1
|
Kaufmann WK. The human intra-S checkpoint response to UVC-induced DNA damage. Carcinogenesis 2009; 31:751-65. [PMID: 19793801 DOI: 10.1093/carcin/bgp230] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intra-S checkpoint response to 254 nm light (UVC)-induced DNA damage appears to have dual functions to slow the rate of DNA synthesis and stabilize replication forks that become stalled at sites of UVC-induced photoproducts in DNA. These functions should provide more time for repair of damaged DNA before its replication and thereby reduce the frequencies of mutations and chromosomal aberrations in surviving cells. This review tries to summarize the history of discovery of the checkpoint, the current state of understanding of the biological features of intra-S checkpoint signaling and its mechanisms of action with a focus primarily on intra-S checkpoint responses in human cells. The differences in the intra-S checkpoint responses to UVC and ionizing radiation-induced DNA damage are emphasized. Evidence that [6-4]pyrimidine-pyrimidone photoproducts in DNA trigger the response is discussed and the relationships between cellular responses to UVC and the molecular dose of UVC-induced DNA damage are briefly summarized. The role of the intra-S checkpoint response in protecting against solar radiation carcinogenesis remains to be determined.
Collapse
Affiliation(s)
- William K Kaufmann
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| |
Collapse
|
2
|
Affiliation(s)
- J. Thacker
- DNA Repair and Mutagenesis Group, MRC Radiobiology Unit, Chilton, Didcot, OX11 0RD, UK
| |
Collapse
|
3
|
Sasaki MS. Advances in the biophysical and molecular bases of radiation cytogenetics. Int J Radiat Biol 2009; 85:26-47. [PMID: 19205983 DOI: 10.1080/09553000802641185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE For more than 70 years radiation cytogenetics has continued to be a topic of major concern in relation to the action of radiation on living cells. To date, diverse cytogenetic findings have developed into orderly, quantitative interpretations and have stimulated numerous biophysical models. However, it is generally agreed that any one of the models used alone is still unable to explain all aspects of the observed chromosomal effects. In this review, a large number of radiation-induced chromosome aberration findings from the literature are reassessed with special attention given to the reaction kinetics and the relevant molecular processes. CONCLUSION It is now clear that DNA double-strand breaks (DSB) are an integral component of radiation-induced chromosome aberration. At the nexus of the maintenance of genome integrity, cells are equipped with excellent systems to repair DSB, notably non-homologous end-joining (NHEJ) and homologous recombination repair (HRR). These repair mechanisms are strictly regulated along with the DNA turnover cycle. NHEJ functions in all phases of the cell cycle, whereas HRR has a supplementary role specifically in S/G2 phase, where homologous DNA sequences are available in close proximity. The repair pathways are further regulated by a complex nuclear dynamism, where DSB are sensed and large numbers of repair proteins are recruited and assembled to form a repair complex involving multiple DSB. Considering such DSB repair dynamism, radiation-induced chromosome aberrations could be well understood as DSB-DSB pairwise interactions associated with the NHEJ pathway in all phases of the cell cycle and misrepair of a single DSB associated with the complementary HRR pathway in late S/G2 phase.
Collapse
Affiliation(s)
- M S Sasaki
- Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
4
|
Unsal-Kaçmaz K, Chastain PD, Qu PP, Minoo P, Cordeiro-Stone M, Sancar A, Kaufmann WK. The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement. Mol Cell Biol 2007; 27:3131-42. [PMID: 17296725 PMCID: PMC1899931 DOI: 10.1128/mcb.02190-06] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 12/15/2006] [Accepted: 02/02/2007] [Indexed: 01/02/2023] Open
Abstract
UV-induced DNA damage stalls DNA replication forks and activates the intra-S checkpoint to inhibit replicon initiation. In response to stalled replication forks, ATR phosphorylates and activates the transducer kinase Chk1 through interactions with the mediator proteins TopBP1, Claspin, and Timeless (Tim). Murine Tim recently was shown to form a complex with Tim-interacting protein (Tipin), and a similar complex was shown to exist in human cells. Knockdown of Tipin using small interfering RNA reduced the expression of Tim and reversed the intra-S checkpoint response to UVC. Tipin interacted with replication protein A (RPA) and RPA-coated DNA, and RPA promoted the loading of Tipin onto RPA-free DNA. Immunofluorescence analysis of spread DNA fibers showed that treating HeLa cells with 2.5 J/m(2) UVC not only inhibited the initiation of new replicons but also reduced the rate of chain elongation at active replication forks. The depletion of Tim and Tipin reversed the UV-induced inhibition of replicon initiation but affected the rate of DNA synthesis at replication forks in different ways. In undamaged cells depleted of Tim, the apparent rate of replication fork progression was 52% of the control. In contrast, Tipin depletion had little or no effect on fork progression in unirradiated cells but significantly attenuated the UV-induced inhibition of DNA chain elongation. Together, these findings indicate that the Tim-Tipin complex mediates the UV-induced intra-S checkpoint, Tim is needed to maintain DNA replication fork movement in the absence of damage, Tipin interacts with RPA on DNA and, in UV-damaged cells, Tipin slows DNA chain elongation in active replicons.
Collapse
Affiliation(s)
- Keziban Unsal-Kaçmaz
- Lineberger Comprehensive Cancer Center, CB 7295, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Heffernan TP, Simpson DA, Frank AR, Heinloth AN, Paules RS, Cordeiro-Stone M, Kaufmann WK. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol Cell Biol 2002; 22:8552-61. [PMID: 12446774 PMCID: PMC139882 DOI: 10.1128/mcb.22.24.8552-8561.2002] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhibition of replicon initiation is a stereotypic DNA damage response mediated through S checkpoint mechanisms not yet fully understood. Studies were undertaken to elucidate the function of checkpoint proteins in the inhibition of replicon initiation following irradiation with 254 nm UV light (UVC) of diploid human fibroblasts immortalized by the ectopic expression of telomerase. Velocity sedimentation analysis of nascent DNA molecules revealed a 50% inhibition of replicon initiation when normal human fibroblasts were treated with a low dose of UVC (1 J/m(2)). Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and AT-like disorder fibroblasts, which lack an S checkpoint response when exposed to ionizing radiation, responded normally when exposed to UVC and inhibited replicon initiation. Pretreatment of normal and AT fibroblasts with caffeine or UCN-01, inhibitors of ATR (AT mutated and Rad3 related) and Chk1, respectively, abolished the S checkpoint response to UVC. Moreover, overexpression of kinase-inactive ATR in U2OS cells severely attenuated UVC-induced Chk1 phosphorylation and reversed the UVC-induced inhibition of replicon initiation, as did overexpression of kinase-inactive Chk1. Taken together, these data suggest that the UVC-induced S checkpoint response of inhibition of replicon initiation is mediated by ATR signaling through Chk-1 and is independent of ATM, Nbs1, and Mre11.
Collapse
Affiliation(s)
- Timothy P Heffernan
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Oakley GG, Loberg LI, Yao J, Risinger MA, Yunker RL, Zernik-Kobak M, Khanna KK, Lavin MF, Carty MP, Dixon K. UV-induced hyperphosphorylation of replication protein a depends on DNA replication and expression of ATM protein. Mol Biol Cell 2001; 12:1199-213. [PMID: 11359916 PMCID: PMC34578 DOI: 10.1091/mbc.12.5.1199] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4-8 h) to UV radiation (10-30 J/m(2)). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.
Collapse
Affiliation(s)
- G G Oakley
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Landi S, Ponzanelli I, Hirvonen A, Norppa H, Barale R. Repeated analysis of sister chromatid exchange induction by diepoxybutane in cultured human lymphocytes: effect of glutathione S-transferase T1 and M1 genotype. Mutat Res 1996; 351:79-85. [PMID: 8602177 DOI: 10.1016/0027-5107(95)00215-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Spontaneous and diepoxybutane (DEB)-induced sister-chromatid exchanges (SCEs) were examined in whole-blood lymphocyte cultures of 3 men and 4 women. A strong increase in mean number of SCEs per cell with increasing DEB concentrations (0, 2, and 4 microM) was observed in cultures of all subjects, but 3 of the donors were clearly more sensitive than the others. The SCE measurements were repeated 2-6 times per donor over a period of 55 months to assess the stability of the individual SCE response. The results showed that SCE induction by DEB was steady in the individuals during the follow-up at each DEB dose, with no significant differences among the repeated experiments. At 4 microM DEB, the DEB-sensitive and -resistant donors could be reliably be differentiated from each other in all trials. As DEB-sensitivity has been suggested to be due to the lack of glutathione S-transferase (GST) T1, the donors were genotyped for the presence of GSTT1 and GSTM1 genes. The 3 individuals found to be DEB-sensitive were all of the GSTT1 null genotype, whereas the 4 DEB-resistant donors were GSTT1 positive, which supported the role of the GSTT1 gene in determining DEB-sensitivity. Three of the DEB-resistant and none of the DEB-sensitive had the GSTM1 null genotype. Thus, the lack of the GSTM1 gene was not associated with the DEB-sensitivity trait. In conclusion, the present findings show that individual SCE responses to treatment of cultured human lymphocytes with DEB can reliably be reproduced in repeated trials. The results confirm that the GSTT1 gene but not the GSTM1 gene is important in determining individual sensitivity to the in vitro genotoxicity of DEB.
Collapse
Affiliation(s)
- S Landi
- Dpt. of Scienze dell'Ambiente e del Territorio, Pisa University, Italy
| | | | | | | | | |
Collapse
|
8
|
Abstract
Chemical carcinogenesis in the regenerating rat liver is cell-cycle-dependent. Proliferating hepatocytes were maximally susceptible to initiation by a single dose of benzo[a]pyrene diolepoxide I when at the G1/S border. Hepatocytes in early G1 or late S/G2/M were less susceptible and non-proliferating G0 hepatocytes were resistant to initiation. Radiation clastogenesis in proliferating human fibroblasts also is cell-cycle-dependent. Ultraviolet radiation (UV) induced maximal frequencies of chromosomal aberrations in synchronized cells that were at the G1/S border. Cells in early G1 or G2 were significantly less sensitive. For both initiation of chemical carcinogenesis and UV-clastogenesis, it appears that replication of damaged DNA is required and DNA repair before replication reduces cellular risk. If DNA repair is protective, cell cycle checkpoints which delay DNA replication and mitosis should augment this protective influence by providing more time for repair. The contribution of cell cycle checkpoint function to DNA repair during cell cycle-dependent clastogenesis was studied using ataxia telangiectasia (AT) fibroblasts. The AT cells displayed a defect in the coupling of DNA damage to checkpoints which control the G1/S and G2/M transitions and the rate of replicon initiation in S phase cells. UV-clastogenesis in AT cells was cell-cycle-dependent with irradiation at the G1/S boundary inducing 3-times more aberrations than treatment in G0 at the time of release into the cell cycle. Thus, DNA excision repair during the pre-replicative G1 phase was protective even in cells with defective checkpoint function. However, following irradiation at the G1/S border, AT cells displayed about 6-fold increased levels of UV-induced chromosome aberrations in comparison to normal human fibroblasts that were treated at this time. These observations indicate that secondary and tertiary DNA lesions that are produced during replication of UV-damaged DNA (replicative gaps and double-strand breaks) also depend on checkpoint function for repair. The replicon initiation and G2-delay checkpoints that operate after initiation of S phase appear to play a major role in protection against UV-clastogenesis.
Collapse
Affiliation(s)
- W K Kaufmann
- Department of Pathology, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
9
|
Sardanelli F, Parodi RC, Ottonello C, Renzetti P, Saitta S, Lignana E, Mancardi GL. Cranial MRI in ataxia-telangiectasia. Neuroradiology 1995; 37:77-82. [PMID: 7708196 DOI: 10.1007/bf00588526] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We examined five males with laboratory-confirmed ataxia-telangiectasia (AT), aged 9-28 years, several times by MRI (9 examinations: 5 at 0.15 T, 3 at 0.5 T, 1 at 1.5 T). Intermediate, T1-, T2- and T2*-weighted spin-echo and gradient-echo sequences were performed. All patients showed vermian atrophy, enlarged fourth ventricle and cisterna magna; four showed cerebellar hemisphere atrophy; two enlarged infracerebellar subarachnoid spaces and four patients had sinusitis. No focal areas of abnormal signal were seen in the brain, diffuse high signal was found in the central cerebral white matter of the oldest patient. AT is an important human model of inherited cancer susceptibility and multisystem ageing; as in xeroderma pigmentosum and other "breakage syndromes", ionising radiation should be avoided. When imaging is necessary, MRI should be preferred to CT in patients known or suspected to have AT and those with undefined paediatric ataxias of nontraumatic origin. If atrophy of only the cerebellum, especially the vermis, is noted, laboratory research should be performed to confirm the diagnosis of AT.
Collapse
Affiliation(s)
- F Sardanelli
- Department of Radiology, University of Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Takeshita T, Higurashi M, Ariizumi-Shibusawa C, Shimizu K, Iijima S, Yamagata Z, Asaka A, Morimoto K, Ishibashi Y, Otsuka F. Elevated chromosome aberration frequency after X-ray exposure of cultured fibroblasts derived from patients with porokeratosis. CANCER GENETICS AND CYTOGENETICS 1994; 73:161-4. [PMID: 8174092 DOI: 10.1016/0165-4608(94)90202-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Porokeratosis (PK) is a rare genetic skin disorder inherited as an autosomal dominant trait and regarded as a disease predisposing to cancer. To evaluate chromosomal radiosensitivity of PK cells, we examined chromosome aberration frequency after X-irradiation of cultured skin fibroblasts derived from PK patients and controls. Without X-ray exposure, frequencies of chromosome-type aberrations (exchanges or deletions) were not different between the patients and controls. Following X-ray irradiation, frequencies of deletions in the patient group were significantly increased, whereas those of exchanges were not elevated. No differences in chromatid-type aberration frequency were found between the patients and controls with or without exposure to X-ray. The observed radiosensitivity, though not as high as in ataxia telangiectasia (AT) cells, agrees well with the previously reported higher radiosensitivity of PK fibroblasts in survival analysis.
Collapse
Affiliation(s)
- T Takeshita
- Department of Health Sciences, Yamanashi Medical University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kaufmann WK, Wilson SJ. G1 arrest and cell-cycle-dependent clastogenesis in UV-irradiated human fibroblasts. Mutat Res 1994; 314:67-76. [PMID: 7504193 DOI: 10.1016/0921-8777(94)90062-0] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The demonstrations of frequent allelic deletions in lung and colon cancers have reemphasized the importance of clastogenesis in carcinogenesis. We have investigated the mechanisms of induction of chromosome aberrations in ultraviolet-irradiated diploid human fibroblasts. Cells were irradiated with UV at various times during a parasynchronous wave of cell proliferation and then harvested during the first mitosis that followed irradiation. Metaphase spreads were stained with Geimsa and the yields of chromosome aberrations were quantified. Ultraviolet irradiation induced primarily chromatid-type chromosome aberrations which included chromatid breaks and exchanges. Frequencies of aberrations displayed significant differences according to the phase of the cell cycle in which irradiation occurred and the time after irradiation when metaphases were harvested. Fibroblasts that were irradiated when in G0 and then immediately replated to stimulate cell division and cells that were at the S/G2 border when irradiated displayed the fewest numbers of aberrations. For G0-irradiated cells, the first entering mitosis carried a higher frequency of aberrations than those collected 2-4 h later. In contrast, for S/G2-irradiated cells the first into mitosis displayed fewer aberrations than subsequent fractions. Cells that were irradiated when at the G1/S border displayed the greatest numbers of aberrations with the frequencies of chromatic exchanges being significantly increased over all other times of irradiation. These studies confirm that UV is an S-phase-dependent clastogen and point to the G1/S border as a time of maximal sensitivity to clastogenesis. Irradiation of G1 cells was shown to produce a fluence-dependent reduction in the rate of entry of cells into the S-phase. There appeared to be a point late in G1 beyond which cells were resistant to irradiation and experienced less delay in S phase entry. Ataxia telangiectasia fibroblasts failed to delay entry to S phase following UV-irradiation in G1 and displayed hypersensitivity to UV-induced chromosomal aberrations. The delay in entry of damaged cells into the S phase may have the beneficial effect of providing more time for repair of potentially clastogenic DNA damage before the onset of DNA replication.
Collapse
Affiliation(s)
- W K Kaufmann
- Department of Pathology, University of North Carolina at Chapel Hill 27599-7295
| | | |
Collapse
|
12
|
Inhibition of replicon initiation in human cells following stabilization of topoisomerase-DNA cleavable complexes. Mol Cell Biol 1991. [PMID: 1646393 DOI: 10.1128/mcb.11.7.3711] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diploid human fibroblast strains were treated for 10 min with inhibitors of type I and type II DNA topoisomerases, and after removal of the inhibitors, the rate of initiation of DNA synthesis at replicon origins was determined. By alkaline elution chromatography, 4'-(9-acridinylamino)methanesulfon-m-anisidide (amsacrine), an inhibitor of DNA topoisomerase II, was shown to produce DNA strand breaks. These strand breaks are thought to reflect drug-induced stabilization of topoisomerase-DNA cleavable complexes. Removal of the drug led to a rapid resealing of the strand breaks by dissociation of the complexes. Velocity sedimentation analysis was used to quantify the effects of amsacrine treatment on DNA replication. It was demonstrated that transient exposure to low concentrations of amsacrine inhibited replicon initiation but did not substantially affect DNA chainelongation within operating replicons. Maximal inhibition of replicon initiation occurred 20 to 30 min after drug treatment, and the initiation rate recovered 30 to 90 min later. Ataxia telangiectasia cells displayed normal levels of amsacrine-induced DNA strand breaks during stabilization of cleavable complexes but failed to downregulate replicon initiation after exposure to the topoisomerase inhibitor. Thus, inhibition of replicon initiation in response to DNA damage appears to be an active process which requires a gene product which is defective or missing in ataxia telangiectasia cells. In normal human fibroblasts, the inhibition of DNA topoisomerase I by camptothecin produced reversible DNA strand breaks. Transient exposure to this drug also inhibited replicon initiation. These results suggest that the cellular response pathway which downregulates replicon initiation following genotoxic damage may respond to perturbations of chromatin structure which accompany stabilization of topoisomerase-DNA cleavable complexes.
Collapse
|
13
|
Kaufmann WK, Boyer JC, Estabrooks LL, Wilson SJ. Inhibition of replicon initiation in human cells following stabilization of topoisomerase-DNA cleavable complexes. Mol Cell Biol 1991; 11:3711-8. [PMID: 1646393 PMCID: PMC361136 DOI: 10.1128/mcb.11.7.3711-3718.1991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diploid human fibroblast strains were treated for 10 min with inhibitors of type I and type II DNA topoisomerases, and after removal of the inhibitors, the rate of initiation of DNA synthesis at replicon origins was determined. By alkaline elution chromatography, 4'-(9-acridinylamino)methanesulfon-m-anisidide (amsacrine), an inhibitor of DNA topoisomerase II, was shown to produce DNA strand breaks. These strand breaks are thought to reflect drug-induced stabilization of topoisomerase-DNA cleavable complexes. Removal of the drug led to a rapid resealing of the strand breaks by dissociation of the complexes. Velocity sedimentation analysis was used to quantify the effects of amsacrine treatment on DNA replication. It was demonstrated that transient exposure to low concentrations of amsacrine inhibited replicon initiation but did not substantially affect DNA chainelongation within operating replicons. Maximal inhibition of replicon initiation occurred 20 to 30 min after drug treatment, and the initiation rate recovered 30 to 90 min later. Ataxia telangiectasia cells displayed normal levels of amsacrine-induced DNA strand breaks during stabilization of cleavable complexes but failed to downregulate replicon initiation after exposure to the topoisomerase inhibitor. Thus, inhibition of replicon initiation in response to DNA damage appears to be an active process which requires a gene product which is defective or missing in ataxia telangiectasia cells. In normal human fibroblasts, the inhibition of DNA topoisomerase I by camptothecin produced reversible DNA strand breaks. Transient exposure to this drug also inhibited replicon initiation. These results suggest that the cellular response pathway which downregulates replicon initiation following genotoxic damage may respond to perturbations of chromatin structure which accompany stabilization of topoisomerase-DNA cleavable complexes.
Collapse
Affiliation(s)
- W K Kaufmann
- Department of Pathology, University of North Carolina, Chapel Hill 27599-7295
| | | | | | | |
Collapse
|
14
|
Tan SV, Pye IF. Postradiation motor neuron syndrome of the upper cervical region--a manifestation of the combined effect of cranial irradiation and intrathecal chemotherapy? J Neurol Neurosurg Psychiatry 1991; 54:469-70. [PMID: 1865217 PMCID: PMC488557 DOI: 10.1136/jnnp.54.5.469-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Tucker JD, Jones NJ, Allen NA, Minkler JL, Thompson LH, Carrano AV. Cytogenetic characterization of the ionizing radiation-sensitive Chinese hamster mutant irs1. Mutat Res 1991; 254:143-52. [PMID: 1900570 DOI: 10.1016/0921-8777(91)90005-a] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The X-ray-sensitive mutant V79 cell line irs1 was characterized with respect to chromosomal aberrations induced by 137Cs, mitomycin C (MMC), and decarbamoyl mitomycin C (DCMMC). To measure chromosome damage induced at different cell cycle stages, irs1 and the parental V79-4 cell lines were pulse-labeled with bromodeoxyuridine (BrdUrd) at the time of exposure and harvested at various intervals corresponding to exposure in G1, S, and G2 phases of the cell cycle. Metaphase spreads were stained with an anti-BrdUrd antibody, followed by a fluorescein-conjugated second antibody. With propidium iodide as a counter stain, cells were scored for aberrations. Compared to the parental V79 cells, irs1 cells had: (1) greatly increased sensitivity to all 3 agents; (2) a high frequency of chromatid exchanges after exposure in each phase of the cell cycle; and (3) more sensitivity to the agent causing crosslinks (MMC) than its monofunctional analog (DCMMC). The finding of chromatid-type damage in cells exposed to ionizing radiation during G1 is atypical of normal cells, but is similar to observations made in several mutant rodent cell lines and in ataxia telangiectasia cells. Our results suggest that the defect in irs1 cells can manifest itself as misrepair or misreplication during all phases of the cell cycle and leads to a high incidence of chromatid exchanges and deletions.
Collapse
Affiliation(s)
- J D Tucker
- Biomedical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94551
| | | | | | | | | | | |
Collapse
|
16
|
Holmberg M, Gumauskas E. Chromosome-type exchange aberrations are induced by inhibiting repair of UVC-induced DNA lesions in quiescent human lymphocytes. Mutat Res 1990; 232:261-6. [PMID: 2215536 DOI: 10.1016/0027-5107(90)90132-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human lymphocytes in the quiescent stage were UVC-irradiated and then incubated for 90 min in the presence of the DNA-repair inhibitor ara-C. The cells were then cultured and analyzed for chromosome aberrations. A single treatment with UVC or ara-C gives rise to a very low yield of dicentrics, whereas the combined treatment can induce a high frequency of these chromosome-type aberrations. The yield in the combined treatment is approximately proportional to the square of the UVC fluence in the range 1-3 J/m2. In addition, the experiments demonstrate that synergistic effects arise when cells are treated with UVC + ara-C and then exposed to X-rays. The results can be explained on the assumption that the UVC + ara-C treatment induces DNA double-strand breaks which, to the first approximation, are randomly distributed over the chromosomes. These breaks are able to interact with each other as well as with X-ray-induced DNA double-strand breaks to form a chromosome-type exchange aberration.
Collapse
Affiliation(s)
- M Holmberg
- National Institute of Radiation Protection, Stockholm, Sweden
| | | |
Collapse
|
17
|
Darroudi F, Natarajan AT, van der Schans GP. Biochemical and cytogenetical characterization of Chinese hamster ovary X-ray-sensitive mutant cells xrs 5 and xrs 6. VI. The correlation between UV-induced DNA lesions and chromosomal aberrations, and their modulations with inhibitors of DNA repair synthesis. Mutat Res 1990; 235:129-35. [PMID: 2308589 DOI: 10.1016/0921-8777(90)90066-e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of UV-induced DNA lesions and their repair in the formation of chromosomal aberrations in the xrs mutant cell lines xrs 5 and xrs 6 and their wild-type counterpart, CHO-K1 cells, were studied. The extent of induction of DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) due to UV irradiation in the presence or absence of 1-beta-D-arabinofuranosylcytosine (ara-C) and hydroxyurea (HU) was determined using the alkaline and neutral elution methods. Results of these experiments were compared with the frequencies of induced chromosomal aberrations in UV-irradiated G1 cells treated under similar conditions. Xrs 6 cells showed a defect in their ability to perform the incision step of nucleotide repair after UV irradiation. Accumulation of breaks 2 h after UV irradiation in xrs 6 cells in the presence of HU and ara-C remained at the level of incision breaks estimated after 20 min, which was about 35% of that found in wild-type CHO-K1 cells. In UV-irradiated CHO-K1 and xrs 5 cells, more incision breaks were present after 2 h compared with 20 min post-treatment with ara-C, a further increase was evident when HU was added to the combined treatment. The level of incision breaks induced under these conditions in xrs 5 was about 80% of that observed in CHO-K1 cells. UV irradiation itself did not induce any detectable DNA strand breaks. Accumulation of SSBs in UV-irradiated cells post-treated with ara-C and HU coincides with the increase in the frequency of chromosomal aberrations. These data suggest that accumulated SSBs when converted to DSBs in G1 give rise to chromosome-type aberrations, whereas strand breaks persisting until S-phase result in chromatid-type aberrations. Xrs 6 appeared to be the first ionizing-radiation-sensitive mutant with a partial defect in the incision step of DNA repair of UV-induced damage.
Collapse
Affiliation(s)
- F Darroudi
- Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, The Netherlands
| | | | | |
Collapse
|
18
|
Affiliation(s)
- M M Cohen
- Department of Obstetrics and Gynecology, School of Medicine, University of Maryland, Baltimore
| | | |
Collapse
|
19
|
|
20
|
Darroudi F, Natarajan AT. Cytological characterization of Chinese hamster ovary X-ray-sensitive mutant cells, xrs 5 and xrs 6. II. Induction of sister-chromatid exchanges and chromosomal aberrations by X-rays and UV-irradiation and their modulation by inhibitors of poly(ADP-ribose) synthetase and alpha-polymerase. Mutat Res 1987; 177:149-60. [PMID: 3102955 DOI: 10.1016/0027-5107(87)90030-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cell killing and induction of sister-chromatid exchanges (SCEs) by X-rays and short-wave ultraviolet (UV) irradiation in combination with inhibitors of DNA repair, 3-aminobenzamide (3AB), cytosine arabinoside (ara-C) or aphidicolin (APC) were studied in wild-type CHO-K1 and two X-ray-sensitive mutants, xrs 5 and xrs 6 cells. The spontaneous frequency of SCEs was similar in the mutants and the wild-type CHO-K1 cells (8.4-10.3 SCEs/cell). Though X-rays are known to be poor inducers of SCEs, a dose-dependent increase in the frequency of SCEs in xrs 6 cells (doubling at 150 rad) was found in comparison to a small increase in xrs 5 and no increase in wild-type CHO-K1 cells. 3AB, an inhibitor of poly(ADP-ribose) synthetase increased the spontaneous frequency of SCEs in all the cell types. 3AB did not potentiate the X-ray-induced frequency of SCEs in any of the cell lines. Ara-C, an inhibitor of DNA polymerase alpha, increased the frequency of SCEs in all the cell lines. In combined treatment with X-rays, ara-C had no synergistic effect in xrs 5 and xrs 6 cells, but the frequency of SCEs increased in X-irradiated wild-type CHO-K1 cells post-treated with ara-C. For the induced frequency of SCEs, CHO-K1 cells treated with X-rays plus ara-C behaved like xrs 6 cells treated with X-rays alone, suggesting a possible defect in DNA base damage repair in xrs 6 cells, in addition to the known defective repair of DNA double-strand breaks (DSBs). Survival experiments revealed higher sensitivity of xrs 5 and xrs 6 mutant cells to the cell killing effect of X-rays in S-phase when compared to wild-type CHO-K1 cells. The mutants responded with lesser sensitivity to cell killing effect of ara-C and APC than CHO-K1 cells, the relative sensitivity to ara-C or APC being CHO-K1 greater than xrs 5 greater than xrs 6 cells. When X-irradiation was coupled with ara-C, the results obtained for survival were similar to those of the SCE test, i.e., unlike wild-type CHO-K1, no synergistic effect was observed in xrs 5 or xrs 6 cells. After UV-irradiation, the frequency of SCEs increased similarly in wild-type CHO-K1 and xrs 6 cells, but xrs 5 cells responded with lower frequency of SCEs.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|