1
|
Jin B, Sung GW, Jang YJ. Binding mode of proflavine to DNA probed by polarized light spectroscopy. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Biao Jin
- Instrumental Analysis CenterYanbian University Yanji City Jilin Province China
| | - Gi Woong Sung
- Department of ChemistryYeungnam University Dae‐dong Gyeongsan City Gyeong‐buk Republic of Korea
| | - Yoon Jung Jang
- College of Basic Education, Yeungnam University Dae‐dong Gyeongsan City Gyeong‐buk Republic of Korea
| |
Collapse
|
2
|
Pridgeon JW, Klesius PH, Yildirim-Aksoy M. Attempt to develop live attenuated bacterial vaccines by selecting resistance to gossypol, proflavine hemisulfate, novobiocin, or ciprofloxacin. Vaccine 2013; 31:2222-30. [DOI: 10.1016/j.vaccine.2013.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/21/2013] [Accepted: 03/04/2013] [Indexed: 12/01/2022]
|
3
|
Di Giorgio C, Benchabane Y, Boyer G, Piccerelle P, De Méo M. Evaluation of the mutagenic/clastogenic potential of 3,6-di-substituted acridines targeted for anticancer chemotherapy. Food Chem Toxicol 2011; 49:2773-9. [DOI: 10.1016/j.fct.2011.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/13/2011] [Accepted: 07/16/2011] [Indexed: 10/18/2022]
|
4
|
DNA-damaging activity and mutagenicity of 16 newly synthesized thiazolo[5,4-a]acridine derivatives with high photo-inducible cytotoxicity. Mutat Res 2007; 650:104-14. [PMID: 18160333 DOI: 10.1016/j.mrgentox.2007.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 05/22/2007] [Accepted: 10/07/2007] [Indexed: 11/22/2022]
Abstract
The discovery of the potent anticancer properties of natural alkaloids in the pyrido-thiazolo-acridine series has suggested that thiazolo-acridine derivatives could be of great interest. In a continuous attempt to develop DNA-binding molecules and DNA photo-cleavers, 16 new thiazolo[5,4-a]acridines were synthesized and studied for their photo-inducible DNA-intercalative, cytotoxic and mutagenic activities, by use of the DNA methyl-green bioassay, the Alamar Blue viability assay and the Salmonella mutagenicity test using strains TA97a and TA98 with and without metabolic activation and photo-activation. Without photo-activation, one compound showed a DNA-intercalative activity in the DNA major groove while three compounds displayed intercalating properties after photo-activation. In the dark, four molecules possessed cytotoxic activities against a THP1 acute monocytic leukemia cell line while 15 derivatives displayed photo-inducible cytotoxic activity against this cell line. All compounds were mutagenic in strain TA97a with metabolic activation (+S9mix) and 15 molecules were mutagenic in strain TA98 without activation (-S9mix). Study of the quantitative structure-activity relationships (QSAR) from the Salmonella mutagenicity data revealed that several descriptors could describe cytotoxic and mutagenic activities after photo-activation. From the results of the mutagenicity test, four compounds with elevated mutagenic activities were selected for additional experiments. Their capacities to induce single-strand breaks (SSB) and chromosome-damaging effects were monitored by the comet and the micronucleus assays in normal human keratinocytes. Comparison of the minimal genotoxic concentrations showed that two compounds possessed higher capacities to induce SSB after photo-activation. In the micronucleus assay, three molecules were able to induce high numbers of micronuclei following photo-activation. Overall, the results of this study confirm that acridines are predominantly genotoxic via a DNA-intercalating mechanism in the dark, while DNA-adducts were probably induced following photo-activation.
Collapse
|
5
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Ciatto C, D'Amico ML, Natile G, Secco F, Venturini M. Intercalation of proflavine and a platinum derivative of proflavine into double-helical Poly(A). Biophys J 1999; 77:2717-24. [PMID: 10545371 PMCID: PMC1300545 DOI: 10.1016/s0006-3495(99)77105-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The equilibria and kinetics of the interactions of proflavine (PR) and its platinum-containing derivative [PtCl(tmen)(2)HNC(13)H(7)(NHCH(2)CH(2))(2)](+) (PRPt) with double-stranded poly(A) have been investigated by spectrophotometry and Joule temperature-jump relaxation at ionic strength 0.1 M, 25 degrees C, and pH 5.2. Spectrophotometric measurements indicate that base-dye interactions are prevailing. T-jump experiments with polarized light showed that effects due to field-induced alignment could be neglected. Both of the investigated systems display two relaxation effects. The kinetic features of the reaction are discussed in terms of a two-step series mechanism in which a precursor complex DS(I) is formed in the fast step, which is then converted to a final complex in the slow step. The rate constants of the fast step are k(1) = (2.5 +/- 0.4) x 10(6) M(-1) s(-1), k(-1) = (2.4 +/- 0.1) x 10(3) s(-1) for poly(A)-PR and k(1) = (2.3 +/- 0.1) x 10(6) M(-1) s(-1), k(-1) = (1.6 +/- 0.2) x 10(3) s(-1) for poly(A)-PRPt. The rate constants for the slow step are k(2) = (4.5 +/- 0.5) x 10(2) s(-1), k(-2) = (1.7 +/- 0.1) x 10(2) s(-1) for poly(A)-PR and k(2) = 9.7 +/- 1.2 s(-1), k(-2) = 10.6 +/- 0.2 s(-1) for poly(A)-PRPt. Spectrophotometric measurements yield for the equilibrium constants and site size the values K = (4.5 +/- 0.1) x 10(3) M(-1), n = 1.3 +/- 0.5 for poly(A)-PR and K = (2.9 +/- 0.1) x 10(3) M(-1), n = 2.3 +/- 0.6 for poly(A)-PRPt. The values of k(1) are similar and lower than expected for diffusion-limited reactions. The values of k(-1) are similar as well. It is suggested that the formation of DS(I) involves only the proflavine residues in both systems. In contrast, the values of k(2) and k(-2) in poly(A)-PRPt are much lower than in poly(A)-PR. The results suggest that in the complex DS(II) of poly(A)-PRPt both proflavine and platinum residues are intercalated. In addition, a very slow process was detected and ascribed to the covalent binding of Pt(II) to the adenine.
Collapse
Affiliation(s)
- C Ciatto
- Institut für Molekulare Biotechnologie, Jena, Germany
| | | | | | | | | |
Collapse
|
7
|
Ripley LS. Predictability of mutant sequences. Relationships between mutational mechanisms and mutant specificity. Ann N Y Acad Sci 1999; 870:159-72. [PMID: 10415481 DOI: 10.1111/j.1749-6632.1999.tb08877.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spontaneous mutations are rare and are produced by multiple biochemical mechanisms. Nonetheless, studies of these mechanisms have revealed striking examples in which mutational specificity can be regularly related to a characteristic of the surrounding DNA sequence and/or the enzymes participating in mutagenesis. Thus, to an increasing degree the DNA sequences of mutants are "predictable." This report considers some examples of predictable sequence changes, evidence for their contribution to mutagenesis in populations, and how the predictability of mutant sequences may be useful to improve our interpretation of the molecular course of evolution from DNA sequence comparisons.
Collapse
Affiliation(s)
- L S Ripley
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07103, USA.
| |
Collapse
|
8
|
Gary TP, Colowick NE, Mosig G. A species barrier between bacteriophages T2 and T4: exclusion, join-copy and join-cut-copy recombination and mutagenesis in the dCTPase genes. Genetics 1998; 148:1461-73. [PMID: 9560366 PMCID: PMC1460086 DOI: 10.1093/genetics/148.4.1461] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteriophage T2 alleles are excluded in crosses between T2 and T4 because of genetic isolation between these two virus species. The severity of exclusion varies in different genes, with gene 56, encoding an essential dCT(D)Pase/dUT(D)Pase of these phages, being most strongly affected. To investigate reasons for such strong exclusion, we have (1) sequenced the T2 gene 56 and an adjacent region, (2) compared the sequence with the corresponding T4 DNA, (3) constructed chimeric phages in which T2 and T4 sequences of this region are recombined, and (4) tested complementation, recombination, and exclusion with gene 56 cloned in a plasmid and in the chimeric phages in Escherichia coli CR63, in which growth of wild-type T2 is not restricted by T4. Our results argue against a role of the dCTPase protein in this exclusion and implicate instead DNA sequence differences as major contributors to the apparent species barrier. This sequence divergence exhibits a remarkable pattern: a major heterologous sequence counter-clockwise from gene 56 (and downstream of the gene 56 transcripts) replaces in T2 DNA the T4 gene 69. Gene 56 base sequences bordering this substituted region are significantly different, whereas sequences of the dam genes, adjacent in the clockwise direction, are similar in T2 and in T4. The gene 56 sequence differences can best be explained by multiple compensating frameshifts and base substitutions, which result in T2 and T4 dCTPases whose amino acid sequences and functions remain similar. Based on these findings we propose a model for the evolution of multiple sequence differences concomitant with the substitution of an adjacent gene by foreign DNA: invasion by the single-stranded segments of foreign DNA, nucleated from a short DNA sequence that was complementary by chance, has triggered recombination-dependent replication by "join-copy" and "join-cut-copy" pathways that are known to operate in the T-even phages and are implicated in other organisms as well. This invasion, accompanied by heteroduplex formation between partially similar sequences, and perhaps subsequent partial heteroduplex repair, simultaneously substituted T4 gene 69 for foreign sequences and scrambled the sequence of the dCTPase gene 56. We suggest that similar mechanisms can mobilize DNA segments for horizontal transfer without necessarily requiring transposase or site-specific recombination functions.
Collapse
Affiliation(s)
- T P Gary
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | |
Collapse
|
9
|
Kaiser VL, Ripley LS. DNA nick processing by exonuclease and polymerase activities of bacteriophage T4 DNA polymerase accounts for acridine-induced mutation specificities in T4. Proc Natl Acad Sci U S A 1995; 92:2234-8. [PMID: 7892253 PMCID: PMC42458 DOI: 10.1073/pnas.92.6.2234] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acridine-induced frameshift mutagenesis in bacteriophage T4 has been shown to be dependent on T4 topoisomerase. In the absence of a functional T4 topoisomerase, in vivo acridine-induced mutagenesis is reduced to background levels. Further, the in vivo sites of acridine-induced deletions and duplications correlate precisely with in vitro sites of acridine-induced T4 topoisomerase cleavage. These correlations suggest that acridine-induced discontinuities introduced by topoisomerase could be processed into frameshift mutations. The induced mutations at these sites have a specific arrangement about the cleavage site. Deletions occur adjacent to the 3' end and duplications occur adjacent to the 5' end of the cleaved bond. It was proposed that at the nick, deletions could be produced by the 3'-->5' removal of bases by DNA polymerase-associated exonuclease and duplications could be produced by the 5'-->3' templated addition of bases. We have tested in vivo for T4 DNA polymerase involvement in nick processing, using T4 phage having DNA polymerases with altered ratios of exonuclease to polymerase activities. We predicted that the ratios of the deletion to duplication mutations induced by acridines in these polymerase mutant strains would reflect the altered exonuclease/polymerase ratios of the mutant T4 DNA polymerases. The results support this prediction, confirming that the two activities of the T4 DNA polymerase contribute to mutagenesis. The experiments show that the influence of T4 DNA polymerase in acridine-induced mutation specificities is due to its processing of acridine-induced 3'-hydroxyl ends to generate deletions and duplications by a mechanism that does not involve DNA slippage.
Collapse
Affiliation(s)
- V L Kaiser
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark 07103
| | | |
Collapse
|
10
|
Ripley LS. Deletion and duplication sequences induced in CHO cells by teniposide (VM-26), a topoisomerase II targeting drug, can be explained by the processing of DNA nicks produced by the drug-topoisomerase interaction. Mutat Res 1994; 312:67-78. [PMID: 7510833 DOI: 10.1016/0165-1161(94)90011-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Frameshift mutations induced by acridines in bacteriophage T4 have been shown to be due to the ability of these mutagens to cause DNA cleavage by the type II topoisomerase of T4 and the subsequent processing of the 3' ends at DNA nicks by DNA polymerase or its associated 3' exonuclease followed by ligation of the processed end to the original 5' end. An analysis of the ability of nick-processing models is presented here to test the ability of nick processing to account for the DNA sequences of duplications and deletions induced in the aprt gene of CHO cells by teniposide (VM-26) [Han et al. (1993) J. Mol. Biol., 229, 52]. Although teniposide is not an acridine, it induces topoisomerase II-mediated DNA cutting in aprt sequences in vitro and mutagenesis in vivo. Although the previous study noted a correlation between mutation sites and nearby DNA discontinuities induced by the enzyme in vitro, neither the nick-processing model responsible for T4 mutations, nor double-strand break models alone were able to account for most of the mutant sequences. Thus, no single model explained the correlation between teniposide-induced DNA cleavage and mutagenic specificity. This report describes an expanded analysis of the ways that nick-processing models might be related to mutagenesis and demonstrates that a modified nick-processing model provides a biochemical rationale for the mutant specificities. The successful nick-processing model proposes that either 3' ends at nicks are elongated by DNA polymerase and/or that 5' ends of nicks are subject to nuclease activity; 3'-nuclease activity is not implicated. The mutagenesis model for nick-processing of teniposide-induced nicks in CHO cells when compared to the mechanism of nick-processing in bacteriophage T4 at acridine-induced nicks provides a framework for considering whether the differences may be due to cell-specific modes of DNA processing and/or due to the precise characteristics of topoisomerase-DNA intermediates created by teniposide or acridine that lead to mutagenesis.
Collapse
Affiliation(s)
- L S Ripley
- Department of Microbiology and Molecular Genetics, University of Medicine, New Jersey Medical School, Newark 07103
| |
Collapse
|
11
|
Ferguson LR, Baguley BC. Topoisomerase II enzymes and mutagenicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1994; 24:245-261. [PMID: 7851337 DOI: 10.1002/em.2850240402] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Topoisomerase II (topo II) enzymes maintain DNA structure by relieving torsional stress occurring in double-strand DNA during transcription and replication. Topo II causes transient breaks in both strands of DNA, allowing passage of one double helix through another, and probably acts as a structural protein in interphase cells, playing a role in the organisation of mitotic and meiotic chromosomes. A number of clinical anticancer drugs are thought to act on topo II enzymes to stabilise DNA-drug-topo II ternary complexes known as "cleavable complexes." These complexes may lead to illegitimate recombination events, as well as to the formation of other DNA lesions. Topo II-mediated genotoxicity is strongly dependent on the cell cycle status of the target cells. It is now apparent that some dietary components and environmental chemicals may act on topo II. Since the structural features of chemicals that lead to topo II interaction are not clear, it is currently not possible to predict such activity from chemical structure. For many years, the central dogma of chemical carcinogenesis has been that the most carcinogenic chemicals are those that can form a covalent bond with DNA, either directly or after metabolic activation. Topo II-directed drugs are not usually capable of forming covalent bonds with DNA and tend to have low mutagenicity in microbial assays. However, topo II-directed agents are potent cancerogens, inducing characteristic cytogenetic modifications. It is important to define the most sensitive tests to identify topo II-directed mutagens and to develop appropriate strategies for genotoxicity testing of such chemicals.
Collapse
Affiliation(s)
- L R Ferguson
- Cancer Research Laboratory, University of Auckland Medical School, New Zealand
| | | |
Collapse
|
12
|
Brown MD, Povinelli CM, Hall DH. Distribution and characterization of mutations induced by nitrous acid or hydroxylamine in the intron-containing thymidylate synthase gene of bacteriophage T4. Biochem Genet 1993. [DOI: 10.1007/pl00020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Brown MD, Povinelli CM, Hall DH. Distribution and characterization of mutations induced by nitrous acid or hydroxylamine in the intron-containing thymidylate synthase gene of bacteriophage T4. Biochem Genet 1993; 31:507-20. [PMID: 8166624 DOI: 10.1007/bf02426882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The detailed distribution and characterization of 51 hydroxylamine (HA)-induced and 59 nitrous acid (NA)-induced mutations in the intron-containing bacteriophage T4 thymidylate synthase (td) gene is reported here. Mutations were mapped in 10 regions of the td gene by recombinational marker rescue using plasmid or M13 subclones of the td gene. Phage crosses using deletion mutants with known breakpoints in the 3' end of the td intron subdivided HA and NA mutations which mapped in this region. At least 31 of the mutations map within the 1-kb group I self-splicing intron. Intron mutations mapped only in the 5' and 3' ends of the intron sequence, in accordance with the hypothesis that the 5' and 3' domains of the T4 td intron are essential for correct RNA splicing. RNA sequence analysis of a number of mapped td mutations has identified two intron nucleotides and one exon nucleotide where both HA- and NA-induced mutations commonly occur. These three loci are characterized by a GC dinucleotide, with the mutations occurring at the cytosine residue. Thus, these data indicate at least three potential sites of both HA- and NA-induced mutagenic hotspot activity within the td gene.
Collapse
Affiliation(s)
- M D Brown
- School of Biology, Georgia Institute of Technology, Atlanta 30332
| | | | | |
Collapse
|