1
|
Kim MS, Almuslem AS, Babatain W, Bahabry RR, Das UK, El-Atab N, Ghoneim M, Hussain AM, Kutbee AT, Nassar J, Qaiser N, Rojas JP, Shaikh SF, Torres Sevilla GA, Hussain MM. Beyond Flexible: Unveiling the Next Era of Flexible Electronic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2406424. [PMID: 39390819 DOI: 10.1002/adma.202406424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/31/2024] [Indexed: 10/12/2024]
Abstract
Flexible electronics are integral in numerous domains such as wearables, healthcare, physiological monitoring, human-machine interface, and environmental sensing, owing to their inherent flexibility, stretchability, lightweight construction, and low profile. These systems seamlessly conform to curvilinear surfaces, including skin, organs, plants, robots, and marine species, facilitating optimal contact. This capability enables flexible electronic systems to enhance or even supplant the utilization of cumbersome instrumentation across a broad range of monitoring and actuation tasks. Consequently, significant progress has been realized in the development of flexible electronic systems. This study begins by examining the key components of standalone flexible electronic systems-sensors, front-end circuitry, data management, power management and actuators. The next section explores different integration strategies for flexible electronic systems as well as their recent advancements. Flexible hybrid electronics, which is currently the most widely used strategy, is first reviewed to assess their characteristics and applications. Subsequently, transformational electronics, which achieves compact and high-density system integration by leveraging heterogeneous integration of bare-die components, is highlighted as the next era of flexible electronic systems. Finally, the study concludes by suggesting future research directions and outlining critical considerations and challenges for developing and miniaturizing fully integrated standalone flexible electronic systems.
Collapse
Affiliation(s)
- Min Sung Kim
- mmh Labs (DREAM), Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Amani S Almuslem
- Department of Physics, College of Science, King Faisal University, Prince Faisal bin Fahd bin Abdulaziz Street, Al-Ahsa, 31982, Saudi Arabia
| | - Wedyan Babatain
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rabab R Bahabry
- Department of Physical Sciences, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Uttam K Das
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nazek El-Atab
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Mohamed Ghoneim
- Logic Technology Development Quality and Reliability, Intel Corporation, Hillsboro, OR, 97124, USA
| | - Aftab M Hussain
- International Institute of Information Technology (IIIT) Hyderabad, Gachibowli, Hyderabad, 500 032, India
| | - Arwa T Kutbee
- Department of Physics, College of Science, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Joanna Nassar
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nadeem Qaiser
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Jhonathan P Rojas
- Electrical Engineering Department & Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran, 31261, Saudi Arabia
| | | | - Galo A Torres Sevilla
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Muhammad M Hussain
- mmh Labs (DREAM), Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
2
|
Integration of Ultra-Low Volume Pneumatic Microfluidics with a Three-Dimensional Electrode Network for On-Chip Biochemical Sensing. MICROMACHINES 2021; 12:mi12070762. [PMID: 34203488 PMCID: PMC8306664 DOI: 10.3390/mi12070762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
This paper reports a novel miniaturized pseudo reference electrode (RE) design for biasing Ion Sensitive Field Effect Transistors (ISFETs). It eliminates the need for post-CMOS processing and can scale up in numbers with the CMOS scaling. The presented design employs silane-mediated transfer of patterned gold electrode lines onto PDMS microfluidics such that the gold conformally coats the inside of microfluidic channel. Access to this electrode network is made possible by using “through-PDMS-vias” (TPV), which consist of high metal-coated SU-8 pillars manufactured by a novel process that employs a patterned positive resist layer as SU-8 adhesion depressor. When integrated with pneumatic valves, TPV and pseudo-RE network were able to bias 1.5 nanoliters (nL) of isolated electrolyte volumes. We present a detailed characterization of our pseudo-RE design demonstrating ISFET operation and its DC characterization. The stability of pseudo-RE is investigated by measuring open circuit potential (OCP) against a commercial Ag/AgCl reference electrode.
Collapse
|
3
|
Piguet F, Ensslen T, Bakshloo MA, Talarimoghari M, Ouldali H, Baaken G, Zaitseva E, Pastoriza-Gallego M, Behrends JC, Oukhaled A. Pore-forming toxins as tools for polymer analytics: From sizing to sequencing. Methods Enzymol 2021; 649:587-634. [PMID: 33712201 DOI: 10.1016/bs.mie.2021.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We report here on the nanopore resistive pulse sensing (Np-RPS) method, involving pore-forming toxins as tools for polymer analytics at single molecule level. Np-RPS is an electrical method for the label-free detection of single molecules. A molecule interacting with the pore causes a change of the electrical resistance of the pore, called a resistive pulse, associated with a measurable transient current blockade. The features of the blockades, in particular their depth and duration, contain information on the molecular properties of the analyte. We first revisit the history of Np-RPS, then we discuss the effect of the configuration of the molecule/nanopore interaction on the molecular information that can be extracted from the signal, illustrated in two different regimes that either favor molecular sequencing or molecular sizing. Specifically, we focus on the sizing regime and on the use of two different pore-forming toxins, staphylococcal α-hemolysin (αHL) and aerolysin (AeL) nanopores, for the characterization of water-soluble polymers (poly-(ethylene glycol), (PEG)), homopeptides, and heteropeptides. We discuss how nanopore sizing of polymers could be envisioned as a new approach for peptide/protein sequencing.
Collapse
Affiliation(s)
- Fabien Piguet
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France; Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Tobias Ensslen
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mazdak A Bakshloo
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France; Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Monasadat Talarimoghari
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hadjer Ouldali
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France; Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | | | | | - Manuela Pastoriza-Gallego
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France; Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Jan C Behrends
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany; Freiburg Centre for Materials Research, Freiburg, Germany.
| | - Abdelghani Oukhaled
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France; Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France.
| |
Collapse
|
4
|
Analyzing the anodic stripping square wave voltammetry of heavy metal ions via machine learning: Information beyond a single voltammetric peak. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Higuchi S, Okada H, Takamatsu S, Itoh T. Valve-Actuator-Integrated Reference Electrode for an Ultra-Long-Life Rumen pH Sensor. SENSORS 2020; 20:s20051249. [PMID: 32106461 PMCID: PMC7085735 DOI: 10.3390/s20051249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022]
Abstract
We demonstrated a newly developed Ag/AgCl reference electrode- with a valve-actuator for two years or longer rumen pH monitoring. Previous studies on pH sensors reported that the short lifetime of Ag/AgCl reference electrodes is caused by an outflow of internal electrolyte. We introduced a valve-actuator into a liquid junction to reduce the outflow by intermittent measurement. The results indicated that the potential change when switching the liquid junction was less than 0.5 mV and its response time was less than 0.083 s. In the 24-h potential measurement with the valve-actuator-integrated reference electrode (VAIRE), the valve was actuated once every hour, and the standard deviation of the potential was 0.29 mV. The lifetime of the VAIRE was estimated at 2.0 years calculating from an electrolyte outflow, which is significantly longer than that of conventional reference electrodes. A pH sensor using the VAIRE was estimated to operate for 2.0 years with the pH error ≤0.1, which meets the requirement of cows' rumen pH monitoring.
Collapse
Affiliation(s)
- Shogo Higuchi
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Japan; (S.H.); (S.T.)
| | - Hironao Okada
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan;
| | - Seiichi Takamatsu
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Japan; (S.H.); (S.T.)
| | - Toshihiro Itoh
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Japan; (S.H.); (S.T.)
- Correspondence:
| |
Collapse
|
6
|
Reference Electrodes with Polymer-Based Membranes-Comprehensive Performance Characteristics. MEMBRANES 2019; 9:membranes9120161. [PMID: 31795415 PMCID: PMC6950693 DOI: 10.3390/membranes9120161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/02/2022]
Abstract
Several types of liquid membrane and solid-state reference electrodes based on different plastics were fabricated. In the membranes studied, equitransferent organic (QB) and inorganic salts (KCl) are dispersed in polyvinyl chloride (PVC), polyurethane (PU), urea-formaldehyde resin (UF), polyvinyl acetate (PVA), as well as remelted KCl in order to show the matrix impact on the reference membranes’ behavior. The comparison of potentiometic performance was made using specially designed standardized testing protocols. A problem in the reference electrode research and literature has been a lack of standardized testing, which leads to difficulties in comparing different types, qualities, and properties of reference electrodes. Herein, several protocols were developed to test the electrodes’ performance with respect to stability over time, pH sensitivity, ionic strength, and various ionic species. All of the prepared reference electrodes performed well in at least some respect and would be suitable for certain applications as described in the text. Most of the reference types, however, demonstrated some weakness that had not been previously highlighted in the literature, due in large part to the lack of exhaustive and/or consistent testing protocols.
Collapse
|
7
|
Søpstad S, Johannessen EA, Seland F, Imenes K. Long-term stability of screen-printed pseudo-reference electrodes for electrochemical biosensors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Yin J, Qi L, Wang H. Antifreezing Ag/AgCl reference electrodes: Fabrication and applications. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2011.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Kadis R, Leito I. Evaluation of the residual liquid junction potential contribution to the uncertainty in pH measurement: A case study on low ionic strength natural waters. Anal Chim Acta 2010; 664:129-35. [DOI: 10.1016/j.aca.2010.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/14/2010] [Indexed: 11/26/2022]
|
10
|
Lito MJG, Camões MF. Meeting the Requirements of the Silver/Silver Chloride Reference Electrode. J SOLUTION CHEM 2009. [DOI: 10.1007/s10953-009-9462-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Lai CS, Lue CE, Yang CM, Dawgul M, Pijanowska DG. Optimization of a PVC Membrane for Reference Field Effect Transistors. SENSORS 2009; 9:2076-87. [PMID: 22574001 PMCID: PMC3345826 DOI: 10.3390/s90302076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/09/2009] [Accepted: 03/12/2009] [Indexed: 11/16/2022]
Abstract
For the miniaturization of ISFET sensing systems, the concept of a REFET with low ion sensitivity is proposed to replace the conventional reference electrodes through the arrangement of a quasi reference electrode and a differential readout circuit. In this study, an ion-unblocking membrane was used as the top layer of a REFET. To optimize the REFET performance, the influences of the silylating process, different plasticizers, and the composition of the PVC cocktails were investigated. A low sensitivity (10.4 ± 2.2 mV/pH) and high linearity (99.7 ± 0.3 %) in the range from pH 2.2 to pH 11.6 was obtained for the REFET with a 60 wt.% DNP/(DNP + PVC) membrane. To evaluate the long term stability, the drift coefficient was estimated, and for the best REFET, it was -0.74 mV/h. Two criteria for assessing the lifetime of REFETs were used, namely the increase in pH sensitivity to a value higher than 15 mV/pH and the degradation of linearity below 99 %. For the best REFET, it was approximately 15 days.
Collapse
Affiliation(s)
- Chao-Sung Lai
- Department of Electronic Engineering in Chang Gung University. / 259 Wen-Hwa 1 Road, Kwei-Shan, Tao-Yuan, R.O.C., Taiwan, 333
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-3-2118800 ext.5786; Fax: +886-3-2118507
| | - Cheng-En Lue
- Department of Electronic Engineering in Chang Gung University. / 259 Wen-Hwa 1 Road, Kwei-Shan, Tao-Yuan, R.O.C., Taiwan, 333
| | - Chia-Ming Yang
- Device Section, Department of WAT and Devices, Inotera Memories Inc. / 667, Fuhsing 3 Road, Hwa-Ya Technology Park, Kwei-Shan, Tao-Yuan, Taiwan
| | - Marek Dawgul
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences / ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Dorota G. Pijanowska
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences / ul. Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
12
|
Kakiuchi T, Yoshimatsu T. A New Salt Bridge Based on the Hydrophobic Room-Temperature Molten Salt. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2006. [DOI: 10.1246/bcsj.79.1017] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Matsumoto T, Ohashi A, Ito N. Development of a micro-planar Ag/AgCl quasi-reference electrode with long-term stability for an amperometric glucose sensor. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(02)00334-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
|
15
|
OZEKI T, TSUBOSAKA Y, NAKAYAMA S, OGAWA N, KIMOTO T. Study of Errors in Determination of Hydrogen Ion Concentrations in Rainwater Samples Using Glass Electrode Method. ANAL SCI 1998. [DOI: 10.2116/analsci.14.749] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | - Nobuaki OGAWA
- Faculty of Engineering and Resource Science, Akita University
| | | |
Collapse
|
16
|
Song B, Sigel RKO, Sigel H. Acid-Base Properties of Adenosine 5′-O-Thiomonophosphate in Aqueous Solution. Chemistry 1997. [DOI: 10.1002/chem.19970030106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|