1
|
The ADEP Biosynthetic Gene Cluster in Streptomyces hawaiiensis NRRL 15010 Reveals an Accessory clpP Gene as a Novel Antibiotic Resistance Factor. Appl Environ Microbiol 2019; 85:AEM.01292-19. [PMID: 31399403 DOI: 10.1128/aem.01292-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing threat posed by multiresistant bacterial pathogens necessitates the discovery of novel antibacterials with unprecedented modes of action. ADEP1, a natural compound produced by Streptomyces hawaiiensis NRRL 15010, is the prototype for a new class of acyldepsipeptide (ADEP) antibiotics. ADEP antibiotics deregulate the proteolytic core ClpP of the bacterial caseinolytic protease, thereby exhibiting potent antibacterial activity against Gram-positive bacteria, including multiresistant pathogens. ADEP1 and derivatives, here collectively called ADEP, have been previously investigated for their antibiotic potency against different species, structure-activity relationship, and mechanism of action; however, knowledge on the biosynthesis of the natural compound and producer self-resistance have remained elusive. In this study, we identified and analyzed the ADEP biosynthetic gene cluster in S. hawaiiensis NRRL 15010, which comprises two NRPSs, genes necessary for the biosynthesis of (4S,2R)-4-methylproline, and a type II polyketide synthase (PKS) for the assembly of highly reduced polyenes. While no resistance factor could be identified within the gene cluster itself, we discovered an additional clpP homologous gene (named clpP ADEP) located further downstream of the biosynthetic genes, separated from the biosynthetic gene cluster by several transposable elements. Heterologous expression of ClpPADEP in three ADEP-sensitive Streptomyces species proved its role in conferring ADEP resistance, thereby revealing a novel type of antibiotic resistance determinant.IMPORTANCE Antibiotic acyldepsipeptides (ADEPs) represent a promising new class of potent antibiotics and, at the same time, are valuable tools to study the molecular functioning of their target, ClpP, the proteolytic core of the bacterial caseinolytic protease. Here, we present a straightforward purification procedure for ADEP1 that yields substantial amounts of the pure compound in a time- and cost-efficient manner, which is a prerequisite to conveniently study the antimicrobial effects of ADEP and the operating mode of bacterial ClpP machineries in diverse bacteria. Identification and characterization of the ADEP biosynthetic gene cluster in Streptomyces hawaiiensis NRRL 15010 enables future bioinformatics screenings for similar gene clusters and/or subclusters to find novel natural compounds with specific substructures. Most strikingly, we identified a cluster-associated clpP homolog (named clpP ADEP) as an ADEP resistance gene. ClpPADEP constitutes a novel bacterial resistance factor that alone is necessary and sufficient to confer high-level ADEP resistance to Streptomyces across species.
Collapse
|
2
|
Gil F, Paredes-Sabja D. Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections. Future Microbiol 2016; 11:1179-89. [DOI: 10.2217/fmb-2016-0064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alternative antimicrobial therapies based on acyldepsipeptides may hold promising results, based on the fact that they have shown to efficiently eradicate persister cells, stationary cells and cell in biofilm structures of several pathogenic bacteria from the infected host. Clostridium difficile infection is considered the result of extensive hospital use of expanded-spectrum antibiotics, which cause dysbiosis of the intestinal microbiota, enhancing susceptibility to infection and persistence. Considering the urgent need for the development of novel and efficient antimicrobial strategies against C. difficile, we review the potential application to treat C. difficile infections of acyldepsipeptides family of antibiotics, its mechanism of action and current developmental stages.
Collapse
Affiliation(s)
- Fernando Gil
- Microbiota–Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota–Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- Center for Bioinformatic & Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
3
|
Lavey NP, Coker JA, Ruben EA, Duerfeldt AS. Sclerotiamide: The First Non-Peptide-Based Natural Product Activator of Bacterial Caseinolytic Protease P. JOURNAL OF NATURAL PRODUCTS 2016; 79:1193-1197. [PMID: 26967980 PMCID: PMC4841720 DOI: 10.1021/acs.jnatprod.5b01091] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Caseinolytic protease P (ClpP) maintains essential roles in bacterial homeostasis. As such, both the inhibition and activation of this enzyme result in bactericidal activity, making ClpP a promising target for antibacterial drug development. Herein, we report the results of a fluorescence-based screen of ∼450 structurally diverse fungal and bacterial secondary metabolites. Sclerotiamide (1), a paraherquamide-related indolinone, was identified as the first non-peptide-based natural product activator of ClpP. Structure-activity relationships arising from the initial screen, preliminary biochemical evaluation of 1, and rationale for the exploitation of this chemotype to develop novel ClpP activators are presented.
Collapse
Affiliation(s)
- Nathan P. Lavey
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Jesse A. Coker
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Eliza A. Ruben
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Protein Production Core, University of Oklahoma COBRE in Structural Biology, Norman, Oklahoma 73019, United States
| | - Adam S. Duerfeldt
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
4
|
Arvanitis M, Li G, Li DD, Cotnoir D, Ganley-Leal L, Carney DW, Sello JK, Mylonakis E. A Conformationally Constrained Cyclic Acyldepsipeptide Is Highly Effective in Mice Infected with Methicillin-Susceptible and -Resistant Staphylococcus aureus. PLoS One 2016; 11:e0153912. [PMID: 27101010 PMCID: PMC4839560 DOI: 10.1371/journal.pone.0153912] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 04/06/2016] [Indexed: 01/21/2023] Open
Abstract
Background Cyclic acyldepsipeptides (ADEPs) are a novel class of antibacterial agents, some of which (e.g., ADEP 4) are highly active against Gram-positive bacteria. The focus of these in vivo studies is ADEP B315, a rationally designed compound that has the most potent in vitro activity of any ADEP analog reported to date. Methods In vivo efficacy experiments were performed using lethal intraperitoneal mice infection models with a methicillin-sensitive S. aureus (MSSA) and a methicillin-resistant (MRSA) strain. The infected mice were treated with ADEP B315, a des-methyl analog of ADEP 4, vancomycin, or the vehicle used for the ADEPs and their survival was assessed daily. A subset of MSSA-infected mice was sacrificed soon after inoculation and the bacterial burden was measured in their livers and spleens. The toxicity of ADEP B315 was assessed in viability assays using human whole blood cultures. Results In the MSSA experiments, all mice treated with the vehicle succumbed to the infection within 24 hours. All tested compounds were effective in prolonging survival of infected mice (p<0.001). Mice treated with ADEP B315 had a 39% survival rate by 10 days compared to 7% survival in mice treated with a des-methyl ADEP 4 analog (p = 0.017). Survival of the infected mice treated with ADEP B315 was comparable to those treated with vanocmycin (p = 0.12) at the same dose. Further, bacterial burden in the liver and spleen was significantly lower in mice treated with ADEP B315 compared to controls. In the MRSA experiments, ADEP B315 was able to significantly prolong survival compared to mice treated with either the vehicle (p = 0.001) or vancomycin (p = 0.007). ADEP B315 exhibited no significant toxicity in human whole blood cultures at concentrations up to 25 μg/ml. Conclusions ADEP B315 is safe and can cure mice that have lethal infections of methicillin-sensitive and -resistant strains of S. aureus.
Collapse
Affiliation(s)
- Marios Arvanitis
- Infectious Diseases Division, Rhode Island Hospital, Providence, RI, United States of America
- Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Gang Li
- Infectious Diseases Division, Rhode Island Hospital, Providence, RI, United States of America
- Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - De-Dong Li
- Infectious Diseases Division, Rhode Island Hospital, Providence, RI, United States of America
- Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Daniel Cotnoir
- Department of Pediatrics, Hasbro Children's Hospital, Brown University Alpert Medical School, Providence, RI, United States of America
| | - Lisa Ganley-Leal
- Department of Pediatrics, Hasbro Children's Hospital, Brown University Alpert Medical School, Providence, RI, United States of America
| | - Daniel W. Carney
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, United States of America
| | - Jason K. Sello
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, United States of America
- * E-mail: (EM); (JKS)
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Rhode Island Hospital, Providence, RI, United States of America
- Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- * E-mail: (EM); (JKS)
| |
Collapse
|
5
|
Compton CL, Carney DW, Groomes PV, Sello JK. Fragment-Based Strategy for Investigating and Suppressing the Efflux of Bioactive Small Molecules. ACS Infect Dis 2015; 1:53-8. [PMID: 27620145 DOI: 10.1021/id500009f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane protein-mediated drug efflux is a phenomenon that compromises our ability to treat both infectious diseases and cancer. Accordingly, there is much interest in the development of strategies for suppression of the mechanisms by which therapeutic agents are effluxed. Here, using resistance to the cyclic acyldepsipeptide (ADEP) antibacterial agents as a model, we demonstrate a new counter-efflux strategy wherein a fragment of an actively exported bioactive compound competitively interferes with its efflux and potentiates its activity. A fragment comprising the N-heptenoyldifluorophenylalanine side chain of the pharmacologically optimized ADEPs potentiates the antibacterial activity of the ADEPs against actinobacteria to a greater extent than reserpine, a well-known efflux inhibitor. Beyond their validation of a new approach to studying molecular recognition by drug efflux pumps, our findings have important implications for killing Mycobacterium tuberculosis with ADEPs and reclaiming the efficacies of therapeutic agents whose activity has been compromised by efflux pumps.
Collapse
Affiliation(s)
- Corey L. Compton
- Department of Chemistry, Brown University, 324 Brook
Street, Providence, Rhode
Island 02912, United States
| | - Daniel W. Carney
- Department of Chemistry, Brown University, 324 Brook
Street, Providence, Rhode
Island 02912, United States
| | - Patrice V. Groomes
- Department of Chemistry, Brown University, 324 Brook
Street, Providence, Rhode
Island 02912, United States
| | - Jason K. Sello
- Department of Chemistry, Brown University, 324 Brook
Street, Providence, Rhode
Island 02912, United States
| |
Collapse
|
6
|
Goodreid JD, Wong K, Leung E, McCaw SE, Gray-Owen SD, Lough A, Houry WA, Batey RA. Total synthesis and antibacterial testing of the A54556 cyclic acyldepsipeptides isolated from Streptomyces hawaiiensis. JOURNAL OF NATURAL PRODUCTS 2014; 77:2170-2181. [PMID: 25255326 DOI: 10.1021/np500158q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The first total synthesis of all six known A54556 acyldepsipeptide (ADEP) antibiotics from Streptomyces hawaiiensis is reported. This family of compounds has a unique mechanism of antibacterial action, acting as activators of caseinolytic protease (ClpP). Assembly of the 16-membered depsipeptide core was accomplished via a pentafluorophenyl ester-based macrolactamization strategy. Late stage amine deprotection was carried out under neutral conditions by employing a mild hydrogenolysis strategy, which avoids the formation of undesired ring-opened depsipeptide side products encountered during deprotection of acid-labile protecting groups. The free amines were found to be significantly more reactive toward late stage amide bond formation as compared to the corresponding ammonium salts, giving final products in excellent yields. A thorough NMR spectroscopic analysis of these compounds was carried out to formally assign the structures and to aid with the spectroscopic assignment of ADEP analogues. The identity of two of the structures was confirmed by comparison with biologically produced samples from S. hawaiiensis. An X-ray crystallographic analysis of an ADEP analogue reveals a conformation similar to that found in cocrystal structures of ADEPs with ClpP protease. The degree of antibacterial activity of the different compounds was evaluated in vitro using MIC assays employing both Gram-positive and Gram-negative strains and a fluorescence-based biochemical assay.
Collapse
Affiliation(s)
- Jordan D Goodreid
- Davenport Research Laboratories, Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Harunari E, Imada C, Igarashi Y, Fukuda T, Terahara T, Kobayashi T. Hyaluromycin, a new hyaluronidase inhibitor of polyketide origin from marine Streptomyces sp. Mar Drugs 2014; 12:491-507. [PMID: 24451191 PMCID: PMC3917283 DOI: 10.3390/md12010491] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/28/2013] [Accepted: 12/31/2013] [Indexed: 11/24/2022] Open
Abstract
Hyaluromycin (1), a new member of the rubromycin family of antibiotics, was isolated from the culture extract of a marine-derived Streptomyces sp. as a HAase inhibitor on the basis of HAase activity screening. The structure of 1 was elucidated through the interpretation of NMR data for the compound and its 3″-O-methyl derivative in combination with an incorporation experiment with [1,2-13C2]acetate. The compound’s absolute configuration was determined by the comparison of its circular dichroism (CD) spectrum with those of other rubromycins. Hyaluromycin (1) consists of a γ-rubromycin core structure possessing a 2-amino-3-hydroxycyclopent-2-enone (C5N) unit as an amide substituent of the carboxyl function; both structural units have been reported only from actinomycetes. Hyaluromycin (1) displayed approximately 25-fold more potent hyaluronidase inhibitory activity against hyaluronidase than did glycyrrhizin, a known inhibitor of plant origin.
Collapse
Affiliation(s)
- Enjuro Harunari
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Chiaki Imada
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Takao Fukuda
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Takeshi Terahara
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Takeshi Kobayashi
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
8
|
Zhang W, Bolla ML, Kahne D, Walsh CT. A three enzyme pathway for 2-amino-3-hydroxycyclopent-2-enone formation and incorporation in natural product biosynthesis. J Am Chem Soc 2010; 132:6402-11. [PMID: 20394362 DOI: 10.1021/ja1002845] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A number of natural products contain a 2-amino-3-hydroxycyclopent-2-enone five membered ring, termed C(5)N, which is condensed via an amide linkage to a variety of polyketide-derived polyenoic acid scaffolds. Bacterial genome mining indicates three tandem ORFs that may be involved in C(5)N formation and subsequent installation in amide linkages. We show that the protein products of three tandem ORFs (ORF33-35) from the ECO-02301 biosynthetic gene cluster in Streptomyces aizunenesis NRRL-B-11277, when purified from Escherichia coli, demonstrate the requisite enzyme activities for C(5)N formation and amide ligation. First, succinyl-CoA and glycine are condensed to generate 5-aminolevulinate (ALA) by a dedicated PLP-dependent ALA synthase (ORF34). Then ALA is converted to ALA-CoA through an ALA-AMP intermediate by an acyl-CoA ligase (ORF35). ALA-CoA is unstable and has a half-life of approximately 10 min under incubation conditions for off-pathway cyclization to 2,5-piperidinedione. The ALA synthase can compete with the nonenzymatic decomposition route and act in a novel second transformation, cyclizing ALA-CoA to C(5)N. C(5)N is then a substrate for the third enzyme, an ATP-dependent amide synthetase (ORF33). Using octatrienoic acid as a mimic of the C(56) polyenoic acid scaffold of ECO-02301, formation of the octatrienyl-C(5)N product was observed. This three enzyme pathway is likely the general route to the C(5)N ring system in other natural products, including the antibiotic moenomycin.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
9
|
von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Antibacterial natural products in medicinal chemistry--exodus or revival? Angew Chem Int Ed Engl 2007; 45:5072-129. [PMID: 16881035 DOI: 10.1002/anie.200600350] [Citation(s) in RCA: 467] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To create a drug, nature's blueprints often have to be improved through semisynthesis or total synthesis (chemical postevolution). Selected contributions from industrial and academic groups highlight the arduous but rewarding path from natural products to drugs. Principle modification types for natural products are discussed herein, such as decoration, substitution, and degradation. The biological, chemical, and socioeconomic environments of antibacterial research are dealt with in context. Natural products, many from soil organisms, have provided the majority of lead structures for marketed anti-infectives. Surprisingly, numerous "old" classes of antibacterial natural products have never been intensively explored by medicinal chemists. Nevertheless, research on antibacterial natural products is flagging. Apparently, the "old fashioned" natural products no longer fit into modern drug discovery. The handling of natural products is cumbersome, requiring nonstandardized workflows and extended timelines. Revisiting natural products with modern chemistry and target-finding tools from biology (reversed genomics) is one option for their revival.
Collapse
Affiliation(s)
- Franz von Nussbaum
- Bayer HealthCare AG, Medicinal Chemistry Europe, 42096 Wuppertal, Germany.
| | | | | | | | | |
Collapse
|
10
|
Hinzen B, Raddatz S, Paulsen H, Lampe T, Schumacher A, Häbich D, Hellwig V, Benet-Buchholz J, Endermann R, Labischinski H, Brötz-Oesterhelt H. Medicinal chemistry optimization of acyldepsipeptides of the enopeptin class antibiotics. ChemMedChem 2006; 1:689-93. [PMID: 16902918 DOI: 10.1002/cmdc.200600055] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Berthold Hinzen
- Department of Chemistry and Antiinfectives and Natural Products, Bayer HealthCare AG Pharmaceutical Research, AiCuris GmbH & Co. KG, Aprather Weg, 42096 Wuppertal, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Petrícek M, Petrícková K, Havlícek L, Felsberg J. Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin. J Bacteriol 2006; 188:5113-23. [PMID: 16816183 PMCID: PMC1539946 DOI: 10.1128/jb.01919-05] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the results of cloning genes for two key biosynthetic enzymes of different 5-aminolevulinic acid (ALA) biosynthetic routes from Streptomyces. The genes encode the glutamyl-tRNAGlu reductase (GluTR) of the C5 pathway and the ALA synthase (ALAS) of the Shemin pathway. While Streptomyces coelicolor A3(2) synthesizes ALA via the C5 route, both pathways are operational in Streptomyces nodosus subsp. asukaensis, a producer of asukamycin. In this strain, the C5 route produces ALA for tetrapyrrole biosynthesis; the ALA formed by the Shemin pathway serves as a precursor of the 2-amino-3-hydroxycyclopent-2-enone moiety (C5N unit), an antibiotic component. The growth of S. nodosus and S. coelicolor strains deficient in the GluTR genes (gtr) is strictly dependent on ALA or heme supplementation, whereas the defect in the ALAS-encoding gene (hemA-asuA) abolishes the asukamycin production in S. nodosus. The recombinant hemA-asuA gene was expressed in Escherichia coli and in Streptomyces, and the encoded enzyme activity was demonstrated both in vivo and in vitro. The hemA-asuA gene is situated within a putative cluster of asukamycin biosynthetic genes. This is the first report about the cloning of genes for two different ALA biosynthetic routes from a single bacterium.
Collapse
Affiliation(s)
- Miroslav Petrícek
- Institute of Microbiology AS CR, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
12
|
von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Antibakterielle Naturstoffe in der medizinischen Chemie – Exodus oder Renaissance? Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600350] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
|
14
|
Natural products with polyene amide structures. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1572-5995(00)80011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Unsaturated amides derived from 2-amino-3-hydroxycyclopentenone: A stille approach to the synthesis of asuka-mABA, 2880-II, and limocrocin. Tetrahedron 1998. [DOI: 10.1016/s0040-4020(98)00536-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Affiliation(s)
- I Sattler
- Hans-Knöll-Institut für Naturstoff-Forschung, Jena, Germany
| | | | | |
Collapse
|
17
|
Kempin U, Hennig L, Knoll D, Welzel P, Müller D, Markus A, van Heijenoort J. Moenomycin a: New chemistry that allows to attach the antibiotic to reporter groups, solid supports, and proteins. Tetrahedron 1997. [DOI: 10.1016/s0040-4020(97)10234-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Schmidt U, Neumann K, Schumacher A, Weinbrenner S. Synthese von Enopeptin B ausStreptomyces sp. RK-1051. Angew Chem Int Ed Engl 1997. [DOI: 10.1002/ange.19971091024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Kempin U, Hennig L, Müller D, Markus A, Welzel P. A selective reaction that can be used to attach moenomycin to solid supports and proteins. Tetrahedron Lett 1996. [DOI: 10.1016/0040-4039(96)01035-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|