1
|
Malashin IP, Tynchenko VS, Nelyub VA, Borodulin AS, Gantimurov AP. Estimation and Prediction of the Polymers' Physical Characteristics Using the Machine Learning Models. Polymers (Basel) 2023; 16:115. [PMID: 38201778 PMCID: PMC10780762 DOI: 10.3390/polym16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This article investigates the utility of machine learning (ML) methods for predicting and analyzing the diverse physical characteristics of polymers. Leveraging a rich dataset of polymers' characteristics, the study encompasses an extensive range of polymer properties, spanning compressive and tensile strength to thermal and electrical behaviors. Using various regression methods like Ensemble, Tree-based, Regularization, and Distance-based, the research undergoes thorough evaluation using the most common quality metrics. As a result of a series of experimental studies on the selection of effective model parameters, those that provide a high-quality solution to the stated problem were found. The best results were achieved by Random Forest with the highest R2 scores of 0.71, 0.73, and 0.88 for glass transition, thermal decomposition, and melting temperatures, respectively. The outcomes are intricately compared, providing valuable insights into the efficiency of distinct ML approaches in predicting polymer properties. Unknown values for each characteristic were predicted, and a method validation was performed by training on the predicted values, comparing the results with the specified variance values of each characteristic. The research not only advances our comprehension of polymer physics but also contributes to informed model selection and optimization for materials science applications.
Collapse
Affiliation(s)
- Ivan Pavlovich Malashin
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.A.N.); (A.S.B.); (A.P.G.)
| | - Vadim Sergeevich Tynchenko
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.A.N.); (A.S.B.); (A.P.G.)
- Information-Control Systems Department, Institute of Computer Science and Telecommunications, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia
- Department of Technological Machines and Equipment of Oil and Gas Complex, School of Petroleum and Natural Gas Engineering, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Vladimir Aleksandrovich Nelyub
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.A.N.); (A.S.B.); (A.P.G.)
| | - Aleksei Sergeevich Borodulin
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.A.N.); (A.S.B.); (A.P.G.)
| | - Andrei Pavlovich Gantimurov
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.A.N.); (A.S.B.); (A.P.G.)
| |
Collapse
|
2
|
Fujiwara E, Ishige R, Cerrón-Infantes DA, Taublaender MJ, Unterlass MM, Ando S. Compression and Thermal Expansion Behaviors of Highly Crystalline Polyimide Particles Prepared from Poly(amic acid) and Monomer Salts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eisuke Fujiwara
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryohei Ishige
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| | - Daniel Alonso Cerrón-Infantes
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
- CeMM−Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
| | - Michael Josef Taublaender
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Miriam M. Unterlass
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
- CeMM−Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Shinji Ando
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
3
|
Kummara S, Tashiro K. Heterogeneous Stress Distribution and Hierarchical Structure in the Highly Oriented Nylon 6 Strings Annealed at Various Temperatures to Evaluate the True Crystallite Modulus. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sreenivas Kummara
- Department of Future Industry-oriented Basic Science and Materials, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan
| | - Kohji Tashiro
- Department of Future Industry-oriented Basic Science and Materials, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan
| |
Collapse
|
4
|
Huang ZX, Zhao ML, Qu JP. Polyethylene-Based Single Polymer Composites Prepared under Elongational Flow for High-Voltage Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhao-Xia Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Ming-Liang Zhao
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| |
Collapse
|
5
|
Understanding structure-mechanics relationship of high density polyethylene based on stress induced lattice distortion. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.11.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Study of phase transition and ultimate mechanical properties of orthorhombic polyoxymethylene based on the refined crystal structure. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Kurita T, Fukuda Y, Takahashi M, Sasanuma Y. Crystalline Moduli of Polymers, Evaluated from Density Functional Theory Calculations under Periodic Boundary Conditions. ACS OMEGA 2018; 3:4824-4835. [PMID: 31458699 PMCID: PMC6641976 DOI: 10.1021/acsomega.8b00506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/20/2018] [Indexed: 06/10/2023]
Abstract
A theoretical methodology based on quantum chemistry to calculate mechanical properties of polymer crystals has been developed and applied to representative polymers. By density functional theory calculations including a dispersion force correction under three-dimensional periodic boundary conditions, crystal structures of poly(methylene oxide) (PMO), polyethylene (PE), poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), and poly(butylene terephthalate) (PBT) were optimized and their mechanical properties, such as crystalline moduli and linear and volume compressibilities, were calculated. The optimized crystal structures were proved to be fully consistent with those determined by X-ray and neutron diffraction. The crystalline moduli (E ∥) parallel to the chain axis were calculated to be 114 GPa (PMO), 333 GPa (PE), 182 GPa (PET), 7.1 GPa (PTT), and 20.8 GPa (PBT) and compared with those determined from X-ray diffraction, Raman spectroscopy, and neutron inelastic scattering experiments. Herein, the E ∥ values thus determined are interpreted in terms of conformational characteristics of the polymeric chains and the validity of the homogeneous stress hypothesis adopted in the X-ray diffraction method is also discussed.
Collapse
|
8
|
Plachy R, Scheiner S, Luczynski K, Holzner A, Hellmich C. Compressibility of unvulcanized natural and EPDM rubber: New experimental protocol and data evaluation in the framework of large strain elasticity theory. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
|
10
|
Takizawa K, Wakita J, Kakiage M, Masunaga H, Ando S. Molecular Aggregation Structures of Polyimide Films at Very High Pressure Analyzed by Synchrotron Wide-Angle X-ray Diffraction. Macromolecules 2010. [DOI: 10.1021/ma902662d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuhiro Takizawa
- Department of Chemistry & Materials Science, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| | - Junji Wakita
- Department of Chemistry & Materials Science, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| | - Masaki Kakiage
- Department of Chemistry & Materials Science, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute (JASRI) Kouto1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shinji Ando
- Department of Chemistry & Materials Science, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
11
|
Affiliation(s)
- O. P. Pahuja
- a Department of Physics and Astrophysics , University of Delhi , Delhi, 110007, India
- b Rajdhani College, University of Delhi , Raja Garden, Ring Road, New Delhi, 110015, India
| | - V. S. Nanda
- b Rajdhani College, University of Delhi , Raja Garden, Ring Road, New Delhi, 110015, India
| |
Collapse
|
12
|
Tashiro K, Kobayashi M. Molecular theoretical study of the intimate relationships between structure and mechanical properties of polymer crystals. POLYMER 1996. [DOI: 10.1016/0032-3861(96)87293-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
|
14
|
|
15
|
Janzen J. Crystallite elastic constants and macroscopic moduli of isotropic semicrystalline polyethylenes. POLYM ENG SCI 1992. [DOI: 10.1002/pen.760321711] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Tashiro K, Kobayashi M, Tadokoro H. Vibrational Spectra and Theoretical Three-Dimensional Elastic Constants of Isotactic Polypropylene Crystal. An Important Role of Anharmonic Vibrations. Polym J 1992. [DOI: 10.1295/polymj.24.899] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Saeki S, Tsubokawa M, Yamanaka J, Yamaguchi T. Semiempirical equation of state and the Grüneisen parameter for polymers and rare gas solids. POLYMER 1991. [DOI: 10.1016/0032-3861(91)90138-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Salmon D, Shannon VL, Strauss HL. The C–H infrared stretching bands of ordered and disordered phases of adamantane. J Chem Phys 1989. [DOI: 10.1063/1.456102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Fukao K, Miyaji H, Asai K. Anharmonic vibration of n‐paraffin molecules in urea adducts. J Chem Phys 1986. [DOI: 10.1063/1.450728] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Privalko VP, Tarara AM. Structure-property relationships for carbochain fluoropolymers. Colloid Polym Sci 1985. [DOI: 10.1007/bf01412248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
|