1
|
Wilson RJA, Teppema LJ. Integration of Central and Peripheral Respiratory Chemoreflexes. Compr Physiol 2016; 6:1005-41. [PMID: 27065173 DOI: 10.1002/cphy.c140040] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A debate has raged since the discovery of central and peripheral respiratory chemoreceptors as to whether the reflexes they mediate combine in an additive (i.e., no interaction), hypoadditive or hyperadditive manner. Here we critically review pertinent literature related to O2 and CO2 sensing from the perspective of system integration and summarize many of the studies on which these seemingly opposing views are based. Despite the intensity and quality of this debate, we have yet to reach consensus, either within or between species. In reviewing this literature, we are struck by the merits of the approaches and preparations that have been brought to bear on this question. This suggests that either the nature of combination is not important to system responses, contrary to what has long been supposed, or that the nature of the combination is more malleable than previously assumed, changing depending on physiological state and/or respiratory requirement.
Collapse
Affiliation(s)
- Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luc J Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Luu BL, Saboisky JP, Taylor JL, Gandevia SC, Butler JE. TMS-evoked silent periods in scalene and parasternal intercostal muscles during voluntary breathing. Respir Physiol Neurobiol 2015; 216:15-22. [DOI: 10.1016/j.resp.2015.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
|
3
|
Daimon S, Yamaguchi K. Changes in respiratory activity induced by mastication during oral breathing in humans. J Appl Physiol (1985) 2014; 116:1365-70. [PMID: 24744386 DOI: 10.1152/japplphysiol.01236.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the effect of oral breathing on respiratory movements, including the number of respirations and the movement of the thoracic wall at rest and while chewing gum. Forty normal nose breathers were selected by detecting expiratory airflow from the mouth using a CO2 sensor. Chest measurements were recorded using a Piezo respiratory belt transducer, and electromyographic (EMG) activity of the masseter and trapezius muscles were recorded at rest and while chewing gum during nasal or oral breathing. Oral breathing was introduced by completely occluding the nostrils with a nose clip. During oral breathing, the respiration rate was significantly lower while chewing gum than while at rest (P < 0.05). While chewing gum, the respiration rate was significantly lower during oral breathing than during nasal breathing (P < 0.05). During oral breathing, thoracic movement was significantly higher while chewing gum than while at rest (P < 0.05). Thoracic movement was significantly greater during oral breathing than during nasal breathing (P < 0.05). The trapezius muscle exhibited significant EMG activity when chewing gum during oral breathing. The activity of the trapezius muscle coincided with increased movement of the thoracic wall. Chewing food while breathing through the mouth interferes with and decreases the respiratory cycle and promotes unusual respiratory movement of the thoracic wall, which is directed by the activity of accessory muscles of respiration.
Collapse
Affiliation(s)
- Shigeru Daimon
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Kazunori Yamaguchi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| |
Collapse
|
4
|
Tin C, Song G, Poon CS. Hypercapnia attenuates inspiratory amplitude and expiratory time responsiveness to hypoxia in vagotomized and vagal-intact rats. Respir Physiol Neurobiol 2012; 181:79-87. [PMID: 22326640 DOI: 10.1016/j.resp.2012.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
Abstract
A negative influence of central chemosensitivity on peripheral chemoreflex response has been demonstrated recently in a decerebrate-vagotomized rat preparation in situ with separate carotid body and brainstem perfusions. Here, we report similar negative influences of hypercapnia on the hypoxic respiratory response in anesthetized, spontaneously breathing rats before and after vagotomy and anesthetized, artificially ventilated rats after vagotomy. Baseline breathing patterns and responsiveness to hypercapnia and hypoxia varied widely between the three respiratory modes. Despite this, the responses in inspiratory amplitude and expiratory duration (and hence respiratory frequency and neural ventilation) to hypoxia varied inversely with the background CO2 level in all three groups. Results demonstrate a hypoadditive hypercapnic-hypoxic interaction in vivo that resembles the hypoadditive central-peripheral chemoreceptor interaction in situ for these respiratory variables in the rat, regardless of differences in vagal feedback, body temperature and ventilation method. These observations stand in contrast to previous reports of hyperadditive peripheral-central chemoreceptor interaction.
Collapse
Affiliation(s)
- Chung Tin
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
5
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Xie A, Skatrud JB, Puleo DS, Dempsey JA. Influence of arterial O2 on the susceptibility to posthyperventilation apnea during sleep. J Appl Physiol (1985) 2005; 100:171-7. [PMID: 16179400 DOI: 10.1152/japplphysiol.00440.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the contribution of the peripheral chemoreceptors to the susceptibility to posthyperventilation apnea, we evaluated the time course and magnitude of hypocapnia required to produce apnea at different levels of peripheral chemoreceptor activation produced by exposure to three levels of inspired P(O2). We measured the apneic threshold and the apnea latency in nine normal sleeping subjects in response to augmented breaths during normoxia (room air), hypoxia (arterial O2 saturation = 78-80%), and hyperoxia (inspired O2 fraction = 50-52%). Pressure support mechanical ventilation in the assist mode was employed to introduce a single or multiple numbers of consecutive, sigh-like breaths to cause apnea. The apnea latency was measured from the end inspiration of the first augmented breath to the onset of apnea. It was 12.2 +/- 1.1 s during normoxia, which was similar to the lung-to-ear circulation delay of 11.7 s in these subjects. Hypoxia shortened the apnea latency (6.3 +/- 0.8 s; P < 0.05), whereas hyperoxia prolonged it (71.5 +/- 13.8 s; P < 0.01). The apneic threshold end-tidal P(CO2) (Pet(CO2)) was defined as the Pet(CO2)) at the onset of apnea. During hypoxia, the apneic threshold Pet(CO2) was higher (38.9 +/- 1.7 Torr; P < 0.01) compared with normoxia (35.8 +/- 1.1; Torr); during hyperoxia, it was lower (33.0 +/- 0.8 Torr; P < 0.05). Furthermore, the difference between the eupneic Pet(CO2) and apneic threshold Pet(CO2) was smaller during hypoxia (3.0 +/- 1.0 Torr P < 001) and greater during hyperoxia (10.6 +/- 0.8 Torr; P < 0.05) compared with normoxia (8.0 +/- 0.6 Torr). Correspondingly, the hypocapnic ventilatory response to CO2 below the eupneic Pet(CO2) was increased by hypoxia (3.44 +/- 0.63 l.min(-1).Torr(-1); P < 0.05) and decreased by hyperoxia (0.63 +/- 0.04 l.min(-1).Torr(-1); P < 0.05) compared with normoxia (0.79 +/- 0.05 l.min(-1).Torr(-1)). These findings indicate that posthyperventilation apnea is initiated by the peripheral chemoreceptors and that the varying susceptibility to apnea during hypoxia vs. hyperoxia is influenced by the relative activity of these receptors.
Collapse
Affiliation(s)
- Ailiang Xie
- Department of Medicine, University of Wisconsin, Madison, USA.
| | | | | | | |
Collapse
|
7
|
Jounieaux V, Rodenstein D. Acknowledging Previous Work Is Part of Scientific Process. Am J Respir Crit Care Med 2004; 169:1071; author reply 1071-2. [PMID: 15107305 DOI: 10.1164/ajrccm.169.9.952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Corne S, Webster K, Younes M. Hypoxic respiratory response during acute stable hypocapnia. Am J Respir Crit Care Med 2003; 167:1193-9. [PMID: 12714342 DOI: 10.1164/rccm.2203019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The hypoxic ventilatory response during hypocapnia has been studied with divergent results. We used volume-cycled ventilation in spontaneously breathing normal subjects to study their hypoxic ventilatory response under conditions of stable hypocapnia. Subjects were studied at three different levels of end-tidal (partial) carbon dioxide pressure (PETCO2), eucapnia and 6 and 12 mm Hg below eucapnia (mild and moderate hypocapnia, respectively). The response to hypoxia was assessed by changes in muscle pressure output (Pmus) and respiratory rate. Compared with the Pmus response at eucapnia (0.53 +/- 0.59 cm H2O/percentage oxygen saturation [% O2sat]), the response at mild hypocapnia was attenuated (0.26 +/- 0.33 cm H2O/% O2sat), whereas the response at moderate hypocapnia was negligible (0.003 +/- 0.09 cm H2O/% O2sat). Similar reductions were seen with the respiratory rate (eucapnia, 0.17 +/- 0.2 breaths/minute/% O2sat; mild hypocapnia, 0.11 +/- 0.11 breaths/minute/% O2sat; moderate hypocapnia, 0.01 +/- 0.06 breaths/minute/% O2sat). The Pmus and respiratory rate responses at the three levels of PETCO2 were significantly different (p < 0.05, analysis of variance). The responses at moderate hypocapnia were not significantly different from zero. We conclude that when apnea occurs under conditions in which central PCO2 is well below the CO2 setpoint, subjects are at risk of developing dangerous hypoxemia due to absence of a hypoxic ventilatory response.
Collapse
Affiliation(s)
- Stephen Corne
- Department of Respiratory Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | |
Collapse
|
9
|
Corfield DR, Roberts CA, Guz A, Murphy K, Adams L. Modulation of the corticospinal control of ventilation by changes in reflex respiratory drive. J Appl Physiol (1985) 1999; 87:1923-30. [PMID: 10562638 DOI: 10.1152/jappl.1999.87.5.1923] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have determined whether changes in PCO(2) above and below eucapnia modulate the precision of the voluntary control of breathing. Twelve trained subjects performed a compensatory tracking task in which they had to maintain the position of a cursor (perturbed by a variable triangular forcing function) on a fixed target by breathing in and out of a spirometer (ventilatory tracking; at 10 l/min). Before each task, subjects hyperventilated for 5 min, and the end-tidal PCO(2) (PET(CO(2))) was controlled; tracking was then performed separately at hypocapnia, eucapnia, and hypercapnia (PET(CO(2)) approximately 25, 37, and 43 Torr, respectively). Ventilatory tracking error was unchanged during hypocapnia (P > 0.05) but was significantly worse during hypercapnia (P < 0.003), compared with eucapnia; arm tracking error, performed as a control, was not significantly affected by PET(CO(2)) (P > 0. 05). In conclusion, ventilatory tracking performance is unaffected by the eucapnic PCO(2). From this, we suggest that resting breathing in awake humans may be independent of chemical drives and of the prevailing PCO(2).
Collapse
Affiliation(s)
- D R Corfield
- National Heart and Lung Institute, Imperial College School of Medicine, London W6 8RP, United Kingdom.
| | | | | | | | | |
Collapse
|
10
|
Corfield DR, Roberts CA, Griffiths MJ, Adams L. Sleep-related changes in the human 'neuromuscular' ventilatory response to hypoxia. RESPIRATION PHYSIOLOGY 1999; 117:109-20. [PMID: 10563439 DOI: 10.1016/s0034-5687(99)00064-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The ventilatory responses to hypercapnia and hypoxia are reduced during sleep compared to wakefulness. However, sleep-related increases in upper airways' resistance could reduce these ventilatory responses independently of any change in the neural output to the respiratory pump muscles. It is therefore possible that respiratory chemosensitivity, per se, is unchanged by sleep. To investigate this, four healthy male subjects were mechanically ventilated to abolish spontaneous respiratory muscle activity. The response to transient isocapnic hypoxia was quantified from the magnitude of the electromyographic activity induced in the diaphragm and from the associated reduction in peak inspiratory pressure; these indicies of respiratory motor output will not be affected by any sleep-related changes in upper airways' resistance. In all individuals, the responses to hypoxia were markedly attenuated during sleep compared to wakefulness. These observations, assessing the 'neuromuscular' ventilatory response, are consistent with a sleep-related reduction in respiratory chemosensitivity that is independent of any changes that may be due to increases in upper airways' resistance.
Collapse
Affiliation(s)
- D R Corfield
- Department of Respiratory Medicine, National Heart & Lung Institute, Imperial College School of Medicine, London, UK.
| | | | | | | |
Collapse
|
11
|
Ren X, Robbins PA. Ventilatory responses to hypercapnia and hypoxia after 6 h passive hyperventilation in humans. J Physiol 1999; 514 ( Pt 3):885-94. [PMID: 9882758 PMCID: PMC2269096 DOI: 10.1111/j.1469-7793.1999.885ad.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Acute exposure to hypoxia stimulates ventilation and induces hypocapnia. Long-term exposure to hypoxia generates changes in respiratory control known as ventilatory acclimatization to hypoxia. The object of this study was to investigate the degree to which the hyperventilation and hypocapnia can induce the changes known as ventilatory acclimatization to hypoxia, in the absence of the primary hypoxic stimulus itself. 2. Three 6 h protocols were each performed on twelve healthy volunteers: (1) passive hypocapnic hyperventilation, with end-tidal CO2 pressure (PET,CO2) held 10 Torr below the eupnoeic value; (2) passive eucapnic hyperventilation, with PET,CO2 maintained eucapnic; (3) control. 3. Ventilatory responses to acute hypercapnia and hypoxia were assessed before and half an hour after each protocol. 4. The presence of prior hypocapnia, but not prior hyperventilation, caused a reduction in air-breathing PET,CO2 (P < 0.05, ANOVA), and a leftwards shift of the ventilatory response to hypercapnia (P < 0.05). The presence of prior hyperventilation, but not prior hypocapnia, caused an increase in the ventilatory sensitivity to CO2 (P < 0.05). No significant effects of any protocol were detected on the ventilatory sensitivity to hypoxia. 5. We conclude that following 6 h of passive hyperventilation: (i) the left shift of the VE-PET,CO2 relationship is due to alkalosis and not to hyperventilation; (ii) the increase in slope of the VE-PET,CO2 relationship is due to the hyperventilation and not the alkalosis; and (iii) ventilatory sensitivity to hypoxia is unaltered.
Collapse
Affiliation(s)
- X Ren
- University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
12
|
Corfield DR, Murphy K, Guz A. Does the motor cortical control of the diaphragm 'bypass' the brain stem respiratory centres in man? RESPIRATION PHYSIOLOGY 1998; 114:109-17. [PMID: 9865585 DOI: 10.1016/s0034-5687(98)00083-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In humans, cortico-motor excitation of the diaphragm may act directly on the phrenic motor nucleus via the cortico-spinal tract 'bypassing' brain stem respiratory centres (RC); alternatively, or in addition, this control may be indirect via the RC and bulbo-spinal paths. To investigate this, we stimulated the motor cortex using transcranial magnetic stimulation (TMS) in six subjects at end-expiration (diaphragm relaxed) and during voluntary inspiration. The sizes of the evoked compound action potentials in the diaphragm and also, as a control, in the thumb were no different whether TMS was delivered during normocapnia or during hypocapnia (PET(CO2) = 25 mmHg) when, presumably, the respiratory 'oscillator' was silent. In a further six subjects, TMS was performed during relaxed spontaneous breathing at three different points in the respiratory cycle. No perturbations in respiratory pattern (either tidal volume or respiratory timing) were seen. Thus we have been unable to demonstrate that the cortico-motor excitation of the diaphragm acts via the brain stem RC.
Collapse
Affiliation(s)
- D R Corfield
- Imperial College School of Medicine, National Heart and Lung Institute, Charing Cross Campus, London, UK.
| | | | | |
Collapse
|