1
|
Dall’Acqua S, Sinan KI, Ferrarese I, Sut S, Bene K, Mahomoodally MF, Bibi Sadeer N, Ak G, Zengin G. Chromatographic Separation of Breynia retusa (Dennst.) Alston Bark, Fruit and Leaf Constituents from Bioactive Extracts. Molecules 2020; 25:molecules25235537. [PMID: 33255853 PMCID: PMC7728322 DOI: 10.3390/molecules25235537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Breynia retusa (Dennst.) Alston (also known as Cup Saucer plant) is a food plant with wide applications in traditional medicine, particularly in Ayurveda. Extracts obtained with four solvents (dichloromethane, methanol, ethyl acetate and water), from three plant parts, (fruit, leaf and bark) were obtained. Extracts were tested for total phenolic, flavonoid content and antioxidant activities using a battery of assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), total antioxidant capacity (TAC) (phosphomolybdenum) and metal chelating. Enzyme inhibitory effects were investigated using acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, α-amylase and α-glucosidase as target enzymes. Results showed that the methanolic bark extract exhibited significant radical scavenging activity (DPPH: 202.09 ± 0.15; ABTS: 490.12 ± 0.18 mg Trolox equivalent (TE)/g), reducing potential (FRAP: 325.86 ± 4.36: CUPRAC: 661.82 ± 0.40 mg TE/g) and possessed the highest TAC (3.33 ± 0.13 mmol TE/g). The methanolic extracts were subjected to LC-DAD-MSn and NMR analysis. A two-column LC method was developed to separate constituents, allowing to identify and quantify forty-four and fifteen constituents in bark and fruits, respectively. Main compound in bark was epicatechin-3-O-sulphate and isolation of compound was performed to confirm its identity. Bark extract contained catechins, procyanidins, gallic acid derivatives and the sulfur containing spiroketal named breynins. Aerial parts mostly contained flavonoid glycosides. Considering the bioassays, the methanolic bark extract resulted a potent tyrosinase (152.79 ± 0.27 mg kojic acid equivalent/g), α-amylase (0.99 ± 0.01 mmol acarbose equivalent ACAE/g) and α-glucosidase (2.16 ± 0.01 mmol ACAE/g) inhibitor. In conclusion, methanol is able to extract the efficiently the phytoconstituents of B. retusa and the bark is the most valuable source of compounds.
Collapse
Affiliation(s)
- Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
- Correspondence: (S.D.); (M.F.M.); (G.Z.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (G.A.)
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Stefania Sut
- DAFNAE, Department of Agronomy, Food, Natural Resources, Animals and Environment, Agripolis Campus, University of Padova, 35020 Legnaro, Italy;
| | - Kouadio Bene
- Laboratoire de Botanique et Phytothérapie, Unité de Formation et de Recherche Sciences de la Nature, 02 BP 801 Abidjan 02, Université Nangui Abrogoua, CI-YM. IV98 Abidjan, Ivory Cost;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80832 Réduit, Mauritius;
- Correspondence: (S.D.); (M.F.M.); (G.Z.)
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80832 Réduit, Mauritius;
| | - Gunes Ak
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (G.A.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (G.A.)
- Correspondence: (S.D.); (M.F.M.); (G.Z.)
| |
Collapse
|
2
|
Jones DJ, O'Leary EM, O'Sullivan TP. Synthesis and application of phosphonothioates, phosphonodithioates, phosphorothioates, phosphinothioates and related compounds. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Meng DH, Wu J, Wang LY, Zhao WM. Two new glycosides from Breynia vitis-idaea. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2010; 12:535-541. [PMID: 20552495 DOI: 10.1080/10286021003745452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A new sulfur-containing spiroketal glycoside, breynin I (1), and a new terpenic glycoside, breyniaionoside E (2), together with 10 known compounds, were isolated from the aerial parts of Breynia vitis-idaea (Euphorbiaceae), a traditional Chinese medicine used for the treatment of chronic bronchitis and wounds. Their structures were elucidated on the basis of spectroscopic analysis and modified Mosher's method.
Collapse
Affiliation(s)
- Da-Hai Meng
- Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
4
|
Meng D, Wu J, Zhao W. Glycosides from Breynia fruticosa and Breynia rostrata. PHYTOCHEMISTRY 2010; 71:325-331. [PMID: 19883925 DOI: 10.1016/j.phytochem.2009.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/03/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
Glycosides, 3-acetyl-(-)-epicatechin 7-O-beta-glucopyranoside (1), 3-acetyl-(-)-epicatechin 7-O-(6-isobutanoyloxyl)-beta-glucopyranoside (2), 3-acetyl-(-)-epicatechin 7-O-[6-(2-methyl-butanoyloxyl)]-beta-glucopyranoside (3), (5Z)-6-[5-(2-hydroxypropan-2-yl)-2-methyl-tetrahydrofuran-2-yl]-3-methylhexa-1,5-dien-3-O-beta-glucopyranoside (4), hydroquinone O-[6-(3-hydroxyisobutanoyl)]-beta-galactopyranoside (5), 4-(4-O-beta-glucopyranosyl-phenoxy)-1-O-beta-glucopyranosyl-1,3-benzenediol (6), 7,8-erythro-dihydroxy-3,4,5-trimethoxy-phenyl-propane8-O-beta-glucopyranoside (7), 6,7-dimethylbenzofuranol 5-O-beta-xylopyranosyl-(1-->6)-beta-glucopyranoside (8), along with 30 known glycosides, were isolated from Breynia fruticosa and Breynia rostrata (Euphorbiaceae). Their structures were determined on the basis of spectroscopic analysis and chemical methods.
Collapse
Affiliation(s)
- Dahai Meng
- Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | | | | |
Collapse
|
5
|
Linderman RJ, Cutshall NS, Becicka BT. Synthesis of tetrahydrothiophenes via nucleophilic addition of Harpp's reagent to cyclic carbonates: Application toward the synthesis of breynolide. Tetrahedron Lett 1994. [DOI: 10.1016/s0040-4039(00)73455-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|