1
|
Bruckner EP, Curk T, Đorđević L, Wang Z, Yang Y, Qiu R, Dannenhoffer AJ, Sai H, Kupferberg J, Palmer LC, Luijten E, Stupp SI. Hybrid Nanocrystals of Small Molecules and Chemically Disordered Polymers. ACS NANO 2022; 16:8993-9003. [PMID: 35588377 DOI: 10.1021/acsnano.2c00266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic crystals formed by small molecules can be highly functional but are often brittle or insoluble structures with limited possibilities for use or processing from a liquid phase. A possible solution is the nanoscale integration of polymers into organic crystals without sacrificing long-range order and therefore function. This enables the organic crystals to benefit from the advantageous mechanical and chemical properties of the polymeric component. We report here on a strategy in which small molecules cocrystallize with side chains of chemically disordered polymers to create hybrid nanostructures containing a highly ordered lattice. Synchrotron X-ray scattering, absorption spectroscopy, and coarse-grained molecular dynamics simulations reveal that the polymer backbones form an "exo-crystalline" layer of disordered chains that wrap around the nanostructures, becoming a handle for interesting properties. The morphology of this "hybrid bonding polymer" nanostructure is dictated by the competition between the polymers' entropy and the enthalpy of the lattice allowing for control over the aspect ratio of the nanocrystal by changing the degree of polymer integration. We observed that nanostructures with an exo-crystalline layer of polymer exhibit enhanced fracture strength, self-healing capacity, and dispersion in water, which benefits their use as light-harvesting assemblies in photocatalysis. Guided by computation, future work could further explore these hybrid nanostructures as components for functional materials.
Collapse
Affiliation(s)
- Eric P Bruckner
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Tine Curk
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Ziwei Wang
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Yang Yang
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Ruomeng Qiu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam J Dannenhoffer
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Jacob Kupferberg
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Erik Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Li D, Wagner NJ. Universal binding behavior for ionic alkyl surfactants with oppositely charged polyelectrolytes. J Am Chem Soc 2013; 135:17547-55. [PMID: 24160889 DOI: 10.1021/ja408587u] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oppositely charged polyelectrolyte-surfactant mixtures are ubiquitous in biology and the basis of numerous consumer healthcare products. Despite their broad use, however, a rational approach to their formulation remains challenging because of the complicated association mechanisms. Through compilation and analysis of literature reports and our own research, we have developed a semiempirical correlation of the binding strength of surfactants to polyelectrolytes in salt-free mixtures as a function of the polyion linear charge density and the surfactant hydrophobicity. We have found that the cooperative binding strength increases as the square of the polyelectrolyte's linear charge density and in proportion to the surfactant's hydrophobicity, such that a quantitative relationship holds across a broad range of polyelectrolytes. Deviations from the correlation reveal the role of system-specific interactions not considered in the analysis. This engineering relationship aids in the rational design of oppositely charged polyelectrolyte-surfactant formulations for consumer products and biomedicines by enabling the prediction of binding strengths in polyelectrolyte-surfactant mixtures based on mesoscale parameters determined from the chemical composition.
Collapse
Affiliation(s)
- Dongcui Li
- Center for Neutron Science, Center for Molecular and Engineering Thermodynamics, Department of Chemical & Biomolecular Engineering, University of Delaware , Newark, Delaware 19716, United States
| | | |
Collapse
|