An electrophysiological study of the action of N-methyl-D-aspartate on excitatory synaptic transmission in the optic tectum of the frog in vitro.
Neuropharmacology 1990;
29:681-7. [PMID:
1974714 DOI:
10.1016/0028-3908(90)90030-u]
[Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Excitatory synaptic field potentials, induced by stimulating optic nerve fibers, were recorded from in vitro preparations of the optic tectum of the frog. Bath-applied N-methyl-D-aspartate (NMDA), glutamate or quisqualate elicited transient enhancement in these field potentials, followed by a sustained depression reversible on washout. Responses to glutamate or quisqualate and the amplitude of control synaptic potentials, were not affected by the NMDA receptor antagonists aminophosphonovalerate (APV), 3(2-carboxypiperazin-4-yl)propyl-1-phosphonate (CPP), ketamine, magnesium ions or dizocipiline (MK 801) which, on the other hand, blocked the effects of NMDA. The antagonist dinitroquinoxaline-2,3-dione (DNQX), which is preferential for non-NMDA receptors, blocked the action of glutamate and synaptic transmission. In the presence of strychnine, glycine reversed the block of NMDA-mediated responses caused by magnesium. It is suggested that in the optic tectum of the frog, glutamate is the excitatory transmitter of at least one class of optic nerve fibers and that it acts through non-NMDA receptors. Although this area of the brain contains a well-developed NMDA receptor system, its function in physiological synaptic transmission remains to be elucidated.
Collapse