1
|
Balasubramanian K. Combinatorial enumeration of stereo, chiral and position isomers of polysubstituted halocarbons: applications to machine learning of proton and 35Cl NMR spectroscopy of halocarbons. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Abstract
AbstractAntifungal activity of organic compounds (aromatic, salicylic derivatives, cinnamyl derivatives etc) on Fusarium Rosium (14 compounds) and Aspergillus niger (17 compounds) was studied and QSAR models were developed relating molecular descriptors with the observed activity. Back propagation Neural Network models and single and multiple regression models were tested for predicting the observed activity. The data fit as well as the predictive capability of the neural network models were satisfactory (R2 = 0.84, q2 = 0.73 for Fusarium Rosium and R2 = 0.75, q2 = 0.62 for Aspergillus niger). The descriptors used in the network for the former were X4 (connectivity) and Jhetv (topological); and TIC1 (information) and SPI (topological) for the latter fungus. Antifungal activities of these organic compounds were generally lower against the latter than with the former fungus.
Collapse
|
3
|
Winn RN, Norris MB, Lothenbach D, Flynn K, Hammermeister D, Whiteman F, Sheedy B, Johnson R. Sub-chronic exposure to 1,1-dichloropropene induces frameshift mutations in lambda transgenic medaka. Mutat Res 2006; 595:52-9. [PMID: 16337249 DOI: 10.1016/j.mrfmmm.2005.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 10/13/2005] [Accepted: 10/14/2005] [Indexed: 05/05/2023]
Abstract
1,1-Dichloropropene (1,1-DCP) is a contaminant present in both ground and surface waters used as sources for drinking water. Structural similarity to several compounds with known mutagenicity and carcinogenicity, and recent demonstration of mutagenicity in vitro, suggest this compound may be similarly mutagenic in vivo. A transgenic fish model, the lamda transgenic medaka, was used to evaluate the potential mutagenicity of this contaminant in vivo following sub-chronic exposure for 6 weeks. Mutant frequencies of the cII target gene (MF) increased six-fold in the livers of fish exposed to the lowest 1,1-DCP exposure concentration (0.44 mg/L, MF = 18.4 x 10(-5), and increased with each treatment, culminating in a 32-fold induction in fish from the highest 1,1-DCP treatment (16.60 mg/L, MF = 96.3 x 10(-5). Mutations recovered from treated fish showed a distinctive mutational spectrum comprised predominantly of +1 frameshift mutations, induced 166-fold above that of untreated animals. The majority of frameshifts were +1 insertions at thiamine and adenine. These results represent the first evidence of mutagenicity of 1,1-DCP in vivo, and of the highly characteristic spectrum of induced mutations dominated by +1 frameshift mutations. Based upon results from previous in vitro studies, the similar role of glutathione S-transferase (GSTT1-1) in the activation of 1,1-DCP to a mutagen in vivo is also suggested. This study further illustrates the utility of the lamda transgenic medaka as a model for identifying and characterizing potential genetic health risks associated with chemical exposures in the environment.
Collapse
Affiliation(s)
- Richard N Winn
- Aquatic Biotechnology and Environmental Laboratory, Warnell School of Forest Resources, University of Georgia, Athens, GA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Basak SC, Balasubramanian K, Gute BD, Mills D, Gorczynska A, Roszak S. Prediction of cellular toxicity of halocarbons from computed chemodescriptors: a hierarchical QSAR approach. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 2003; 43:1103-9. [PMID: 12870899 DOI: 10.1021/ci020054n] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A hierarchical quantitative structure-activity relationship (HiQSAR) approach was used to estimate toxicity and genetic toxicity for a set of 55 halocarbons using computed chemodescriptors. The descriptors consisted of topostructural (TS), topochemical (TC), geometrical, semiempirical (AM1) quantum chemical, and ab initio (STO-3G, 6-31G(d), 6-311G, 6-311G(d), and aug-cc-pVTZ) quantum chemical indices. For the two toxicity endpoints investigated, ARR and D(37), the TC indices gave the best cross-validated R(2) values. The 3-D indices also performed either as well as or slightly superior to the TC indices. For the four categories of quantum chemical indices used for the development of predictive models, the AM1 parameters gave the worst performance, and the most advanced ab initio (B3LYP/aug-CC-pVTZ) parameters gave the best results when used alone. This was also the case when the quantum chemical indices were used in the hierarchical QSAR approach for both of the toxicity endpoints, ARR and D(37). The models resulting from HiQSAR are of sufficiently good quality to estimate toxicity of halocarbons from structure.
Collapse
Affiliation(s)
- Subhash C Basak
- Natural Resources Research Institute, University of Minnesota-Duluth, 5013 Miller Trunk Highway, Duluth, Minnesota 55811, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Hansch C, Hoekman D, Leo A, Weininger D, Selassie CD. Chem-bioinformatics: comparative QSAR at the interface between chemistry and biology. Chem Rev 2002; 102:783-812. [PMID: 11890757 DOI: 10.1021/cr0102009] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Corwin Hansch
- Department of Chemistry, Pomona College, Claremont, California 91711, USA
| | | | | | | | | |
Collapse
|
6
|
Roberts SM, Jordan KE, Warren DA, Britt JK, James RC. Evaluation of the carcinogenicity of 1,1-dichloroethylene (vinylidene chloride). Regul Toxicol Pharmacol 2002; 35:44-55. [PMID: 11846635 DOI: 10.1006/rtph.2001.1518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The U.S. Environmental Protection Agency has classified 1,1-dichloroethylene (vinylidene chloride; VDC) as a "C" carcinogen and has developed an inhalation unit risk value and an oral cancer slope factor for this chemical. The development and use of these cancer potency estimates for risk assessment purposes are questionable. The inhalation unit risk value is based on increased kidney adenocarcinomas in Swiss mice from one study. This type of cancer was not increased in female mice or in rats or hamsters in the same study nor in male mice of a similar strain in another study with higher VDC exposures. The VDC oral cancer slope factor is based on a non-statistically significant increase in adrenal pheochromocytomas in male rats following oral exposure in a standard National Toxicology Program chronic bioassay. Both human and animal literature relevant to VDC carcinogenicity was reviewed according to the USEPA draft Guidelines for Carcinogen Risk Assessment with the objective of determining the weight-of-evidence for VDC carcinogenicity. We conclude that information currently available for VDC is most appropriately characterized in a weight-of-evidence narrative by the descriptor "inadequate for an assessment of human carcinogenic potential." For chemicals with this descriptor, dose-response assessment is not indicated. Under this guidance, quantitative estimates of cancer risks associated with VDC exposure are inappropriate until additional, more definitive evidence for human carcinogenicity becomes available.
Collapse
Affiliation(s)
- Stephen M Roberts
- Center for Environmental & Human Toxicology, University of Florida, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
7
|
Trohalaki S, Gifford E, Pachter R. Improved QSARs for predictive toxicology of halogenated hydrocarbons. COMPUTERS & CHEMISTRY 2000; 24:421-7. [PMID: 10816012 DOI: 10.1016/s0097-8485(99)00093-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In our continuing efforts to provide a predictive toxicology capability, we seek to improve QSARs (quantitative structure-activity relationships) for chemicals of interest. Currently, although semi-empirical molecular orbital methods are hardly the state of the art for studying small molecules, AM1 calculations appear to be the method of choice when calculating quantum-chemical descriptors. However, with the advent of modern computational capabilities and the development of fast algorithms, ab initio molecular orbital and first principles density functional methods can be expeditiously applied in current QSAR studies. We present a study on halogenated alkanes to assess whether more accurate quantum methods result in QSARs that correlate better with experimental data. Furthermore, improved QSARs can also be obtained through development of new descriptors with explicit physical interpretations that should lead to better understanding of the mechanisms involved in the toxic response. We show that descriptors calculated from chemical intermediates may be useful in future QSARs.
Collapse
Affiliation(s)
- S Trohalaki
- Technical Management Concepts, Beavercreek, OH 45434-3405, USA.
| | | | | |
Collapse
|
8
|
Tafazoli M, Kirsch-Volders M. In vitro mutagenicity and genotoxicity study of 1,2-dichloroethylene, 1,1,2-trichloroethane, 1,3-dichloropropane, 1,2,3-trichloropropane and 1,1,3-trichloropropene, using the micronucleus test and the alkaline single cell gel electrophoresis technique (comet assay) in human lymphocytes. Mutat Res 1996; 371:185-202. [PMID: 9008720 DOI: 10.1016/s0165-1218(96)90107-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The main objective of this study was to compare the cytotoxic genotoxic and mutagenic activity of a number of chlorinated aliphatic hydrocarbons, which are widely used as chemical intermediates, solvents, degreasing agents etc. in industry, and to establish the structure-toxicity relationship of the chemicals by using the most adequate determinants in estimating their toxicity. The mutagenicity and cytotoxicity of some of the candidate chemicals, namely 1,2-dichloroethylene, 1,1,2-trichloroethane, 1,3-dichloropropane, 1,2,3-trichloropropane and 1,1,3-trichloropropene were evaluated in an in vitro micronucleus assay. The cytokinesis-block methodology was applied on human lymphocytes in the presence or absence of an external metabolic activation system (S9-mix). In the micronucleus assay, all test substances, except 1,2,3-trichloropropane with and without S9-mix and 1,1,2-trichloroethane without S9-mix in the repeated experiment, exhibited a low but statistically significant mutagenic activity, compared to the concurrent control. However, none of the five chemicals was able to induce a clear and reproducible linear dose-dependent increase in micronucleus frequencies in this assay. Generally, mutagenic activity of the chemicals was found in the absence of severe cytotoxicity and/or cell cycle delay. The DNA breakage capacity and the cytotoxicity of these chemicals were also assessed in the alkaline single cell gel (SCG) electrophoresis test (comet assay) with and without S9-mix in isolated human lymphocytes. All chemical compounds induced DNA breakage, in the presence or absence of the metabolic activation system, at the doses tested. The data showed that the DNA reactivity of the chemicals increased with increasing degree of halogenation. The results of the present work suggested that the comet assay might be a more suitable and sensitive screening method than the micronucleus test for this particular class of compound. However, both assays do detect different endpoints.
Collapse
Affiliation(s)
- M Tafazoli
- Laboratory for Anthropogenetics, Faculty of Sciences, Free University of Brussels, Belgium
| | | |
Collapse
|
9
|
Parry JM, Parry EM, Bourner R, Doherty A, Ellard S, O'Donovan J, Hoebee B, de Stoppelaar JM, Mohn GR, Onfelt A, Renglin A, Schultz N, Söderpalm-Berndes C, Jensen KG, Kirsch-Volders M, Elhajouji A, Van Hummelen P, Degrassi F, Antoccia A, Cimini D, Izzo M, Tanzarella C, Adler ID, Kliesch U, Hess P. The detection and evaluation of aneugenic chemicals. Mutat Res 1996; 353:11-46. [PMID: 8692188 DOI: 10.1016/0027-5107(95)00242-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although aneuploidy makes a significant contribution to both somatic and inherited disease the mechanisms by which environmental chemicals may induce numerical chromosome aberrations are only poorly defined. The European Union Project was aimed to further our understanding of those chemical interactions with the components of the mitotic and meiotic cell division cycle which may lead to aneuploidy and to characterise the parameters such as cellular metabolism which may influence the activity of aneugenic chemicals. C-mitosis can be induced by the highly lipophilic polychlorinated biphenyl and the completion of mitosis and cleavage can be modified by agents which deplete cellular levels of reduced glutathione. Modifications of the fidelity of chromosome segregation were produced by inhibiting the functioning of topoisomerase II during chromatid separation. In contrast, the modification of centromere integrity resulted in chromosome breakage as opposed to disturbance of segregation. Modifiers of tubulin assembly and centriolar functioning in somatic cells such as acrylamide, vinblastine and diazepam reproduced their activity in rodent bone marrow and male germ cells. The analysis of chromosome malsegregation in Aspergillus nidulans by a structurally related series of halogenated hydrocarbons was used to develop a QSAR model which had high predictive value for the results of fungal tests for previously untested related chemicals. Metabolic studies of potential aneugens in genetically engineered human lymphoblastoid cells demonstrated the detoxification of the aneugenic activity of chloral hydrate and the activation of 2,3-dichlorobutane, 1,1,2-trichloroethane and trichloroethylene by Phase I biotransforming enzymes. Cell transformation studies in Syrian hamster dermal cultures using a panel of 22 reference and or potential aneugens indicated that 15 of the 22 produced positive results following single exposures. Five of the aneugens which were negative following single exposures produced positive results where cultures were continuously exposed for up to 6 weeks to low concentrations following a single non-transforming exposure to the mutagen dimethyl sulphate. The transformation studies indicate that a significant proportion of chemical aneugens are potential complete carcinogens and/or co-carcinogens. To optimise the enumeration of chromosomes following exposure to potential chemical aneugens whole chromosome paints and centromere specific probes suitable for use in fluorescence in situ hybridisation (FISH) were developed for the rat, mouse and Chinese hamster and selected human probes evaluated for their suitability for routine use. Molecular chromosome probes were used to develop protocols for enumerating chromosomes in metaphase cells and centromeres and micronuclei in interphase cells. The analysis of segregation of specific centromeres in binucleate cells following cytochalasin B treatment was shown to be a potentially valuable system for characterising non-disjunction following chemical exposure. Whole chromosome paints and centromere specific probes were used to demonstrate the presence of dose-response thresholds following treatment with a reference panel of spindle inhibiting chemicals. These data indicate that the FISH technology is suitable for evaluating the relative hazards of low-dose exposures to aneugenic chemicals.
Collapse
Affiliation(s)
- J M Parry
- School of Biological Sciences, University of Wales Swansea, Singleton Park, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Karelson M, Lobanov VS, Katritzky AR. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem Rev 1996; 96:1027-1044. [PMID: 11848779 DOI: 10.1021/cr950202r] [Citation(s) in RCA: 939] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mati Karelson
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | | | | |
Collapse
|
11
|
Crebelli R, Andreoli C, Carere A, Conti L, Crochi B, Cotta-Ramusino M, Benigni R. Toxicology of halogenated aliphatic hydrocarbons: structural and molecular determinants for the disturbance of chromosome segregation and the induction of lipid peroxidation. Chem Biol Interact 1995; 98:113-29. [PMID: 8548852 DOI: 10.1016/0009-2797(95)03639-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The induction of mitotic chromosome malsegregation, mitotic arrest and lethality by a set of 55 halogenated hydrocarbons was investigated. To this aim, genetic assays in the mould Aspergillus nidulans, able to provide precise quantitative information on the end-points studied, were used throughout the work. The experimental data obtained were used to develop QSAR models for the induction of aneuploidy, which pointed to a major role of electrophilicity as molecular determinant for the aneugenic potential of the halogenated hydrocarbons investigated. Within the hypothesis of a link between the electrophilicity of haloalkanes and their propensity to undergo a reductive biotransformation, with production of free radical species, a subset of 27 compounds was also tested for the ability to induce lipid peroxidation in rat liver microsomes in vitro. The results obtained indicate a partial coincidence between the abilities to initiate lipid peroxidation and to disturb chromosome segregation at mitosis. The data base obtained was also used to investigate the relationship between chemical structure and peroxidative potential. The analysis indicated that electronic and structural parameters related to the ease of homolitic cleavage of the carbon-halogen bond play a pivotal role as determinants for the peroxidative character of haloalkanes.
Collapse
Affiliation(s)
- R Crebelli
- Istituto Superiore di Sanita, Laboratory of Comparative Toxicology and Ecotoxicology, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- R Fahrig
- Fraunhofer-Institut für Toxikologie und Aerosolforschung, Hannover, Germany
| | | | | |
Collapse
|
13
|
|
14
|
Chapter 2: Chlorine. Regul Toxicol Pharmacol 1994. [DOI: 10.1016/s0273-2300(05)80018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Benigni R, Andreoli C, Giuliani A. QSAR models for both mutagenic potency and activity: application to nitroarenes and aromatic amines. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1994; 24:208-219. [PMID: 7957124 DOI: 10.1002/em.2850240310] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We studied the molecular determinants that discriminate between mutagenic and inactive compounds for: a) aromatic and heteroaromatic amines; b) nitroarenes. Mutagenic activity (data from literature) had been previously assessed in Salmonella typhimurium and Escherichia coli (SOS repair). The Quantitative Structure-Activity Relationships (QSAR) found were compared with those obtained in the laboratory of Professor C. Hansch for the mutagenic potency of the same compounds. It appears that there is a dramatic difference between the QSARs for potency, and those for yes/no activity: hydrophobicity played a major role in determining the potency of the active compounds, whereas mainly electronic factors differentiated the actives from the inactives. The electronic factors were those expected on the basis of the hypothesized metabolic pathways of the chemicals. Our interpretation is that the electronic factors (together with size/shape, possibly) determine the minimum requirement for the chemicals to be metabolized, whereas the hydrophobicity determines the extent of activity of chemicals that can be metabolized (actives). Moreover, the different QSARs found for the Salmonella strains TA98 and TA100 were discussed in the light of recent progress in the understanding of the molecular mechanisms of mutagenicity in these organisms. It is concluded that the nonlinear relationship observed for these chemicals between the two types of QSAR should be taken into account both when planning QSAR studies, and when using mutagenicity data for risk assessment.
Collapse
Affiliation(s)
- R Benigni
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|