Gottesmann C. The neurophysiology of sleep and waking: intracerebral connections, functioning and ascending influences of the medulla oblongata.
Prog Neurobiol 1999;
59:1-54. [PMID:
10416960 DOI:
10.1016/s0301-0082(98)00094-x]
[Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper focuses on the successive historical papers related to medulla oblongata (M.O.) intracerebral connections, its activities and ascending influences regulating sleep waking behavior. The M.O. certainly influences the quantitative and qualitative processes of waking. However, its neurophysiological properties are often concealed by those of the upper-situated brain stem structures. The M.O., particularly the solitary tract nucleus, is involved in sleep-inducing processes. This nucleus seem to act as a deactivating system of the above situated reticular formation, but it also impacts directly on the thalamocortical slow wave and spindle-inducing processes. The M.O. is significantly involved in paradoxical sleep mechanisms. Indeed, the mesopontine executive centers are unable to induce paradoxical sleep without the M.O. Moreover, stimulation of the solitary tract nucleus afferents can induce paradoxical sleep, and the M.O. metabolic functioning is specifically disturbed by paradoxical sleep deprivation. Finally. there seems to be a paradoxical sleep Zeitgeber. Our current knowledge shows that this lowest brain stem level is crucial for sleep waking mechanisms. It will undoubtedly be further highlighted by future electrophysiologial and neurochemical studies.
Collapse