3 stromal sarcomas, and 1 undifferentiated sarcoma, were first screened by immunohistochemistry for p53 missense mutations, followed by single strand conformation polymorphism analysis and DNA sequencing for the identification of point mutations. There was 100% correlation between p53 protein immunopositivity and subsequent detection of p53 mutations in DMH-induced malignant fibrous histiocytomas. All MFH had a characteristic p53 G:C-->A:T transition mutation, consistent with O6-methylguanine mispairing with thymine, the most common DNA lesion caused by alkylating agents. DMH-induced uterine MFH with p53 mutations also had a higher proliferative rate (qualitatively evaluated by immunohistochemical detection of proliferating cell nuclear antigen) when compared with other DMH-induced sarcomas. Uterine sarcomas were further evaluated for biological end points, such as estrogen receptor and desmin. Neoplastic cells from stromal sarcomas (SS), undifferentiated sarcomas (US), and MFH did not stain for desmin. The estrogen receptor was detected in normal uteri and a small portion of MFH, SS, and US. Our data suggest that DMH-induced uterine sarcomas are not consistent with smooth muscle cell origin and that a subset of these tumors, specifically DMH-induced malignant fibrous histiocytomas, have unique p53 G:C-->A:T transitions and a high proliferative rate.
Collapse
Affiliation(s)
- L S Trukhanova
- Cancer Research Centre, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vogel EW, Nivard MJ, Ballering LA, Bartsch H, Barbin A, Nair J, Comendador MA, Sierra LM, Aguirrezabalaga I, Tosal L, Ehrenberg L, Fuchs RP, Janel-Bintz R, Maenhaut-Michel G, Montesano R, Hall J, Kang H, Miele M, Thomale J, Bender K, Engelbergs J, Rajewsky MF. DNA damage and repair in mutagenesis and carcinogenesis: implications of structure-activity relationships for cross-species extrapolation. Mutat Res 1996; 353:177-218. [PMID: 8692191 DOI: 10.1016/0027-5107(96)00032-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous studies on structure-activity relationships (SARs) between types of DNA modifications and tumour incidence revealed linear positive relationships between the log TD50 estimates and s-values for a series of mostly monofunctional alkylating agents. The overall objective of this STEP project was to further elucidate the mechanistic principles underlying these correlations, because detailed knowledge on mechanisms underlying the formation of genotoxic damage is an absolute necessity for establishing guidance values for exposures to genotoxic agents. The analysis included: (1) the re-calculation and further extension of TD50 values in mmol/kg body weight for chemicals carcinogenic in rodents. This part further included the checking up data for Swain-Scott s-values and the use of the covalent binding index (CBI); (2) the elaboration of genetic toxicity including an analysis of induced mutation spectra in specific genes at the DNA level, i.e., the vermilion gene of Drosophila, a plasmid system (pX2 assay) and the HPRT gene in cultured mammalian cells (CHO-9); and (3) the measurement of specific DNA alkylation adducts in animal models (mouse, rat, hamster) and mammalian cells in culture. The analysis of mechanisms controlling the expression of mammalian DNA repair genes (alkyltransferases, glycosylases) as a function of the cell type, differentiation stage, and cellular microenvironment in mammalian cells. The 3 classes of genotoxic carcinogens selected for the project were: (1) chemicals forming monoalkyl adducts upon interaction with DNA; (2) genotoxins capable of forming DNA etheno-adducts; and (3) N-substituted aryl compounds forming covalent adducts at the C8 position of guanine in DNA. In general, clear SARs and AARs (activity-activity relationships) between physiochemical parameters (s-values, O6/N7-alkylguanine ratios, CBI), carcinogenic potency in rodents and several descriptors of genotoxic activity in germ cells (mouse, Drosophila) became apparent when the following descriptors were used: TD50 estimates (lifetime doses expressed in mg/kg b.wt. or mmol/kg b.wt.) from cancer bioassays in rodents; the degree of germ-cell specificity, i.e., the ability of a genotoxic agent to induce mutations in practically all cell stages of the male germ-cell cycle of Drosophila (this project) and the mouse (literature search), as opposed to a more specific response in postmeiotic stages of both species; the Mexr-/Mexr+ hypermutability ratio, determined in a repair assay utilizing Drosophila germ cells; mutation spectra induced at single loci (the 7 loci used in the specific-locus test of the mouse (published data), and the vermilion gene of Drosophila); and doubling doses (DD) in mg/kg (mmol/kg) for specific locus test results on mice. By and large, the TD50 values, the inverse of which can be considered as measures of carcinogenic potency, were shown to be predictable from knowledge of the in vivo doses associated with the absorbed amounts of the investigated alkylators and with the second-order constant, kc, reaction at a critical nucleophilic strength, nc. For alkylating agents kc can be expressed as the second-order rate constant for hydrolysis, kH2O, and the substrate constant s:kH2OTD50 is a function of a certain accumulated degree of alkylation, here given as the (average) daily increment, ac, for 2 years exposure of the rodents. The TD*50 in mmol/kg x day) could then be written: [formula: see text] This expression would be valid for monofunctional alkylators provided the reactive species are uncharged. This is the case for most SN2 reagents. Although it appears possible to predict carcinogenic potency from measured in vivo doses and from detailed knowledge of reaction-kinetic parameter values, it is at present not possible to quantify the uncertainty of such predictions. One main reason for this is the complication due to uneven distribution in the body, with effects on the dose in target tissues. The estimation can be impro
Collapse
Affiliation(s)
- E W Vogel
- Department of Radiation Genetics and Chemical Mutagenesis, Medical Genetics Centre South-West Netherlands (MGC), University of Leiden (RUL), Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nivard MJ, Pastink A, Vogel EW. Mutational spectra induced under distinct excision repair conditions by the 3 methylating agents N-methyl-N-nitrosourea, N-methyl-N'-nitro-N-nitrosoguanidine and N-nitrosodimethylamine in postmeiotic male germ cells of Drosophila. Mutat Res 1996; 352:97-115. [PMID: 8676923 DOI: 10.1016/0027-5107(96)00011-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This paper describes the analysis of mutations induced at the vermilion locus in postmeiotic male germ cell stages of Drosophila exposed to 3 different N-methyl-N-nitroso compounds: N-methyl-N-nitrosourea (MNU); N-methyl-N'-nitro-N-nitrosoguanidine (MNNG); and N-nitrosodimethylamine (DMN). With MNU and DMN, the impact of DNA nucleotide excision repair (NER) on the spectra of mutations was studied. Mutants were isolated from F1 (mutations fixed before the first mitotic replication after fertilization) and F2 (mutations fixed following one or more mitotic replications; mosaics in F1) generations. The vermilion system enables the analysis of both intra- and inter-locus DNA changes for which several techniques have been adapted: (1) amplification of the vermilion gene by PCR, cloning of the fragment and sequence analysis of ssDNA; (2) Southern blot hybridization; and (3) cytological analysis of polytene chromosomes. In total, 49 MNU (26 from the exr+ genotype and 23 from the exr- genotype), 47 DMN (28 from the exr+ genotype and 19 from the exr- genotype) and 16 MNNG-induced mutations were characterized. The F1 spectra of all 3 agents contained base-pair changes and deletions (intra- and multi-locus) in a ratio of roughly 1 to 1, indicating a significant contribution of nitrogen DNA adducts to the spectra. In all F2 spectra the levels of base-pair changes were significantly higher compared to those in the F1 spectra, a finding also made for methyl methanesulfonate-induced mutations in earlier studies. There is an increase of mutations of, especially, the transversion types of mutations under exr- conditions in comparison to the exr+ situation. The induced transversions, clearly present in all spectra (exr+ and exr-), are presumably caused by N-methyl DNA adducts, which upon release from the DNA backbone lead to apurinic sites in a time-related process. Regarding the occurrence of transitions, it turned out for all 3 mutagens that the AT-->GC type strongly dominated the GC-->AT transitions. This suggest that O6-methylguanine is efficiently repaired, in contrast to O4-methylthymine. Based on the data obtained in the vermilion system with ENU, we propose, in addition, that the Drosophila alkyltransferase system repairs O6-methylguanine more efficiently than O6-ethylguanine.
Collapse
Affiliation(s)
- M J Nivard
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, Sylvius Laboratories, Netherlands
| | | | | |
Collapse
|
26
|
Rodriguez-Arnaiz R, Soto PO, Oyarzún JC, Graf U. Analysis of mitotic recombination induced by several mono- and bifunctional alkylating agents in the Drosophila wing-spot test. Mutat Res 1996; 351:133-45. [PMID: 8622707 DOI: 10.1016/0027-5107(95)00217-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitotic recombination induced by six alkylating agents has been studied in the wing-spot test of Drosophila melanogaster. The model mutagens chosen have different models of action at the DNA level. These are: the direct-acting small alkylating agent methylmethanesulfonate (MMS), the small promutagens N-dimethylnitrosamine (DMN) and N-diethylnitrosamine (DEN), the bifunctional cross-linking alkylating agents mitomycin C (MMC), chlorambucil (CLA) and monocrotaline (MCT). Flies of the standard cross (flr3 / TM3, Bds females and mwh males) were used to produce the larvae to be treated. Three-day old Drosophila larvae were exposed by chronic feeding for 48 h to three different concentrations of all six alkylating agents. Acute feeding for only 2 h was used in addition with DEN and MMC. Wings of the marker-heterozygous (mwh+ / + flr3) as well as of the balancer-heterozygous (mwh+ / TM3, Bds) progeny were analysed. The ranking of the compounds with respect to their genotoxic potency, based on mwh clone formation frequency in marker-heterozygous wings was: MMS > MNC > DMN > CLA approximately MCT > DEN. The ranking with respect to the induction of twin spots, which are produced by mitotic recombination exclusively, was: MMS > DMN > MMC > MCT > CLA > DEN. The quantitative determination of recombinagenic activity, based on mwh clone formation frequencies obtained in both types of wings, gave the following values: MMS, 93%; MCT, 87%; CLA, 80%; MMC, 73%; DMN, 67%; DEN, 22%. A clear relationship exists between the extent of N-alkylation of DNA and the efficiency of the monofunctional agents MMS and DMN as well of the bifunctional agents MCT, CLA and MMC to induce mitotic recombination. This contrasts with the ethylation of base oxygen atoms and the resulting lower efficiency of DEN to produce mitotic recombination.
Collapse
Affiliation(s)
- R Rodriguez-Arnaiz
- Laboratorio de Genética, Fakultad de Ciencias, Universidad Nacional Autónoma de México, D.F., Mexico
| | | | | | | |
Collapse
|
27
|
Tinwell H, Paton D, Guttenplan JB, Ashby J. Unexpected genetic toxicity to rodents of the N',N'-dimethyl analogues of MNU and ENU. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1996; 27:202-210. [PMID: 8625956 DOI: 10.1002/(sici)1098-2280(1996)27:3<202::aid-em5>3.0.co;2-g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lijinsky and his colleagues have reported that the N',N'-dimethyl analogues of ENU and MNU [N',N'-dimethyl-N-ethyl-N-nitrosourea (DMENU) and trimethylnitrosourea (TMNU), respectively] are carcinogenic to rats despite their extreme hydrolytic stability which would reduce or preclude generation of alkylating species analogous to those formed upon hydrolysis of ENU and MNU. Lijinsky and his colleagues were unable to rationalize those activities of DMENU and TMNU despite extensive experimentation. We therefore decided to study this problem further. Whichever mode is accepted for the generation of electrophilic/mutagenic/carcinogenic reactive species from ENU and MNU, blocking of the free-NH2 group with methyl groups (-NMe2) should ablate or abolish activity. Consistent with this DMENU and TMNU gave negative results in the NBP alkylation test while the parent compounds gave an instantaneous deep blue coloration. Studies of the rate of hydrolysis of these four compounds revealed ENU and MNU to have half-lives of 8 min, while the alkylated analogues (DMENU and TMNU) had half-lives of 25 and 41 days, respectively. Hydrolysis of ENU and MNU, to yield the alkylating species, proceeds either via proton abstraction from the -NH2 group or by attack by water on the carbon of the carbonyl group. Methylation will inhibit both of these pathways, the first absolutely (no -NH2 protons) and the second partially, via steric inhibition. The slow hydrolysis observed for DMENU and TMNU suggests that the latter route of hydrolysis is applicable. Studies with strain TA1535 of Salmonella typhimurium (without S9 mix) confirmed the potent mutagenic activity for ENU and MNU (approximately 300-fold increase in revertants at 2,000 micrograms/plate and approximately 180-fold increase in revertants at 150 micrograms/plate respectively). In contrast, the methylated analogues showed only weak mutagenic activity (approximately 3-fold) at approximately 100-fold higher dose-levels. Addition of S9 mix did not affect the mutagenicity of DMENU or TMNU. To this point, hypothesis and data coincide. ENU and MNU are potent micronucleus-inducing agents to the mouse bone marrow, and given the above data, it was expected that DMENU and TMNU would show weak or no activity in that assay. In fact, the methylated analogues were as effective as ENU and MNU as clastogens to the mouse bone marrow. Four possible reasons for this conflict of theory and data are explored. The speculative explanation we favour for these effects is that the net alkylation of bone marrow DNA is the same for all four chemicals. With ENU and MNU, most of the alkylating activity is dissipated by rapid hydrolysis. Thus, only a small fraction of the administered dose survives to alkylate the bone marrow. Due to the enhanced stability of the methyl analogues most of the delivered dose will reach the bone marrow. However, because of their lower intrinsic reactivity, only a small fraction of the target dose will alkylate the bone marrow DNA during the time window of the experiment. If these opposing influences happen to balance out, the essentially identical bone marrow genetic toxicity for the four chemicals could be explained.
Collapse
Affiliation(s)
- H Tinwell
- Zeneca CTL, Alderley Park, Nr Macclesfield Cheshire, United Kingdom
| | | | | | | |
Collapse
|
28
|
Prasad MP, Mukundan MA, Krishnaswamy K. Micronuclei and carcinogen DNA adducts as intermediate end points in nutrient intervention trial of precancerous lesions in the oral cavity. EUROPEAN JOURNAL OF CANCER. PART B, ORAL ONCOLOGY 1995; 31B:155-9. [PMID: 7549753 DOI: 10.1016/0964-1955(95)00013-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In cancer chemoprevention trials, biomarkers as intermediate end points have gained importance. A variety of biomarkers have been proposed as intermediate end points for upper aerodigestive tract cancers. This study was aimed at studying the frequency of micronucleated cells and carcinogen DNA adducts as indicators of DNA damage and intervention end points in chemoprevention trials. Reverse smokers of chutta (rolled tobacco) from four villages numbering 298 in total were selected. Out of these, 150 were supplemented with four nutrients (vitamin A, riboflavin, zinc and selenium) and 148 controls received placebo, one capsule twice a week for 1 year. Slides of buccal smears were prepared and stained with Fuelgen reaction and counterstained with Fast Green and examined microscopically for the presence of micronucleated cells. Oral cell washings were collected and centrifuged. The DNA adducts were evaluated by the 32P post-labelling assay method. Protein and RNA free DNA (adducted) isolated from the cells was digested with MN/SPD and the DNA adducts isolated by the butanol enrichment procedure. The DNA adducts were identified and quantitated by multidimensional chromatography on PEI-TLC sheets by screen enhanced autoradiography and presented as RAL (relative adduct labelling) values. Both the micronuclei and DNA adducts were significantly elevated in subjects with lesions. At the end of 1 year the frequency of micronuclei decreased significantly (P < 0.001) in the supplemented subjects with or without lesions. The DNA adducts in the supplement group at the end of 1 year also reduced significantly. The adducts decreased by 95% in subjects with all categories of lesions and by 72% in subjects without lesions. No such effects were noted in the placebo group. The two biomarkers investigated in the case study appear to be modifiable by the administration of micronutrient supplements.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M P Prasad
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | | | | |
Collapse
|
29
|
Roldán-Arjona T, Pueyo C, Haynes RH. Mathematical parameters for quantification of mutational responses in bacteria. Mutat Res 1995; 346:77-84. [PMID: 7885403 DOI: 10.1016/0165-7992(95)90054-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper introduces a new parameter, derivable from dose-response data for induced mutagenesis in bacteria, that can be used to quantify mutational responses in short-term tests. We called this parameter the mutational response of the bipartite experimental system (agent plus cells). We defined it as being jointly proportional to the efficiency of the mutagen and the sensitivity of the test. We show how this quantity can be used to rank order chemical carcinogens on the basis of their mutagenicity and to determine the strength of any quantitative correlation that may exist between mutagenicity in bacteria and carcinogenicity in rodents. We find that this particular measure of mutational response for 10 direct-acting monofunctional alkylating agents correlates remarkably well with the rodent carcinogenicity of these chemicals measured in terms of their reciprocal TD50 values.
Collapse
Affiliation(s)
- T Roldán-Arjona
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | | | |
Collapse
|
30
|
Eder E, Weinfurtner E. Mutagenic and carcinogenic risk of oxygen containing chlorinated C-3 hydrocarbons: putative secondary products of C-3 chlorohydrocarbons and chlorination of water. CHEMOSPHERE 1994; 29:2455-2466. [PMID: 7850393 DOI: 10.1016/0045-6535(94)90413-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Oxygen containing C-3 chlorohydrocarbons are secondary products of C-3 chlorohydrocarbons formed during oxidation at air, in the metabolism of pesticides and by chlorination of drinking water. These compounds are mutagenic, genotoxic and carcinogenic. 2-Chloroacroleins are extremely strong mutagens and genotoxins and form 1,N2-cyclic deoxyguanosine adducts. The role of such adducts in mutagenicity and carcinogenicity is discussed.
Collapse
Affiliation(s)
- E Eder
- Institute of Toxicology, University of Würzburg, Germany
| | | |
Collapse
|
31
|
Kuehl DW, Serrano J, Naumann S. Identification of potentially mutagenic contaminants in the aquatic environment by liquid chromatographic—thermospray mass spectrometric characterization of in vitro DNA adducts. J Chromatogr A 1994. [DOI: 10.1016/s0021-9673(94)89137-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Ashby J, Vogel EW, Tinwell H, Callander RD, Shuker DE. Mutagenicity to Salmonella, Drosophila and the mouse bone marrow of the human antineoplastic agent fotemustine: prediction of carcinogenic potency. Mutat Res 1993; 286:101-9. [PMID: 7678906 DOI: 10.1016/0027-5107(93)90005-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The antineoplastic agent fotemustine is shown to be a base-pair mutagen to Salmonella. Activity is more marked in the uvrB-proficient strain G46 than in the repair-deficient strain TA1535. This is consistent with its ability to cross-link DNA. Potent activity as a somatic and germ-cell mutagen to Drosophila was also observed. A potent clastogenic response was given by fotemustine in the mouse bone marrow following either oral gavage or intraperitoneal injection of a single dose of 5 mg/kg. In each of these respects it is shown to be indistinguishable from the structurally related antineoplastic agent and human carcinogen MeCCNU. It is concluded that fotemustine should be regarded as having clear potential to induce cancer in humans. Based on these data, including the preponderance of chromosome breakages over recessive lethal mutations in Drosophila, an estimated rodent carcinogenic potency (TD50) of between 15-150 mg/kg is suggested for fotemustine.
Collapse
Affiliation(s)
- J Ashby
- ICI Central Toxicological Laboratory, Macclesfield, Ches., UK
| | | | | | | | | |
Collapse
|
33
|
Vogel EW, Zijlstra JA, Nivard MJ. Genetic method for pre-classification of genotoxins into monofunctional or cross-linking agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1993; 21:319-331. [PMID: 8491211 DOI: 10.1002/em.2850210403] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To characterize environmental carcinogens, there is a need to distinguish monofunctional genotoxic agents from those having cross-linking potential, because chemicals which can cross-link DNA are among the most potent carcinogens in rodents [Barbin and Bartsch, 1989] and humans [Allen et al., 1988; Kaldor et al., 1988]. Here we provide a genetic method for a pre-classification of genotoxins with respect to their functionality--monofunctional versus cross-linking. The procedure is based on the determination of relative clastogenic efficiency by a two-endpoint comparison in Drosophila: (i) induction of chromosome loss (CL), (ii) incidence of recessive lethal mutations (RL). Analysis of CL/RL ratios of 53 genotoxins, all mutagens in Drosophila, permitted distinction of 45 into two major categories: (i) 21 monofunctional agents with CL/RL indices generally < or = 1; (ii) 24 agents with ratios > 2 exhibiting DNA cross-linking properties. Within the group of monofunctional agents, CL/RL ratios tend to be low for SN1 agents, i.e., for N-ethyl-N-nitrosourea, N-ethyl-N'-nitro-N-nitrosoguanidine, and for N-nitrosodiethylamine. With cross-linking agents, the number of reactive groups appeared of minor importance as bi-, tri-, and tetrafunctional agents showed no significant differences in their CL/RL indices. Among 8 chemicals which could not be grouped into one of the two categories are two (adriamycin, daunomycin) regarded as intercalating agents. It is concluded that this two-endpoint analysis in Drosophila has prognostic value and can assist in the characterization of genotoxic agents with unknown mode of action.
Collapse
Affiliation(s)
- E W Vogel
- MGC, Department of Radiation Genetics & Chemical Mutagenesis, University of Leiden, The Netherlands
| | | | | |
Collapse
|
34
|
Uziel M, Munro NB, Katz DS, Vo-Dinh T, Zeighami EA, Waters MD, Griffith JD. DNA adduct formation by 12 chemicals with populations potentially suitable for molecular epidemiological studies. Mutat Res 1992; 277:35-90. [PMID: 1376441 DOI: 10.1016/0165-1110(92)90025-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA adduct formation, route of absorption, metabolism and chemistry of 12 hazardous chemicals are reviewed. Methods for adduct detection are also reviewed and approaches to sensitivity and specificity are identified. The selection of these 12 chemicals from the Environmental Protection Agency list of genotoxic chemicals was based on the availability of information and on the availability of populations potentially suitable for molecular epidemiological study. The 12 chemicals include ethylene oxide, styrene, vinyl chloride, epichlorohydrin, propylene oxide, 4,4'-methylenebis-2-chloroaniline, benzidine, benzidine dyes (Direct Blue 6, Direct Black 38 and Direct Brown 95), acrylonitrile and benzyl chloride. While some of these chemicals (styrene and benzyl chloride, possibly Direct Blue 6) give rise to unique DNA adducts, others do not. Potentially confounding factors include mixed exposures in the work place, as well the formation of common DNA adducts. Additional research needs are identified.
Collapse
Affiliation(s)
- M Uziel
- Health and Safety Research Division, Oak Ridge National Laboratory, TN 37831-6101
| | | | | | | | | | | | | |
Collapse
|
35
|
Lee GS, Blonsky KS, Van On DL, Savage EA, Morgan AR, von Borstel RC. Base alterations in yeast induced by alkylating agents with differing Swain-Scott substrate constants. J Mol Biol 1992; 223:617-26. [PMID: 1542109 DOI: 10.1016/0022-2836(92)90978-s] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The base alterations induced by four alkylating agents, methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-nitroso-N-methylurea (MNU), and N-nitroso-N-ethylurea (ENU), have been determined at the URA3 locus in the yeast Saccharomyces cerevisiae. The mutagen treatment was carried out on yeast cells in the logarithmic phase of growth. The mutants were selected by their resistance to 7.3 mM-5-fluoroorotic acid at pH 3.8. DNA sequence analysis was carried out by the dideoxy chain termination method. The alkylating agents were selected for their widely differing Swain-Scott substrate constants (s values), which are as follows: MMS, s = 0.83; EMS, s = 0.67; MNU, s = 0.42; ENU, s = 0.26. A higher s value is correlated with a higher ratio of 7-alkylguanine to O6-alkylguanine in native DNA in vitro. 125 forward mutations from URA3----ura3 were sequenced with marked differences in the mutational spectra being observed as the s value changed. Five hotspots were recorded for the four alkylating agents. They were all G.C----A.T transition mutations. There was one common hotspot for all of them; there were two additional ones for the two ethylating agents (ENU and EMS) and two different ones for MNU. Four of the five hotspots have the 5'-GG-3' sequence with the 3'-guanine mutated. It was seen that MMS, which has the highest Swain-Scott substrate constant, yielded the widest array of mutational types. As the substrate constants decreased, the types of mutations became more and more restricted to the G.C----A.T transitions and the A.T----T.A transversions. The transitions are consistent with the concept that mutations arise from O6-alkylation of guanine and alkylation of thymine. The transversions are consistent with the notion of N1-alkylation of adenosine or adenylic acid.
Collapse
Affiliation(s)
- G S Lee
- Department of Genetics, University of Alberta Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Asita AO, Hayashi M, Kodama Y, Matsuoka A, Suzuki T, Sofuni T. Micronucleated reticulocyte induction by ethylating agents in mice. ACTA ACUST UNITED AC 1992; 271:29-37. [PMID: 1371827 DOI: 10.1016/0165-1161(92)90029-l] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Six model ethylating agents were tested for clastogenic potency by means of a new technique of the micronucleus assay with mouse peripheral blood cells using acridine orange (AO)-coated slides, to evaluate the test. The alkylating agents were: N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), N-ethyl-N-nitrosourea (ENU), diethylsulfate (DES), ethyl methanesulfonate (EMS), epichlorohydrin (ECH) and ethylene dibromide (EDB). The animals were given a single intraperitoneal injection of the following doses of the chemicals: ENNG and ENU, 25, 50 and 100 mg/kg; EMS and DES, 100, 200 and 400 mg/kg body weight. For EDB and ECH, the doses were 50, 100 and 200 mg/kg, given twice, 24 h apart. Before and after the injection, blood samples were taken from the tails at 24-h intervals up to 72 h and preparations were made on AO-coated slides. For each dose group, 4 animals were used and 1000 reticulocytes were examined per slide for the presence of micronuclei. At the optimum induction time of 48 h, ENU induced micronucleated reticulocytes (MNRETs) at all 3 doses. ENNG and EMS induced MNRETs significantly at 2 dose levels each and DES only at the highest dose. ECH and EDB failed to induce MNRETs. On the basis of the dose of chemical needed to double the spontaneous frequency, the order of clastogenic potency was ENU greater than ENNG greater than EMS greater than DES. The results obtained compared favorably with those from other in vivo methods. The present technique proves to be simple, flexible and relatively sensitive. Shifts in the optimum induction peak in individual animals and by some chemicals can be picked up easily which is important when testing weak mutagens and chemicals with an unknown mechanism of action.
Collapse
Affiliation(s)
- A O Asita
- Division of Genetics and Mutagenesis, National Institute of Hygienic Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Boffa LC, Mariani MR, Carpaneto EM. Effects of N-methyl-N-nitrosourea on transcriptionally active and inactive nucleosomes: macromolecular damage and DNA repair. Mol Carcinog 1992; 5:174-7. [PMID: 1375028 DOI: 10.1002/mc.2940050303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We previously reported a separation, on an organomercurial column, of transcriptionally inactive nucleosomes (class 1) from those containing active gene sequences (classes 2 and 3). In this paper, we analyzed nucleosomal damage caused by exposure of HeLa S3 cells in suspension culture to the directly alkylating carcinogen N-methyl-N-nitrosourea (MNU). The extent and site of methylation induced by the compound in nucleosomal DNA and RNA were determined by cell incubation in the presence of [3H]MNU. The highest amount of damage was detected in DNA of class 3 nucleosomes, while RNA alkylation was comparable in all nucleosomal classes. Cellular capacity for repair of MNU-induced DNA strand breaks (estimated after a short pulse with [3H]thymidine) was found to be higher in active nucleosomal fractions (classes 2 and 3) than in the inactive fraction (class 1). Our data support the postulate that chromatin primary structure plays a role in modulating carcinogen damage to chromosomal macromolecules and in DNA strand breakage and repair mechanisms. Some of these initial steps are believed to be critical in the process of carcinogenesis.
Collapse
Affiliation(s)
- L C Boffa
- Department of Chemical Carcinogenesis, National Cancer Institute, IST., Genova, Italy
| | | | | |
Collapse
|
38
|
Gansewendt B, Foest U, Xu D, Hallier E, Bolt HM, Peter H. Formation of DNA adducts in F-344 rats after oral administration or inhalation of [14C]methyl bromide. Food Chem Toxicol 1991; 29:557-63. [PMID: 1894222 DOI: 10.1016/0278-6915(91)90048-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The genotoxic effects of methyl bromide were investigated in a DNA-binding study. [14C]Methyl bromide was administered to male and female F-344 rats orally, or by inhalation from a closed exposure system. DNA adducts were detected in the liver, lung, stomach and forestomach. [14C]3-Methyladenine, [14C]7-methylguanine and [14C]O6-methylguanine were identified using a combination of three different methods of hydrolysing DNA, followed by HPLC or gas chromatography-mass spectrometry. After both oral and inhalation exposure, the highest levels of methylated guanines, especially those of [14C]O6-methylguanine, were found in the stomach and forestomach of the rats. These results clearly demonstrate a systemic DNA-alkylating potential of methyl bromide.
Collapse
Affiliation(s)
- B Gansewendt
- Institut für Arbeitsphysiologie, Universität Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Bochert G, Platzek T, Rahm U, Neubert D. Embryotoxicity induced by alkylating agents: 6. DNA adduct formation induced by methylnitrosourea in mouse embryos. Arch Toxicol 1991; 65:390-5. [PMID: 1929854 DOI: 10.1007/bf02284262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Formation of DNA adducts in 11-day-old mouse embryos was studied by measuring the initial alkylation rates of the methylated purine bases 7-methylguanine, O6-methylguanine, and 3-methyladenine. In the first part of the studies the adduct rates were measured in the teratogenic dose range (ED10-ED90, 2.7-5.6 mg/kg). These results were compared with similar data obtained from studies with ethylmethanesulfonate and acetoxymethyl-methylnitrosamine. For the three investigated substances a correlation was found between the initial adduct rate of O6-alkylguanine in the DNA of the embryos and the teratogenic potency. In the second part of the study the rate of adduct formation was measured in the sub-teratogenic dose range. These data will be used for molecular dosimetry in a risk assessment of low doses.
Collapse
Affiliation(s)
- G Bochert
- Institut für Toxikologie und Embryopharmakologie, FU Berlin, Germany
| | | | | | | |
Collapse
|
40
|
Quinto I, Tenenbaum L, Radman M. Genotoxic potency of monofunctional alkylating agents in E. coli: comparison with carcinogenic potency in rodents. Mutat Res 1990; 228:177-85. [PMID: 2405262 DOI: 10.1016/0027-5107(90)90074-e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A quantitative correlation between carcinogenicity and genotoxicity was investigated by a comparison between the carcinogenic potency in rodents and the mutagenic (M), recombinogenic (R) and SOS-inducing (I) potencies in a bacterial test (E. coli multitest) for 9 monofunctional alkylating agents: N-nitroso-N-methylurethane, N-nitroso-N-ethylurea, epichlorohydrin, N-nitroso-N-methylurea, N-nitroso-N-methyl-N'-nitroguanidine, methyl methanesulfonate, diethylsulfate, dimethylsulfate, ethyl methanesulfonate. A significant positive correlation between the carcinogenic potency and the product of the mutagenic and recombinogenic potencies was found for all tested compounds. Thus, the E. coli multitest may be used as a simple test to search for correlations between carcinogenicity and genotoxicity of DNA-damaging agents.
Collapse
Affiliation(s)
- I Quinto
- Department of Molecular Biology, Free University of Brussels, Belgium
| | | | | |
Collapse
|
41
|
Eder E, Wiedenmann M, Deininger C, Kütt W. The relationship between mutagenicity in His G46 Salmonella and the O6-guanine alkylation in bacterial DNA by monofunctional methanesulphonates. Toxicol In Vitro 1990; 4:167-74. [DOI: 10.1016/0887-2333(90)90017-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/1989] [Revised: 09/26/1989] [Indexed: 11/25/2022]
|
42
|
Barbin A, Béréziat JC, Croisy A, O'Neill IK, Bartsch H. Nucleophilic selectivity and reaction kinetics of chloroethylene oxide assessed by the 4-(p-nitrobenzyl)pyridine assay and proton nuclear magnetic resonance spectroscopy. Chem Biol Interact 1990; 73:261-77. [PMID: 2311132 DOI: 10.1016/0009-2797(90)90008-b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nucleophilic selectivity (Swain-Scott's constant s) of chloroethylene oxide (CEO), an ultimate carcinogenic metabolite of vinyl chloride, was determined to be 0.71 using the 4-(p-nitrobenzyl)pyridine (NBP) assay (Spears method). The molar extinction coefficient of the adduct formed between NBP and CEO was measured; and the second-order rate constants for the reactions of CEO with NBP and with thiosulfate were estimated at three temperatures. The disappearance of CEO and the formation of chloroacetaldehyde (CAA) and glycolaldehyde (GCA) were followed in D2O or a mixture of D2O/hexadeuterated acetone (acetone-d6), using Fourier transform proton nuclear magnetic resonance spectroscopy (1H-FTNMR). Evidence was obtained that CEO reacts with chloride ions to yield CAA at a rate constant of about 17 M-1 h-1 in D2O/acetone-d6 (1 : 1, v/v) at 280 K. Under the same conditions, the first-order rate constant kr for the thermal rearrangement of CEO into CAA was estimated to be approximately 0.41 h-1. These data suggest that the isomerization of CEO may be a minor reaction in physiological saline. These chemical properties of CEO are discussed in relation to the mechanism of vinyl chloride-induced carcinogenesis.
Collapse
Affiliation(s)
- A Barbin
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | |
Collapse
|
43
|
Barbin A, Bartsch H. Nucleophilic selectivity as a determinant of carcinogenic potency (TD50) in rodents: a comparison of mono- and bi-functional alkylating agents and vinyl chloride metabolites. Mutat Res 1989; 215:95-106. [PMID: 2811916 DOI: 10.1016/0027-5107(89)90222-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using published data, the carcinogenic potency (TD50) in rodents of a series of monofunctional alkylating agents, bifunctional antitumor drugs and the vinyl chloride (VC) metabolites chloroethylene oxide (CEO) and chloroacetaldehyde (CAA) was compared to their nucleophilic selectivity (Swain and Scott's constant s or initial ratio of 7-/O6-alkylguanine in DNA). A positive correlation between the log of TD50 estimates and the s values for a series of 14, mostly monofunctional, alkylating agents was observed. This linear relationship also included 2 bifunctional chloroethylnitrosoureas, although their carcinogenic potency was compared to their initial 7-/O6-alkylguanine ratio rather than their s values (n = 16, r = 0.91, p less than 0.005). In addition, the carcinogenic potency of 2 alkyl sulfates, which is not yet known accurately, may correlate with their nucleophilic selectivity through the same relationship. By contrast, 2 methyl halides and 5 bifunctional antitumor drugs (nitrogen mustards and azyridinyl derivatives) did not follow this linear relationship: at similar nucleophilic selectivity, they were more potent carcinogens than the above 18 alkylating agents; this may hold true for CEO and CAA too, although further carcinogenicity experiments are needed to calculate their precise TD50 values. The possible molecular mechanisms involved in tumor induction by these agents are discussed on the basis of these findings. Comparison of the estimated TD50 for CEO, CAA and VC in rodents confirms that CEO is the ultimate carcinogenic metabolite of VC and suggests that only a very small proportion of metabolically generated CEO is available for DNA alkylation in vivo.
Collapse
Affiliation(s)
- A Barbin
- International Agency for Research on Cancer, Lyon, France
| | | |
Collapse
|
44
|
Eder E, Deininger C, Wiedenmann M. Methyl methanesulphonate (MMS) is clearly mutagenic in S. typhimurium strain TA1535; a comparison with strain TA100. Mutat Res 1989; 226:145-9. [PMID: 2664497 DOI: 10.1016/0165-7992(89)90011-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
No mutagenicity or an uncertain mutagenic response has been reported in the literature for methyl methanesulphonate (MMS) in S. typhimurium strain TA1535 when using the plate assay. In our studies we found a reproducible mutagenic activity of 62 revertants/mumole and plate for MMS in strain TA1535 when using the preincubation assay. A dose-dependent increase in revertants was, however, observed only at fairly high doses (exceeding 4 mumole). Two different slopes were observed in the dose-response curve when testing MMS with strain TA100. Slope A is dependent on the error-prone response, possible only in strain TA100 due to the pKm101 plasmid (R factor) but not possible in strain TA1535 due to its umuDC deficiency. Slope B observed at higher doses (as in strain TA1535) could be explained through a GC----AT transition initiated by the O6-methylation of guanine. Our findings demonstrate that MMS induces back mutation in S. typhimurium strains carrying the hisG46 missense mutation due to the formation of O6-methylguanine. In the case of strain TA100 the pKm101 plasmid-mediated error-prone mechanism is, however, the predominant process in MMS mutagenesis which leads to a higher mutagenic response at much lower doses than the GT----AT transition in strain TA1535.
Collapse
Affiliation(s)
- E Eder
- Institute of Toxicology, University of Würzburg, F.R.G
| | | | | |
Collapse
|
45
|
Eder E, Deininger C, Kütt W. Genotoxicity of monofunctional methanesulphonates in the SOS chromotest as a function of alkylation mechanisms. A comparison with the mutagenicity in S. typhimurium TA100. Mutat Res 1989; 211:51-64. [PMID: 2537926 DOI: 10.1016/0027-5107(89)90106-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
17 monofunctional methanesulphonates of widely varying structures were investigated in the SOS chromotest using the E. coli strain PQ37. All compounds tested were positive in this assay. The monofunctional methanesulphonates in general possess low SOSiP values. Five of the compounds tested i.e. iBMS, NpMS, 2 PhPMS, PkMS and 1,3-DC12PMS (for abbreviations see Table 1) did not show increasing beta-galactosidase activity and both the positive induction factors and the positive SOSiP values resulted from the toxicity correction as performed according to Quillardet and Hofnung (1985). In general methanesulphonates with a higher SN1 reactivity, in particular the secondary compounds, showed clear genotoxic activities whereas those possessing low SN1 reactivities (primary compounds) induced a low SOS repair indicating that the alkylation of O-atoms in the DNA bases contributes more to the induction of SOS repair in strain PQ37 than N-alkylations. The only exception was methyl methanesulphonate (MMS) which possessed a very high SN2 reactivity but a rather low SN1 reactivity. It had the highest SOSiP value of all tested methanesulphonates. No dependence of the genotoxicity on the SN2 reactivity could be found in this series. In general the phenyl-substituted methanesulphonates showed higher SOSiP values, which is presumably due to their relatively high SN1 reactivities and their relatively long life times in aqueous systems. There is a clear relationship between SN1 reactivities and the SOSiP values: the SOSiP values increase with rising SN1 reactivities reaching a maximum at iPMS after which the genotoxicities decrease due to the decreasing life times. The compounds with very high SN1 reactivities also possess very high hydrolysis rates. A good correlation could be established between the mutagenicities in S. typhimurium TA100 and the SOS chromotest (strain PQ37). Only 4 small deviations from this correlation could be found. The reasons for these deviations are discussed.
Collapse
Affiliation(s)
- E Eder
- Institute of Toxicology, University of Würzburg, F.R.G
| | | | | |
Collapse
|
46
|
Kaina B. Chromosomal aberrations as a contributing factor for tumor promotion in the mouse skin. TERATOGENESIS, CARCINOGENESIS, AND MUTAGENESIS 1989; 9:331-48. [PMID: 2576813 DOI: 10.1002/tcm.1770090602] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor promotion in mouse skin can be dissected in two stages: stage I (conversion) and stage II. Whereas for stage II clonal expansion of transformed cells is believed to play a major role, the mechanism(s) underlying conversion is still a matter of debate. Because conversion can be achieved upon treatment with phorbol ester tumor promoters prior to initiation, it is unlikely to represent simply proliferative stimulation of initiated cells (due to epigenetic changes induced). Since tumor promoters exert clastogenic activities and, on the other hand, the clastogen methyl methanesulfonate proved to be convertogenic, the possibility arises that chromosomal changes are involved in conversion. Based on this hypothesis, several findings concerning the action of tumor promoters and the process of tumor promotion in the mouse skin system are discussed and interpreted: the frequency, reversibility, and transient nature of conversion, dependence of tumor promotion on DNA synthesis, induction of DNA breaks by tumor promoters, and the protecting effect of scavengers of free radicals. A model is presented suggesting tumor formation in mouse skin (and other systems) to proceed in discrete, genetically determined steps. Initiation is considered to be due to the induction of point mutations in a dominant-acting oncogene that becomes thereupon activated, whereas the decisive event in the conversion stage of tumor promotion is the induction of numerical and/or structural chromosomal changes with the consequence of loss or inactivation of gene(s) involved in suppression of the tumor phenotype.
Collapse
Affiliation(s)
- B Kaina
- Nuclear Research Center, Institute of Genetics and Toxicology, Karlsruhe, Federal Republic of Germany
| |
Collapse
|
47
|
Eder E, Kütt W. The dependence of the mutagenicity of methanesulphonic acid esters in S. typhimurium TA100 on the alkylation mechanism. Chem Biol Interact 1989; 69:45-59. [PMID: 2536596 DOI: 10.1016/0009-2797(89)90098-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Four different model nucleophiles, 4-(p-nitrobenzyl)pyridine (NBP), N-methylmercaptoimidazole (MMI), trifluoroacetic acid (TFA) and H2O were tested with 22 methanesulphonates of widely varying structures for their suitability to predict mutagenic activities in S. typhimurium TA100. The soft nucleophiles NBP (N-alkylation) and MMI (S-alkylation) revealed as highly sensitive for SN2 reactivities whereas TFA (solvolysis at the O-atom) and H2O (hydrolysis) were very sensitive for SN1 reactivities. No correlation between the NBP or the MMI test and the Ames test was found. Quite good correlations could be demonstrated for the TFA test and the hydrolysis rates: with rising activities in the TFA solvolysis the mutagenic potencies were increasing up to a maximum at i-propyl methanesulphonate. After that due to the fast hydrolysis the mutagenicities were decreasing again despite increasing TFA solvolysis rates. In general the secondary methanesulphonates exerted high SN1 reactivities and distinct mutagenic activities, whereas the primary compounds showed no or very low SN1 reactivities and low mutagenic potentials. The "activated" compounds cyclopropylmethyl methanesulphonate, benzyl methanesulphonate and allyl methanesulphonate exerted high SN1 and SN2 reactivities. Methyl methanesulphonate displayed a high mutagenicity in spite of its lack in SN1 reactivity. This is probably due to the induction of the error prone repair (pkM 101 plasmid in TA100). The relation between the alkylating reactivities (SN1 and SN2) and the molecular mechanisms leading to back mutation is discussed.
Collapse
Affiliation(s)
- E Eder
- Institute of Toxicology, University of Würzburg, F.R.G
| | | |
Collapse
|
48
|
Tenenbaum L, Quinto I, Faelen M. The E. coli multitest: a set of strains to characterize diverse genotoxic effects. Mutat Res 1988; 203:415-26. [PMID: 2973564 DOI: 10.1016/0165-1161(88)90014-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A set of E. coli strains was developed by Toman et al. (1985) to study the effects of chemical and physical agents on forward mutation, homologous recombination and induction of the SOS system. New tester strains have been constructed to improve this test system in order to explore quantitative genotoxicity spectra. Through the use of these strains: (i) SOS induction can be specifically detected without interference from mutagenesis; (ii) SOS-dependent and SOS-independent mutational events can be distinguished; (iii) the sensitivity of the recombination system has been considerably increased.
Collapse
Affiliation(s)
- L Tenenbaum
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Rhode-Saint-Genèse Belgium
| | | | | |
Collapse
|
49
|
Abstract
Short-term testing has been performed and interpreted on the basis of correlation between these tests and animal carcinogenicity. This empirical approach has been the only feasible one, due to a lack of knowledge of the actual genetic endpoints of relevance in carcinogenicity. However, the rapidly growing information on genetic alterations actually involved in carcinogenicity and in particular activation of oncogenes, provides facts of basic importance for the strategy of short-term testing. The presently used sets of short-term tests focus on standard genetic endpoints, mainly point mutations and chromosomal aberrations. Little attention has been paid in that connection to other endpoints, which have been shown or suspected to play an important role in carcinogenicity. These endpoints include gene amplification, transpositions, hypomethylation, polygene mutations and recombinogenic effects. Furthermore, indirect effects, for instance via radical generation and an imbalance of the nucleotide pool, may be of great significance for the carcinogenic and cocarcinogenic effects of many chemicals. Modern genetic and molecular technology has opened entirely new prospects for identifying genetic alterations in tumours and in its turn these prospects should be taken advantage of in order to build up more sophisticated batteries of assays, adapted to the genetic endpoints actually demonstrated to be involved in cancer induction. Development of new assay systems in accordance with the elucidation of genetic alterations in carcinogenicity will probably constitute one of the most important areas in genetic toxicology in the future. From a regulatory point of view the prerequisite for a development in this direction will be a flexibility of the handling of questions concerning short-term testing also at a bureaucratic level.
Collapse
Affiliation(s)
- C Ramel
- Department of Genetic and Cellular Toxicology, Wallenberg Laboratory, University of Stockholm, Sweden
| |
Collapse
|
50
|
Affiliation(s)
- F P Perera
- Columbia University School of Public Health, New York, NY 10032
| |
Collapse
|