1
|
Wu RS, Hamden JE, Salehzadeh M, Li MX, Poudel A, Schmidt KL, Kobor MS, Soma KK. Steroid profiling in human primary teeth via liquid chromatography-tandem mass spectrometry for long-term retrospective steroid measurement. PLoS One 2024; 19:e0309478. [PMID: 39197060 PMCID: PMC11357110 DOI: 10.1371/journal.pone.0309478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/13/2024] [Indexed: 08/30/2024] Open
Abstract
Steroid hormones are important modulators of many physiological processes, and measurements of steroids in blood, saliva, and urine matrices are widely used to assess endocrine pathologies and stress. However, these matrices cannot be used to retrospectively assess early-life stress and developmental endocrine pathologies, because they do not integrate steroid levels over the long term. A novel biological matrix in which to measure steroids is primary teeth (or "baby teeth"). Primary teeth develop early in life and accumulate various endogenous molecules during their gradual formation. Here, we developed and validated the first assay to measure steroids in human primary teeth using liquid chromatography-tandem spectrometry (LC-MS/MS). Our assay is highly sensitive, specific, accurate, and precise. It allows for the simultaneous quantification of 17 steroids in primary teeth (16 of which have not been examined previously in primary teeth). Overall, steroid levels in primary teeth were relatively low, and 8 steroids were quantifiable. Levels of dehydroepiandrosterone, cortisol, and progesterone were the highest of the 17 steroids examined. Next, we used this assay to perform steroid profiling in primary teeth from males and females. The same 8 steroids were quantifiable, and no sex differences were found. Levels of androgens (androstenedione and testosterone) were positively correlated, and levels of glucocorticoids (cortisol, cortisone, corticosterone, 11-dehydrocorticosterone) were also positively correlated. These data demonstrate that multiple steroids can be quantified by LC-MS/MS in human primary teeth, and this method potentially provides a powerful new way to retrospectively assess early-life stress and developmental endocrine pathologies.
Collapse
Affiliation(s)
- Ruolan S. Wu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Jordan E. Hamden
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Melody Salehzadeh
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Michael X. Li
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Asmita Poudel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Kim L. Schmidt
- Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K. Soma
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Schauermann M, Wachter UA, Hua Y, Hartmann MF, Remer T, Wudy SA. Excretion of oxidated cortisol metabolites is markedly lower than previously assumed: An analysis of urinary cortoic acids in healthy children by GC-MS. J Steroid Biochem Mol Biol 2022; 224:106163. [PMID: 35995415 DOI: 10.1016/j.jsbmb.2022.106163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Discovered about 50 years ago, the four C21 steroidal acids (α-)cortolic acid, β-cortolic acid, (α‑)cortolonic acid and β-cortolonic acid present the oxidative end products of cortisol metabolism. Undergoing renal elimination, these cortoic acids have been assumed to constitute up to 25 % of total urinary cortisol metabolites. However, their analysis has been difficult, only few data has been published in adults, and this class of steroids has become practically forgotten. Since data in children are lacking and nothing is known about their metabolism during human development, we aimed at establishing a more practical analytical method and determined their urinary concentrations in a high number of healthy subjects. In our method, 5-mL-aliquots of 24-hour urine samples were subjected to solid phase extraction (C18 cartridges), followed by strong anion exchange chromatography, and formation of 2-propylester-trimethylsilylether derivatives (2-PR/TMS). The cortoic acids were quantified by targeted gas chromatography-mass spectrometry (GC-MS) using a nonpolar GC column and selected ion monitoring (SIM). Baseline separation of all cortoic acids was achieved. Calibration graphs were linear (R2 > 0.98). Variations in precision and accuracy were less than 15 %, respectively. The detection limit was 100 pg (injected) with a signal-to-noise ratio of 3. 240 specimens from 24-hour urine collections from healthy children (120 boys, 120 girls, aged 3-18 years; DONALD study) were analyzed for cortoic acids and neutral cortisol metabolites to create first reference ranges. The profile of cortoic acids was dominated by α-cortolonic acid with excretion rates up to 70 µg/d. Absolute excretion rates of cortoic acids increased with age, their total excretion rates ranged between 11.0 and 127.3 µg/d (median 45.7 µg/d), but did not show any sexual dimorphism. Since cortoic acids make up only about 1 % of total urinary cortisol metabolites, determination of neutral urinary steroids reliably allows assessment of cortisol production. However, cortoic acids might present potential biomarkers of the body's redox state.
Collapse
Affiliation(s)
- Marcel Schauermann
- Steroid Research and Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Ulrich A Wachter
- Institute for Anesthesiologic Pathophysiology and Process Engineering, University of Ulm, Ulm/Donau, Germany
| | - Yifan Hua
- DONALD Study Center, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Dortmund, Germany
| | - Michaela F Hartmann
- Steroid Research and Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Remer
- DONALD Study Center, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Dortmund, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
3
|
Microbial Hydroxysteroid Dehydrogenases: From Alpha to Omega. Microorganisms 2021; 9:microorganisms9030469. [PMID: 33668351 PMCID: PMC7996314 DOI: 10.3390/microorganisms9030469] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Bile acids (BAs) and glucocorticoids are steroid hormones derived from cholesterol that are important signaling molecules in humans and other vertebrates. Hydroxysteroid dehydrogenases (HSDHs) are encoded both by the host and by their resident gut microbiota, and they reversibly convert steroid hydroxyl groups to keto groups. Pairs of HSDHs can reversibly epimerize steroids from α-hydroxy conformations to β-hydroxy, or β-hydroxy to ω-hydroxy in the case of ω-muricholic acid. These reactions often result in products with drastically different physicochemical properties than their precursors, which can result in steroids being activators or inhibitors of host receptors, can affect solubility in fecal water, and can modulate toxicity. Microbial HSDHs modulate sterols associated with diseases such as colorectal cancer, liver cancer, prostate cancer, and polycystic ovary syndrome. Although the role of microbial HSDHs is not yet fully elucidated, they may have therapeutic potential as steroid pool modulators or druggable targets in the future. In this review, we explore metabolism of BAs and glucocorticoids with a focus on biotransformation by microbial HSDHs.
Collapse
|
4
|
Harvey DJ, Vouros P. MASS SPECTROMETRIC FRAGMENTATION OF TRIMETHYLSILYL AND RELATED ALKYLSILYL DERIVATIVES. MASS SPECTROMETRY REVIEWS 2020; 39:105-211. [PMID: 31808199 DOI: 10.1002/mas.21590] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/13/2019] [Indexed: 05/11/2023]
Abstract
This review describes the mass spectral fragmentation of trimethylsilyl (TMS) and related alkylsilyl derivatives used for preparing samples for analysis, mainly by combined gas chromatography and mass spectrometry (GC/MS). The review is divided into three sections. The first section is concerned with the TMS derivatives themselves and describes fragmentation of derivatized alcohols, thiols, amines, ketones, carboxylic acids and bifunctional compounds such as hydroxy- and amino-acids, halo acids and hydroxy ethers. More complex compounds such as glycerides, sphingolipids, carbohydrates, organic phosphates, phosphonates, steroids, vitamin D, cannabinoids, and prostaglandins are discussed next. The second section describes intermolecular reactions of siliconium ions such as the TMS cation and the third section discusses other alkylsilyl derivatives. Among these latter compounds are di- and trialkyl-silyl derivatives, various substituted-alkyldimethylsilyl derivatives such as the tert-butyldimethylsilyl ethers, cyclic silyl derivatives, alkoxysilyl derivatives, and 3-pyridylmethyldimethylsilyl esters used for double bond location in fatty acid spectra. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 0000:1-107, 2019.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Paul Vouros
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, Massachusetts, 02115
| |
Collapse
|
5
|
Schiffer L, Barnard L, Baranowski ES, Gilligan LC, Taylor AE, Arlt W, Shackleton CHL, Storbeck KH. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J Steroid Biochem Mol Biol 2019; 194:105439. [PMID: 31362062 PMCID: PMC6857441 DOI: 10.1016/j.jsbmb.2019.105439] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
Advances in technology have allowed for the sensitive, specific, and simultaneous quantitative profiling of steroid precursors, bioactive steroids and inactive metabolites, facilitating comprehensive characterization of the serum and urine steroid metabolomes. The quantification of steroid panels is therefore gaining favor over quantification of single marker metabolites in the clinical and research laboratories. However, although the biochemical pathways for the biosynthesis and metabolism of steroid hormones are now well defined, a gulf still exists between this knowledge and its application to the measured steroid profiles. In this review, we present an overview of steroid hormone biosynthesis and metabolism by the liver and peripheral tissues, specifically highlighting the pathways linking and differentiating the serum and urine steroid metabolomes. A brief overview of the methodology used in steroid profiling is also provided.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Lise Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elizabeth S Baranowski
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK; Department of Paediatric Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust & University of Birmingham, Birmingham, UK
| | - Cedric H L Shackleton
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Karl-Heinz Storbeck
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
6
|
Shackleton CHL, Hughes BA, Lavery GG, Walker EA, Stewart PM. The corticosteroid metabolic profile of the mouse. Steroids 2008; 73:1066-76. [PMID: 18502460 DOI: 10.1016/j.steroids.2008.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/21/2022]
Abstract
Data are presented on the urinary corticosteroid metabolic profile of the mouse strain 129/svJ. Through the use of GC/MS we have characterized, or tentatively identified corticosterone (Kendall's compound B) metabolites of both the 11beta-hydroxy and 11-carbonyl (compound A) series in urine. Full mass spectra of the methyloxime-trimethylether derivatives of 15 metabolites are included in the paper as an aid to other researchers in the field. Metabolites ranged in polarity from tetrahydrocorticosterone (THB) to dihydroxy-corticosterone with dominance of highly polar steroids. We found that prior to excretion corticosterone can undergo oxidation at position 11beta, reduction at position 20 and A-ring reduction. Metabolites retaining the 3-oxo-4-ene structure can be hydroxylated at position 6beta- as well as at an unidentified position, probably 16alpha-. Saturated steroids can be hydroxylated at positions 1beta-, 6alpha-, 15alpha- and 16alpha. A pair of hydroxy-20-dihydro-corticosterone metabolites (OH-DHB) were the most important excretory products accounting for about 40% of the total. One metabolite of this type was identified as 6beta-hydroxy-DHB; the other, of similar quantitative importance was probably 16alpha-hydroxy-DHB. The ratio of metabolites of corticosterone (B) to those of 11-dehydro-corticosterone (A) was greater than 9:1, considerably higher than that for the equivalent "human" ratio of 1:1 for cortisol to cortisone metabolites. Results from this study allowed the evaluation of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) activity in mice with deleted glucose-6-phosphate transporter (G6PT). These mice had attenuated back-conversion of A to B resulting in an increased ratio of A-metabolites to B-metabolites [Walker EA, Ahmed A, Lavery GG, Tomlinson JW, Kim SY, Cooper MS, Stewart PM, 11beta-Hydroxysteroid dehydrogenase type 1 regulation by intracellular glucose-6-phosphate, provides evidence for a novel link between glucose metabolism and HPA axis function. J Biol Chem 2007;282:27030-6]. We believe this study is currently the most comprehensive on the urinary steroid metabolic profile of the mouse. Quantitatively less steroid is excreted in urine than in feces by this species but urine analysis is more straightforward and the hepatic metabolites are less subject to microbial degradation than if feces was analyzed.
Collapse
Affiliation(s)
- C H L Shackleton
- Institute of Biomedical Research, Division of Medical Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|
7
|
Abstract
This paper reviews techniques utilized in the profiling of steroids in body fluids and tissues. Methods for profiling plasma unconjugated steroids and urinary steroid metabolites are focused on. Concentrations or levels of excretion of a variety of steroids have been documented and reviewed. The importance of profiling techniques in the study of normal and pathophysiology of hormonal steroids is discussed.
Collapse
|
8
|
Monder C, Iohan F. Application of polyethyleneimine cellulose for the class separation of steroidal carboxylic acids from neutral steroids and pigments in urine. Anal Biochem 1984; 139:237-42. [PMID: 6742431 DOI: 10.1016/0003-2697(84)90411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Metabolites of corticosteroids that contain the 21-oic acid moiety are found in human urine. The acids from neutral steroids and urinary pigments have been separated by passing the mixture through a column of polyethyleneimine cellulose. The acids adhering to the column are quantitatively eluted with dilute formic acid. The purified preparation is suitable for derivatization and chromatographic analysis.
Collapse
|
9
|
Monder C, Purkaystha AR, Farhi RL, Han CA. Oxidation of cortisol to hydroxy acid metabolites by liver cytosol. JOURNAL OF STEROID BIOCHEMISTRY 1982; 16:613-6. [PMID: 7098476 DOI: 10.1016/0022-4731(82)90095-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cytosols (post-microsomal supernatants) prepared from rat, hamster and mouse livers oxidized cortisol to 11 beta, 17, 20-trihydroxy-3-oxo-pregn-4-en-21-oic acids. Mouse liver enzymes yielded over 90% 20 alpha-hydroxy epimer from cortisol, 21-dehydrocortisol (11 alpha, 17-dihydroxy-3,20-dioxo-pregn-4-en-21-aldehyde), and 20 alpha-isocortisol (11 alpha, 17, 20 alpha-trihydroxy-3-oxo-pregn-4-en-21-aldehyde). The 20 beta-epimer of isocortisol yielded both 20 alpha- and 20 beta-hydroxy acid. Rat and hamster liver cytosols converted, 21-dehydrocortisol and 20 alpha-isocortisol to both 20 alpha and 20 beta-hydroxy acids, with the former predominant. The hamster enzyme oxidized 20 beta-isocortisol mainly to the 20 beta-hydroxy acid. The results support our conclusion that both 17 alpha-hydroxy and 17-deoxy corticosteroids are oxidized to hydroxy acids by similar pathways and that isosteroids are obligatory intermediates.
Collapse
|
10
|
Sjövall J, Axelson M. Newer approaches to the isolation, identification, and quantitation of steroids in biological materials. VITAMINS AND HORMONES 1982; 39:31-144. [PMID: 6755888 DOI: 10.1016/s0083-6729(08)61135-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Yamaguchi Y, Hayashi C, Miyai K. Enzymatic detection of urinary acidic 3 alpha-hydroxysteroids on thin-layer chromatograms. JOURNAL OF CHROMATOGRAPHY 1981; 224:111-5. [PMID: 6267090 DOI: 10.1016/s0378-4347(00)80143-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|