1
|
Mason GJ, Lavery JM. What Is It Like to Be a Bass? Red Herrings, Fish Pain and the Study of Animal Sentience. Front Vet Sci 2022; 9:788289. [PMID: 35573409 PMCID: PMC9094623 DOI: 10.3389/fvets.2022.788289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Debates around fishes' ability to feel pain concern sentience: do reactions to tissue damage indicate evaluative consciousness (conscious affect), or mere nociception? Thanks to Braithwaite's discovery of trout nociceptors, and concerns that current practices could compromise welfare in countless fish, this issue's importance is beyond dispute. However, nociceptors are merely necessary, not sufficient, for true pain, and many measures held to indicate sentience have the same problem. The question of whether fish feel pain - or indeed anything at all - therefore stimulates sometimes polarized debate. Here, we try to bridge the divide. After reviewing key consciousness concepts, we identify "red herring" measures that should not be used to infer sentience because also present in non-sentient organisms, notably those lacking nervous systems, like plants and protozoa (P); spines disconnected from brains (S); decerebrate mammals and birds (D); and humans in unaware states (U). These "S.P.U.D. subjects" can show approach/withdrawal; react with apparent emotion; change their reactivity with food deprivation or analgesia; discriminate between stimuli; display Pavlovian learning, including some forms of trace conditioning; and even learn simple instrumental responses. Consequently, none of these responses are good indicators of sentience. Potentially more valid are aspects of working memory, operant conditioning, the self-report of state, and forms of higher order cognition. We suggest new experiments on humans to test these hypotheses, as well as modifications to tests for "mental time travel" and self-awareness (e.g., mirror self-recognition) that could allow these to now probe sentience (since currently they reflect perceptual rather than evaluative, affective aspects of consciousness). Because "bullet-proof" neurological and behavioral indicators of sentience are thus still lacking, agnosticism about fish sentience remains widespread. To end, we address how to balance such doubts with welfare protection, discussing concerns raised by key skeptics in this debate. Overall, we celebrate the rigorous evidential standards required by those unconvinced that fish are sentient; laud the compassion and ethical rigor shown by those advocating for welfare protections; and seek to show how precautionary principles still support protecting fish from physical harm.
Collapse
Affiliation(s)
- G. J. Mason
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
2
|
de Oliveira EF, Dickson CT, Reyes MB. Hippocampal and lateral entorhinal cortex physiological activity during trace conditioning under urethane anesthesia. J Neurophysiol 2020; 124:781-789. [PMID: 32727318 DOI: 10.1152/jn.00293.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Significant evidence shows that the acquisition of delay conditioning can occur in out-of-awareness states, such as under anesthesia. However, it is unclear to what extent and what type of conditioning animals may achieve during nonawake states. Trace conditioning is an appealing protocol to study under anesthesia, given the long empty gap separating the conditioned and unconditioned stimuli, which must be bridged for acquisition to happen. Here, we show evidence that rats develop physiological responses during the trace conditioning paradigm under anesthesia. We recorded the activity of the hippocampus (HPC) and lateral entorhinal cortex (LEC) in urethane-anesthetized rats, along with an electromyogram and an electrocardiogram. The protocol consisted of randomly presenting two distinct sound stimuli (CS- and CS+), where only one stimulus (CS+) was assigned to be trace-paired with a footshock. A trial-average analysis revealed that animals developed significant climbing heart rate activity initiating at the CS onset and persisting during the trace period. Such climbing arose for both CS- and CS+ with similar slopes but different intercepts, suggesting CS+ heart rates were typically above CS-. The power and coherence of HPC and LEC high-frequency bands (>100 Hz) significantly increased during CS presentation and trace, similarly to CS- and CS+ and insensitive to either activated or deactivated states. To the best of our knowledge, this is the first attempt to perform a trace conditioning protocol under anesthesia. Confirmation of this procedure acquisition can allow a new preparation for the exploration of brain mechanisms that bind time-discontinuous events.NEW & NOTEWORTHY Some forms of learning, such as some types of conditioning, can occur in anesthetized states. However, the extent to which memories can be formed in these states is still an open question. Here, we investigated the trace conditioning under urethane anesthesia and found heart rate, hippocampus, and lateral entorhinal cortex physiological changes to stimuli presentation. This new preparation may allow for exploration of memory acquisition of time-discontinuous events in the nonawake brain.
Collapse
Affiliation(s)
- Eliezyer Fermino de Oliveira
- Center for Mathematics, Computing, and Cognition-Universidade Federal do ABC, Santo André, Brazil.,Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Clayton Thomas Dickson
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Marcelo Bussotti Reyes
- Center for Mathematics, Computing, and Cognition-Universidade Federal do ABC, Santo André, Brazil
| |
Collapse
|
3
|
Paul ES, Sher S, Tamietto M, Winkielman P, Mendl MT. Towards a comparative science of emotion: Affect and consciousness in humans and animals. Neurosci Biobehav Rev 2020; 108:749-770. [PMID: 31778680 PMCID: PMC6966324 DOI: 10.1016/j.neubiorev.2019.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/08/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
The componential view of human emotion recognises that affective states comprise conscious, behavioural, physiological, neural and cognitive elements. Although many animals display bodily and behavioural changes consistent with the occurrence of affective states similar to those seen in humans, the question of whether and in which species these are accompanied by conscious experiences remains controversial. Finding scientifically valid methods for investigating markers for the subjective component of affect in both humans and animals is central to developing a comparative understanding of the processes and mechanisms of affect and its evolution and distribution across taxonomic groups, to our understanding of animal welfare, and to the development of animal models of affective disorders. Here, contemporary evidence indicating potential markers of conscious processing in animals is reviewed, with a view to extending this search to include markers of conscious affective processing. We do this by combining animal-focused approaches with investigations of the components of conscious and non-conscious emotional processing in humans, and neuropsychological research into the structure and functions of conscious emotions.
Collapse
Affiliation(s)
- Elizabeth S Paul
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK.
| | - Shlomi Sher
- Department of Psychology, Pomona College, Claremont, CA, USA
| | - Marco Tamietto
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands; Department of Psychology, University of Torino, Torino, Italy
| | - Piotr Winkielman
- Department of Psychology, University of California, San Diego, La Jolla, CA, 92093, USA; Faculty of Psychology, SWPS University of Social Sciences and Humanities, 03-815, Warsaw, Poland
| | - Michael T Mendl
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| |
Collapse
|
4
|
Samuel N, Taub A, Paz R, Raz A. Implicit aversive memory under anaesthesia in animal models: a narrative review. Br J Anaesth 2018; 121:219-232. [DOI: 10.1016/j.bja.2018.05.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/23/2022] Open
|
5
|
Xiao C, Liu Y, Xu J, Gan X, Xiao Z. Septal and Hippocampal Neurons Contribute to Auditory Relay and Fear Conditioning. Front Cell Neurosci 2018; 12:102. [PMID: 29713265 PMCID: PMC5911473 DOI: 10.3389/fncel.2018.00102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/28/2018] [Indexed: 01/30/2023] Open
Abstract
The hippocampus has been thought to process auditory information. However, the properties, pathway, and role of hippocampal auditory responses are unclear. With loose-patch recordings, we found that hippocampal neurons are mainly responsive to noise and are not tonotopically organized. Their latencies are shorter than those of primary auditory cortical (A1) neurons but longer than those of medial septal (MS) neurons, suggesting that hippocampal auditory information comes from MS neurons rather than from A1 neurons. Silencing the MS blocks both hippocampal auditory responses and memory of auditory fear conditioning trained with noise and tone. Auditory fear conditioning was associated with some cues but not with a specific frequency of sound, as demonstrated by animals trained with noise, 2.5-, 5-, 10-, 15-, or 30-kHz tones, and tested with these sounds. Therefore, the noise responses of hippocampal neurons have identified a population of neurons that can be associated with auditory fear conditioning.
Collapse
Affiliation(s)
- Cuiyu Xiao
- Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yun Liu
- Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Xu
- Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiong Gan
- Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongju Xiao
- Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Panksepp J, Lane RD, Solms M, Smith R. Reconciling cognitive and affective neuroscience perspectives on the brain basis of emotional experience. Neurosci Biobehav Rev 2017; 76:187-215. [DOI: 10.1016/j.neubiorev.2016.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/22/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022]
|
7
|
Martin-Pichora AL, Mankovsky-Arnold TD, Katz J. Implicit versus explicit associative learning and experimentally induced placebo hypoalgesia. J Pain Res 2011; 4:67-77. [PMID: 21559352 PMCID: PMC3085265 DOI: 10.2147/jpr.s15966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Indexed: 11/23/2022] Open
Abstract
The present study examined whether 1) placebo hypoalgesia can be generated through implicit associative learning (ie, conditioning in the absence of conscious awareness) and 2) the magnitude of placebo hypoalgesia changes when expectations about pain are made explicit. The temperature of heat pain stimuli was surreptitiously lowered during conditioning trials for the placebo cream and the magnitude of the placebo effect was assessed during a subsequent set of trials when the temperature was the same for both placebo and control conditions. To assess whether placebo hypoalgesia could be generated from an implicit tactile stimulus, a 2 × 2 design was used with direction of cream application as one factor and verbal information about which cream was being applied as the second factor. A significant placebo effect was observed when participants received verbal information about which cream was being applied but not following implicit conditioning alone. However, 87.5% of those who showed a placebo response as the result of implicit conditioning were able to accurately guess the order of cream application during the final trial, despite a lack of awareness about the sensory manipulation and low confidence in their ratings, suggesting implicit learning in some participants. In summary, implicit associative learning was evident in some participants but it was not sufficient to produce a placebo effect suggesting some level of explicit expectation or cognitive mediation may be necessary. Notably, the placebo response was abolished when expectations were made explicit, suggesting a delicate interplay between attention and expectation.
Collapse
|
8
|
Perouansky M, Rau V, Ford T, Oh SI, Perkins M, Eger EI, Pearce RA. Slowing of the hippocampal θ rhythm correlates with anesthetic-induced amnesia. Anesthesiology 2010; 113:1299-309. [PMID: 21042201 PMCID: PMC3048812 DOI: 10.1097/aln.0b013e3181f90ccc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Temporary, antegrade amnesia is one of the core desirable endpoints of general anesthesia. Multiple lines of evidence support a role for the hippocampal θ rhythm, a synchronized rhythmic oscillation of field potentials at 4-12 Hz, in memory formation. Previous studies have revealed a disruption of the θ rhythm at surgical levels of anesthesia. We hypothesized that θ-rhythm modulation would also occur at subhypnotic but amnestic concentrations. Therefore, we examined the effect of three inhaled agents on properties of the θ rhythm considered critical for the formation of hippocampus-dependent memories. METHODS We studied the effects of halothane and nitrous oxide, two agents known to modulate different molecular targets (GABAergic [γ-aminobutyric acid] vs. non-GABAergic, respectively) and isoflurane (GABAergic and non-GABAergic targets) on fear-conditioned learning and θ oscillations in freely behaving rats. RESULTS All three anesthetics slowed θ peak frequency in proportion to their inhibition of fear conditioning (by 1, 0.7, and 0.5 Hz for 0.32% isoflurane, 60% N2O, and 0.24% halothane, respectively). Anesthetics inconsistently affected other characteristics of θ oscillations. CONCLUSIONS At subhypnotic amnestic concentrations, θ-oscillation frequency was the parameter most consistently affected by these three anesthetics. These results are consistent with the hypothesis that modulation of the θ rhythm contributes to anesthetic-induced amnesia.
Collapse
Affiliation(s)
- Misha Perouansky
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Effects of anesthetic agents on socially transmitted olfactory memories in mice. Neurobiol Learn Mem 2009; 93:268-74. [PMID: 19879368 DOI: 10.1016/j.nlm.2009.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 10/23/2009] [Accepted: 10/27/2009] [Indexed: 11/23/2022]
Abstract
Mice can learn a food preference from odor cues transmitted on the breath of a conspecific, even if the "demonstrator" is anesthetized. To our knowledge there are no studies examining the effect of anesthetizing the "observer" on development of memory for socially transmitted food preferences (STFP). In Experiment 1 we found that 2-4 month-old F2 C57Bl/6x129sv male and female mice demonstrated a STFP after a 5min exposure to an anesthetized demonstrator mouse when tested 24h later. In Experiment 2, observer mice anesthetized with Sagatal (60 mg/kg) prior to the "social interaction" preferentially avoided the cued food when tested 24h later. This aversion was not due to any overt aversive effects of this dose of Sagatal because mice that ate the food and were then anesthetized, or could only smell the food for 5 min while anesthetized, showed no preference or aversion. In a third experiment we found that the Sagatal-induced aversion was not a general property of anesthesia because there were varied results produced by observer mice treated with anesthetic drugs with different mechanisms of action. Vetalar (200mg/kg) and Rompun (10 mg/kg) treated animals ate similar amounts of cued and non-cued food at test, indicating an absence of learning. Hypnorm (0.5 ml/kg) treated animals showed a preference for the cued food whereas those treated with Hypnovel (2.5 ml/kg) showed an aversion to the cued food. These results show that the food aversion observed with Sagatal is not a general property of anesthetic agents, but appears to be restricted to those acting primarily on the GABAergic system. Thus, we have shown that under certain conditions it is possible for an anesthetized observer mouse to learn a preference or aversion of a socially-linked olfactory cue.
Collapse
|
10
|
Affiliation(s)
- Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, WC1N 3AR, UK;
| | - Quentin J.M. Huys
- Gatsby Computational Neuroscience Unit, University College London, London, WC1N 3AR, UK;
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10025;
| |
Collapse
|
11
|
Zheng J, Wu X, Li L. Metabotropic glutamate receptors subtype 5 are necessary for the enhancement of auditory evoked potentials in the lateral nucleus of the amygdala by tetanic stimulation of the auditory thalamus. Neuroscience 2008; 152:254-64. [PMID: 18065158 DOI: 10.1016/j.neuroscience.2007.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 11/17/2022]
Abstract
The lateral nucleus of the amygdala (LA) receives axonal projections from the auditory thalamus, the medial geniculate nucleus (MGN), and mediates auditory fear conditioning. Tetanic electrical stimulation of the MGN can induce long-term potentiation of acoustically-evoked responses (AEPs) recorded in the LA of anesthetized rats. The present study investigated the temporal development of tetanus-induced AEP potentiation recorded in the LA of anesthetized rats during the recording time up to 120 min after tetanization. In addition, the present study investigated whether the artificially-induced AEP potentiation is mediated by the metabotropic glutamate receptors subtype 5 (mGluR5). The results show that AEPs recorded in the LA to a broadband-noise burst were significantly enhanced immediately after tetanic but not low-frequency stimulation of the MGN. The AEP potentiation was well retained up to 120 min after tetanization. High-dose (1.5 microg/4 microl) microinjection of the selective antagonist of mGluR5, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), into the ipsilateral lateral ventricle 30 min before tetanization completely blocked the AEP potentiation without affecting the baseline AEP. Low-dose (0.5 microg/4 microl) microinjection partially suppressed the AEP potentiation. When the high-dose MPEP was injected 40 min after tetanization, the AEP potentiation was not affected. These results indicate that in anesthetized rats mGluR5 receptors are necessary for the induction or early maintenance (40 min) of AEP potentiation in the LA by tetanic stimulation of the MGN.
Collapse
Affiliation(s)
- J Zheng
- Department of Psychology, Speech and Hearing Research Center, State Key Laboratory on Machine Perception, Peking University, 5 Yiheyuan Road, Beijing, China 100871
| | | | | |
Collapse
|
12
|
The role of awareness in Pavlovian conditioning: Empirical evidence and theoretical implications. ACTA ACUST UNITED AC 2002. [DOI: 10.1037/0097-7403.28.1.3] [Citation(s) in RCA: 310] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Irie M, Maeda M, Nagata S. Can conditioned histamine release occur under urethane anesthesia in guinea pigs? Physiol Behav 2001; 72:567-73. [PMID: 11282141 DOI: 10.1016/s0031-9384(00)00438-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many clinical and experimental data have shown that learning can occur under general anesthesia. To clarify this possibility with respect to allergic reactions, particularly asthmatic responses, we first established classical conditioned histamine release in response to a neutral odor by using pairings of the odor and an inhaled antigen for five sessions (Experiment 1) and then investigated whether conditioned histamine release into the plasma, bronchoalveolar lavage fluid (BALF), and lung tissue, which followed such a conditioning procedure, would be produced in urethane-anesthetized guinea pigs in the presence or absence of antigen (Experiment 2). Ovalbumin (OA) was used as the unconditioned stimulus (US) and dimethylsulfide (DMS) served as the conditioned stimulus (CS) in both experiments. In Experiment 1, the plasma histamine levels in the conditioned group increased significantly more than those of the unpaired control group in response to the CS during consciousness. In Experiment 2 in the absence of antigen, however, no significant differences in the histamine levels were found regarding the groups (DMS, triethylamine, saline, or unsensitized) or the time course (before, immediately, 5 min, and 10 min after the inhalations) during anesthesia, except for the finding that the histamine levels in the lung tissue specimens from the DMS group were significantly higher than those from the triethylamine group. In Experiment 2 in the presence of antigen, there was a significant increase in the plasma histamine levels after exposure to the US, irrespective of the presence of the CS, however, no significant difference in the histamine levels was observed between the US and the CS+US groups. These results indicated that a classically CS might not induce asthmatic responses under anesthesia.
Collapse
Affiliation(s)
- M Irie
- Department of Mental Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu, Japan.
| | | | | |
Collapse
|
14
|
Nsegbe E, Villaret E, Renolleau S, Vardon G, Gaultier C, Gallego J. Behavioural correlates of conditioned ventilatory responses to hypoxia in rats. Behav Brain Res 1999; 106:29-37. [PMID: 10595419 DOI: 10.1016/s0166-4328(99)00089-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To examine the possible contribution of behavioural arousal to ventilatory conditioning, we performed a differential conditioning experiment using two odours as the paired conditioned stimulus (CS + ) and unpaired conditioned stimulus (CS-) and a hypoxic mixture (7.5% O2) as the unconditioned stimulus (US) in 24 adult male rats. Vanillin was the CS + and rose the CS - in half the rats, and vice versa in the other half. Each rat underwent 26 paired CS + /hypoxia trials and 26 CS - trials in alternation, followed by two CS + only and two CS - trials to test for conditioning. Analysis of breathing variables and behavioural scores during the test showed two qualitatively different conditioned responses. The initial conditioned response was characterised by short breath durations (TT), frequent sniffing episodes, and arousal responses. Following this, a specific, conditioned increase in tidal volume (VT) and levelling off of sniffing and motor activities occurred. The early TT-response and late VT-response to CS + both contributed to an increase in ventilation (VI). The present data show that the association of an odour and hypoxia elicits a biphasic ventilatory conditioned response, of which the first component is integrated into conditioned arousal.
Collapse
Affiliation(s)
- E Nsegbe
- Laboratoire de Neurologie et Physiologie du Développement, INSERM E9935, Hôpital Robert-Debré, Paris, France
| | | | | | | | | | | |
Collapse
|