Qiang X, Chen L, Jiang X. Achievements and Perspectives on Fe-Based Shape Memory Alloys for Rehabilitation of Reinforced Concrete Bridges: An Overview.
MATERIALS (BASEL, SWITZERLAND) 2022;
15:8089. [PMID:
36431574 PMCID:
PMC9717741 DOI:
10.3390/ma15228089]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Reinforced concrete (RC) bridges often face great demands of strengthening or repair during their service life. Fe-based shape memory alloys (Fe-SMAs) as a kind of low-cost smart materials have great potential to enhance civil engineering structures. The stable shape memory effect of Fe-SMAs is generated by, taking Fe-Mn-Si alloys as an example, the martensite transformation of fcc(γ) → hcp(ε) and its reverse transformation which produces considerable recovery stress (400~500 MPa) that can be used as prestress for reinforcement of RC bridges. In this work, the mechanism, techniques, and applications of Fe-SMAs in the reinforcement of RC beams in the past two decades are classified and introduced in detail. Finally, some new perspectives on Fe-SMAs application in civil engineering and their expected evolution are proposed. This paper offers an effective active rehabilitation alternative for the traditional passive strengthening method of RC bridges.
Collapse