1
|
Deck KEV, Brittain WDG. Synthesis of metal-binding amino acids. Org Biomol Chem 2024. [PMID: 39364570 DOI: 10.1039/d4ob01326c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The ability for amino acid residues to bind metals underpins the functions of metalloproteins to conduct a plethora of critical processes in living organisms as well as unnatural applications in the fields of catalysis, sensing and medicinal chemistry. The capability to access metal-binding peptides heavily relies on the ability to generate appropriate building blocks. This review outlines recently developed strategies for the synthesis of metal binding non-proteinogenic amino acids. The chemistries to access, as well as to incorporate these amino acids into peptides is presented herein.
Collapse
Affiliation(s)
- Katherine E V Deck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | |
Collapse
|
2
|
Guchhait C, Suriyaa V, Sahu N, Sarkar SD, Adhikari B. Ferrocene: an exotic building block for supramolecular assemblies. Chem Commun (Camb) 2023; 59:14482-14496. [PMID: 37997157 DOI: 10.1039/d3cc03659f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host-guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular "ball bearing" property in Fc support the formation of intramolecular π-π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1,n'-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal-organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences.
Collapse
Affiliation(s)
- Chandrakanta Guchhait
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| | - Vembanan Suriyaa
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| | - Nihar Sahu
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| | - Sovik Dey Sarkar
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| | - Bimalendu Adhikari
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| |
Collapse
|
3
|
Liu B, Xing P. Hydrogen Bonded Foldamers with Axial Chirality: Chiroptical Properties and Applications. Chemistry 2023; 29:e202202665. [PMID: 36281580 DOI: 10.1002/chem.202202665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Folding phenomenon refers to the formation of a specific conformation widely featured by the intramolecular interactions, which broadly exist in biomacromolecules, and are closely related to their structures and functions. A variety of oligomeric folded molecules have been designed and synthesized, namely "foldamer", exhibiting potentials in pharmaceutical and catalysis. Molecular folding is a promising strategy to transfer chirality from substituents to the whole skeleton, when chirality transfer, amplification, evolution, and other behaviors could be achieved. Investigating chirality using foldamer model deepens the understanding of the structure-function correlation in biomacromolecules and expands the molecular toolbox towards chiroptical and asymmetrical chemistry. Substitutes with abundant hydrogen bonding sites conjugated to a rotatable aryl group afford a parallel β-sheet-like conformation, which enables the emergence and manipulation of axial chirality. This concept aims to give a brief introduction and summary of the hydrogen bonded foldamers with anchored axial chirality, by taking some recent cases as examples. Design principles, control over axial chirality and applications are also reviewed.
Collapse
Affiliation(s)
- Bingyu Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
4
|
Curran TP, Marrone A, Davidson LM, Pokharel N, Frempong JF, Tolbatov I, Phillip ML, Gober CB, Yang H, Stewart J. Parallel arrangement of peptides appended to a rigid, bimetallic, constrained ring system. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Alessandro Marrone
- Dipartimento di Farmacia Università degli Studi “G. D'Annunzio” Chieti‐Pescara Chieti Italy
| | | | | | | | - Iogann Tolbatov
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) Université de Bourgogne Franche‐Comté (UBFC) Dijon France
| | | | - Cosmic B. Gober
- Department of Chemistry Trinity College Hartford Connecticut USA
| | - Haoyu Yang
- Department of Chemistry Trinity College Hartford Connecticut USA
| | - Joanne Stewart
- Department of Chemistry Hope College Holland Michigan USA
| |
Collapse
|
5
|
Zong Z, Hao A, Xing P, Zhao Y. Chiral molecular nanosilicas. Chem Sci 2022; 13:4029-4040. [PMID: 35440995 PMCID: PMC8985511 DOI: 10.1039/d2sc00793b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Molecular nanoparticles including polyoxometalates, proteins, fullerenes and polyhedral oligosiloxane (POSS) are nanosized objects with atomic precision, among which POSS derivatives are the smallest nanosilicas. Incorporation of molecular nanoparticles into chiral aggregates either by chiral matrices or self-assembly allows for the transfer of supramolecular chirality, yet the construction of intrinsic chirality with atomic precision in discrete molecules remains a great challenge. In this work, we present a molecular folding strategy to construct giant POSS molecules with inherent chirality. Ferrocenyl diamino acids are conjugated by two or four POSS segments. Hydrogen bonding-driven folding of diamino acid arms into parallel β-sheets facilitates the chirality transfer from amino acids to ferrocene and POSS respectively, disregarding the flexible alkyl spacers. Single crystal X-ray structures, density functional theory (DFT) calculations, circular dichroism and vibrational circular dichroism spectroscopy clearly verify the preferential formation of one enantiomer containing chiral molecular nanosilicas. The chiral orientation and chiroptical properties of POSS show pronounced dependence on the substituents of α-amino acids, affording an alternative way to control the folding behavior and POSS chirality in addition to the absolute configuration of amino acids. Through the kinetic nanoprecipitation protocol, one-dimensional aggregation enables chirality transfer from the molecular scale to the micrometer scale, self-assembling into helices in accordance with the packing propensity of POSS in a crystal phase. This work, by illustrating the construction of chiral molecular nanosilicas, paves a new way to obtain discrete chiral molecular nanoparticles for potential chiroptical applications.
Collapse
Affiliation(s)
- Zhaohui Zong
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
6
|
Moriuchi T. Helical Chirality of Ferrocene Moieties in Cyclic Ferrocene‐Peptide Conjugates. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Toshiyuki Moriuchi
- Division of Molecular Materials Science Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| |
Collapse
|
7
|
Zong Z, Zhang H, Hao A, Xing P. The origin of supramolecular chirality in 1-ferrocenyl amino acids. Dalton Trans 2021; 50:9695-9699. [PMID: 34250534 DOI: 10.1039/d1dt01905h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
π-Conjugated amino acids are widely applied in chiroptical materials, in which chiroptical activities are believed to originate from supramolecular packing. However, the intramolecular contribution has been largely ignored. In this work, we report that intramolecular chirality transfer behaviors in ferrocene-conjugated amino acids depend on the substituent groups, which influence the modality of multiple intramolecular interactions, as well as the molecular geometry. The structural basis and structure-property relationships of chirality and chiroptical activities were unveiled in this work. Based on single crystal structure and density functional theory calculations, we demonstrate that intramolecular weak forces, including hydrogen bonds, CHπ interactions and van der Waals interactions, affect the molecular geometry and contribute to diverse Cotton effects. This work provides evidence for the ignored intramolecular factors in self-assembled systems and paves the way for the fabrication of functional chiroptical systems.
Collapse
Affiliation(s)
- Zhaohui Zong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Heng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
8
|
Liu B, Hao A, Xing P. Water-Mediated Folding Behaviors and Chiroptical Inversion of Ferrocene-Conjugated Dipeptides. J Phys Chem Lett 2021; 12:6190-6196. [PMID: 34189923 DOI: 10.1021/acs.jpclett.1c01231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hydration effect on the folding behavior of oligopeptides is of vital importance both in the structure basis of biomolecules and in the rational design of peptide-based materials, which however has rarely been addressed. Here we present the hydration impact on the spontaneous folding of dipeptides conjugated by the ferrocene spacer. In organic phase, the ferrocene-glycine-phenylalanine dipeptide formed a parallel β-sheet structure and Herrick's conformation, which underwent conformational transformation encountering aqueous media, by significantly switching dipeptide arm angles around the ferrocene axis up to 72°. The conformational transformation behavior aroused inversion of the chiroptical activity. Solid X-ray structures, proton nuclear magnetic resonance, chiroptical spectroscopy, and the density functional theory calculation were employed to unveil the hydration effect in the secondary structure transition, in which the rearrangement of hydrogen bonds played the vital role. This work deepens the understanding of water functioning in the structure modulation of biomolecules and also provides an alternative protocol in designing novel chiroptical switches and adaptive peptide-based biomaterials.
Collapse
Affiliation(s)
- Bingyu Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
9
|
Román T, Ramirez D, Fierro-Medina R, Santillan R, Farfán N. Ferrocene and Organotin (IV) Conjugates Containing Amino Acids and Peptides: A Promising Strategy for Searching New Therapeutic and Diagnostic Tools. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201001154259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Organometallic complexes are an important class of synthetic reagents and are of
great interest due to their versatility and wide biological application. The cationic nature of the
coordination nucleus facilitates its interaction with biological molecules such as amino acids,
proteins, and nucleic acids. The functionalization of peptides or amino acids with organometallic
motifs is a novel strategy for the design and development of molecules with greater biological
activity, stability in biological environments, and selectivity for specific targets, which
make them valuable tools for designing and obtaining molecules with therapeutic applications.
The physicochemical properties of ferrocene make it ideal for drug development, due to its
structure, stability in aqueous solutions, redox properties, and low toxicity. In the same way,
organotin (IV) derivatives have great potential for drug development because of their multiple
biological activities, wide structural versatility, high degree of stability, and low toxicity.
However, the synthesis of these drugs based on organometallic molecules containing ferrocene or organotin (IV) is
quite complex and represents a challenge nowadays; for this reason, it is necessary to design and implement procedures
to obtain molecules with a high degree of purity, in sufficient quantities, and at low cost. This review describes
the strategies of synthesis used up to now for the preparation of organometallic amino acids and peptides
containing ferrocene or organotin (IV) derivates, as well as their impact on the development of therapeutic agents.
Collapse
Affiliation(s)
- Tatiana Román
- Departamento de Farmacia, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - David Ramirez
- Departamento de Quimica. Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - Ricardo Fierro-Medina
- Departamento de Quimica. Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - Rosa Santillan
- Departamento de Quimica, Centro de Investigacion y de Estudios Avanzados del IPN, Av Instituto Politecnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de Mexico, CDMX, Mexico
| | - Norberto Farfán
- Facultad de Quimica, Departamento de Quimica Organica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Circuito Exterior S/N Delegacion Coyoacan, C.P. 04510 Ciudad Universitaria, Ciudad de Mexico, CDMX, Mexico
| |
Collapse
|
10
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
11
|
Yan Q, Zhi N, Yang L, Xu G, Feng Q, Zhang Q, Sun S. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci Rep 2020; 10:10607. [PMID: 32606291 PMCID: PMC7327035 DOI: 10.1038/s41598-020-67394-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022] Open
Abstract
A uric acid (UA) electrochemical biosensor was constructed using ferrocene (Fc) decorated cuprous oxide (Cu2O) enhanced electro-active characteristics and covalently immobilized with uricase (UOx) on glassy carbon electrode (GCE). The electrochemical characteristics of the fabricated electrode was analysed by cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV). DPV studies revealed rapid response of fabricated electrode UOx/Fc/Cu2O/GCE towards UA in a wide concentration range of 0.1–1,000 μM with a sensitivity of 1.900 μA mM−1 cm−2 and very low detection limit of 0.0596 μM. A very low magnitude Michaelis–Menten constant (Km) value was evaluated as 34.7351 μM which indicated the chemical attraction of the enzyme towards the UA was much higher. The developed biosensor was successfully applied to detect UA in human urine samples. Moreover, reproducibility and stability studies demonstrated the fabricated UOx/Fc/Cu2O/GCE biosensor had high reproducibility with a RSD of 2.8% and good reusability with a RSD of 3.2%. Specificity studies results showed the fabricated biosensor had strong anti-interference ability. The improved sensor performance was attributed to the synergistic electronic properties of Cu2O and Fc that provided enhances delectrocatalytic activity and electron transfer. The present biosensor can be extended for use in clinical settings.
Collapse
Affiliation(s)
- Qinghua Yan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Na Zhi
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Li Yang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Guangri Xu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qigao Feng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qiqing Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Shujuan Sun
- The Hospital of Eighty-Third Group Army, Xinxiang, 453000, China
| |
Collapse
|
12
|
Liu YZ, Wang H, Chan CK, Mu X, Robeyns K, Wang CC, Singleton ML. Structure-Dependent Guest Recognition with Flexible Ferrocene-Based Aromatic Oligoamide β-Sheet Mimics. Chemistry 2020; 26:181-185. [PMID: 31691432 DOI: 10.1002/chem.201904719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 12/27/2022]
Abstract
A series of aromatic oligoamides incorporating an inherently flexible ferrocene dicarboxylic acid unit was synthesized. Solid state, solution, and computational studies on these systems indicated that the aromatic strands can adopt a syn parallel stacked conformation. This results in modular β-sheet-like molecular clefts that display structure-dependent recognition of small polar molecules. NMR and theoretical studies of the host-guest interaction support an in cleft binding mode and allowed the selectivity of the oligomers to be rationalized on the basis of minor changes in functional-group presentation on the edge of the aromatic strands.
Collapse
Affiliation(s)
- Ya-Zhou Liu
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - Hu Wang
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Xiao Mu
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | | | - Michael L Singleton
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
13
|
Abstract
Considerable attention has been given to the research field of bioorganometallic chemistry, which is a hybrid chemistry field between biology and organometallic chemistry. The introduction of biomolecules, which have hydrogen bonding sites and chiral centers, into organometallic compounds is a promising strategy to construct chirality-organized bioorganometallic conjugates. This feature paper sketches an outline of induction of helical chirality into bioorganometallic conjugates by the control of a torsional twist of the organometallic moiety. Topics covered included control of the helical chirality of 1,n′-disubstituted ferrocene moieties in ferrocene-dipeptide conjugates, and the chirality induction of the Au(I)–Au(I) axis in the dinuclear organogold(I)-uracil conjugates.
Collapse
|
14
|
Chanawanno K, Blesener TS, Schrage BR, Nemykin VN, Herrick RS, Ziegler CJ. Amino acid ferrocene conjugates using sulfonamide linkages. J Organomet Chem 2018; 870:121-129. [PMID: 31105336 DOI: 10.1016/j.jorganchem.2018.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This report presents the synthesis and characterization of mono- and bis(amino acid ester) ferrocene complexes generated using a sulfonamide linking strategy as an alternative to the more heavily explored amide linking strategy. These compounds were investigated to test their ability to form hydrogen bonding interactions both in the solid state and in solution, and were compared to the previously observed intramolecular interstrand crosslinking seen in amide-linked ferrocene constructs. Synthesized compounds also included controls that do not exhibit sulfonamide N-H bonds and thus cannot engage in hydrogen bonding. In the solid state, we observe both S=O⋯H-N and C=O⋯H-N intermolecular interactions, but we do not observe any intramolecular interstrand hydrogen bonding. In the solution phase, we also do not see any intramolecular hydrogen bonding interactions in these compounds as measured by titration of d6-DMSO as a competitive hydrogen bonding reagent. We also collected CD spectra on these compounds, which revealed that the chiral peptides can induce dichroism in the dd transition of the ferrocene units. Our results indicate that the peptide-ferrocene linking group governs whether intermolecular hydrogen bonding interactions can occur between the amino acids adjacent to the cyclopentadienyl groups.
Collapse
Affiliation(s)
- K Chanawanno
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.,Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - T S Blesener
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - B R Schrage
- Department of Chemistry, University of Akron, Akron, OH, 44312-3601, USA
| | - V N Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - R S Herrick
- Department of Chemistry, College of the Holy Cross, 1 College St, Worcester, MA, 01610, USA
| | - C J Ziegler
- Department of Chemistry, University of Akron, Akron, OH, 44312-3601, USA
| |
Collapse
|
15
|
Falcone N, Kraatz HB. Supramolecular Assembly of Peptide and Metallopeptide Gelators and Their Stimuli-Responsive Properties in Biomedical Applications. Chemistry 2018; 24:14316-14328. [DOI: 10.1002/chem.201801247] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/17/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Natashya Falcone
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College St M5S 3E5 Toronto Canada
- Department of Physical and Environmental Science; University of Toronto Scarborough; 1065 Military Trail M1C 1A4 Toronto Canada
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College St M5S 3E5 Toronto Canada
- Department of Physical and Environmental Science; University of Toronto Scarborough; 1065 Military Trail M1C 1A4 Toronto Canada
- Department of Chemistry; University of Toronto; 80 St. George St M5S 3H6 Toronto Canada
| |
Collapse
|
16
|
Ferranco A, Sun K, Udaipaul T, Kraatz H. Metal Coordination to Unsymmetric 1,
n′
‐Disubstituted Ferrocene Histidine Peptides. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Annaleizle Ferranco
- Department of Physical and Environmental Sciences University of Toronto 1265 Military Trail M1C 1A4 Toronto Canada
- Department of Chemistry University of Toronto Scarborough 80 St. George Street M5S 3H6 Toronto Ontario Canada
| | - Keija Sun
- Department of Chemistry University of Toronto Scarborough 80 St. George Street M5S 3H6 Toronto Ontario Canada
| | - Theodore Udaipaul
- Department of Chemistry University of Toronto Scarborough 80 St. George Street M5S 3H6 Toronto Ontario Canada
| | - Heinz‐Bernhard Kraatz
- Department of Physical and Environmental Sciences University of Toronto 1265 Military Trail M1C 1A4 Toronto Canada
- Department of Chemistry University of Toronto Scarborough 80 St. George Street M5S 3H6 Toronto Ontario Canada
| |
Collapse
|
17
|
Erb W, Levanen G, Roisnel T, Dorcet V. Application of the Curtius rearrangement to the synthesis of 1′-aminoferrocene-1-carboxylic acid derivatives. NEW J CHEM 2018. [DOI: 10.1039/c7nj05020h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The shortest synthesis of N-protected 1′-aminoferrocene-1-carboxylic acid from readily available ferrocene-1,1′-dicarboxylic acid is reported.
Collapse
Affiliation(s)
- William Erb
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Gael Levanen
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Thierry Roisnel
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Vincent Dorcet
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| |
Collapse
|
18
|
Falcone N, Basak S, Dong B, Syed J, Ferranco A, Lough A, She Z, Kraatz HB. A Ferrocene-Tryptophan Conjugate: The Role of the Indolic Nitrogen in Supramolecular Assembly. Chempluschem 2017; 82:1282-1289. [DOI: 10.1002/cplu.201700407] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Natashya Falcone
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College St Toronto ON M5S 3E5 Canada
- Department of Physical and Environmental Sciences; University of Toronto Scarborough; 1065 Military Trail Toronto ON M1C 1A4 Canada
| | - Shibaji Basak
- Department of Physical and Environmental Sciences; University of Toronto Scarborough; 1065 Military Trail Toronto ON M1C 1A4 Canada
| | - Bin Dong
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering; University of Science and Technology Beijing; Beijing 100083 P. R. China
| | - Jebriel Syed
- Department of Physical and Environmental Sciences; University of Toronto Scarborough; 1065 Military Trail Toronto ON M1C 1A4 Canada
| | - Annaleizle Ferranco
- Department of Physical and Environmental Sciences; University of Toronto Scarborough; 1065 Military Trail Toronto ON M1C 1A4 Canada
- Department of Chemistry; University of Toronto; 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Alan Lough
- Department of Chemistry; University of Toronto; 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Zhe She
- Department of Physical and Environmental Sciences; University of Toronto Scarborough; 1065 Military Trail Toronto ON M1C 1A4 Canada
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College St Toronto ON M5S 3E5 Canada
- Department of Physical and Environmental Sciences; University of Toronto Scarborough; 1065 Military Trail Toronto ON M1C 1A4 Canada
- Department of Chemistry; University of Toronto; 80 St. George Street Toronto ON M5S 3H6 Canada
| |
Collapse
|
19
|
Kokan Z, Perić B, Kovačević G, Brozovic A, Metzler-Nolte N, Kirin SI. cis
- versus trans
-Square-Planar Palladium(II) and Platinum(II) Complexes with Triphenylphosphine Amino Acid Bioconjugates. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zoran Kokan
- Ruđer Bošković Institute; Bijenička 54 10000 Zagreb Croatia
| | - Berislav Perić
- Ruđer Bošković Institute; Bijenička 54 10000 Zagreb Croatia
| | | | | | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry; Ruhr University Bochum; Universitätsstraße 150 44801 Bochum Germany
| | | |
Collapse
|
20
|
Moriuchi T, Wu H, Tayano Y, Hirao T. Structural Characterization of Chirality-Organized Ferrocene-Dipeptide Conjugates that Contain Pyridine N
-Oxide Moieties. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshiyuki Moriuchi
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University, Yamada-oka; Suita 565-0871 Japan
| | - Hao Wu
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University, Yamada-oka; Suita 565-0871 Japan
| | - Yoshiki Tayano
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University, Yamada-oka; Suita 565-0871 Japan
| | - Toshikazu Hirao
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University, Yamada-oka; Suita 565-0871 Japan
| |
Collapse
|
21
|
Moriuchi T, Nishiyama T, Nobu M, Hirao T. Control of Helical Chirality of Ferrocene-Dipeptide Conjugates by the Secondary Structure of Dipeptide Chains. Chemistry 2017; 23:12704-12708. [DOI: 10.1002/chem.201703102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Toshiyuki Moriuchi
- Department of Applied Chemistry; Graduate School of Engineering, Osaka University, Yamada-oka, Suita; Osaka 565-0871 Japan
| | - Taiki Nishiyama
- Department of Applied Chemistry; Graduate School of Engineering, Osaka University, Yamada-oka, Suita; Osaka 565-0871 Japan
| | - Masaki Nobu
- Department of Applied Chemistry; Graduate School of Engineering, Osaka University, Yamada-oka, Suita; Osaka 565-0871 Japan
| | - Toshikazu Hirao
- Department of Applied Chemistry; Graduate School of Engineering, Osaka University, Yamada-oka, Suita; Osaka 565-0871 Japan
| |
Collapse
|
22
|
Moriuchi T, Nishiyama T, Tayano Y, Tohnai N, Hirao T. Self-assembled structures of ferrocene- l -carnosine conjugates. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Moriuchi T, Nishiyama T, Tayano Y, Hirao T. Controlled self-assembling structures of ferrocene-dipeptide conjugates composed of Ala-Pro-NHCH 2CH 2SH chain. J Inorg Biochem 2017; 177:259-265. [PMID: 28552420 DOI: 10.1016/j.jinorgbio.2017.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022]
Abstract
Bioorganometallic ferrocene-dipeptide conjugates with the Ala-Pro-cysteamine chain, Fc-L-Ala-L-Pro-NHCH2CH2SH (2) and Fc-L-Ala-D-Pro-NHCH2CH2SH (4) (Fc=ferrocenoyl), were prepared by the reduction of the ferrocene-dipeptide conjugates, Fc-L-Ala-L-Pro-cystamine-L-Pro-L-Ala-Fc (1) or Fc-L-Ala-D-Pro-cystamine-D-Pro-L-Ala-Fc (3), respectively. Control of the self-assembling structures of the ferrocene-dipeptide conjugates was demonstrated by changing the chirality of the amino acid. The molecular structure of 2 composed of the L-Ala-L-Pro-NHCH2CH2SH chain confirmed the formation of intramolecular hydrogen bond of N-H⋯N pattern between the NH of cysteamine moiety and the nitrogen of Pro moiety. Furthermore, intermolecular hydrogen bonds between NH (Ala) and CO (Pro of another molecule) and between NH (cysteamine) and CO (the ferrocenoyl moiety of another molecule) were formed, wherein each molecule is connected to four neighboring molecules by continuous intermolecular hydrogen bonds to form the hydrogen-bonded molecular assembling structure. On the contrary, the left-handed helical assembly through an intermolecular hydrogen-bonding network of 15-membered intermolecularly hydrogen-bonded ring between NH (Ala) and CO (the ferrocenoyl moiety of another molecule) and between NH (the cysteamine moiety of another molecule) and CO (Ala) was observed in the crystal packing of 4 composed of the L-Ala-D-Pro-NHCH2CH2SH chain.
Collapse
Affiliation(s)
- Toshiyuki Moriuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Taiki Nishiyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshiki Tayano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshikazu Hirao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
24
|
Ferranco A, Basak S, Lough A, Kraatz HB. Metal coordination of ferrocene–histidine conjugates. Dalton Trans 2017; 46:4844-4859. [PMID: 28349138 DOI: 10.1039/c7dt00456g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthesis and complete structural characterization of ferrocene–histidine dipeptides including detailed analysis of the ligand–metal complexation.
Collapse
Affiliation(s)
- Annaleizle Ferranco
- Department of Physical and Environmental Sciences
- University of Toronto
- Toronto
- M1C 1A4 Canada
- Department of Chemistry
| | - Shibaji Basak
- Department of Physical and Environmental Sciences
- University of Toronto
- Toronto
- M1C 1A4 Canada
- Department of Chemistry
| | - Alan Lough
- Department of Chemistry
- University of Toronto
- Toronto
- M5S 3H6 Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences
- University of Toronto
- Toronto
- M1C 1A4 Canada
- Department of Chemistry
| |
Collapse
|
25
|
Albada B, Metzler-Nolte N. Organometallic–Peptide Bioconjugates: Synthetic Strategies and Medicinal Applications. Chem Rev 2016; 116:11797-11839. [DOI: 10.1021/acs.chemrev.6b00166] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Nils Metzler-Nolte
- Inorganic
Chemistry I − Bioinorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780-D Bochum, Germany
| |
Collapse
|
26
|
Chanawanno K, Holstrom C, Crandall LA, Dodge H, Nemykin VN, Herrick RS, Ziegler CJ. The synthesis and structures of 1,1'-bis(sulfonyl)ferrocene derivatives. Dalton Trans 2016; 45:14320-6. [PMID: 27539927 DOI: 10.1039/c6dt02669a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of 1,1'-bis(sulfonyl)ferrocene compounds were produced via the 1,1'-bis(sulfonate)ferrocene ammonium salt. This compound can be readily converted to 1,1' bis(sulfonylchloride)ferrocene. By varying stoichiometry and reaction times, both mono- and bis-sulfonamide derivatives can be synthesized. All new compounds presented in this report have been structurally characterized. The structures of the bis-sulfonamide systems are similar to the well-studied bis(amide) ferrocene compounds. Intermolecular hydrogen bonding is observed, typically between NH and SO groups of neighboring sulfonamides. However in the bis(GABA) derivative, intermolecular NH to CO hydrogen bonding interactions are present.
Collapse
Affiliation(s)
- Kullapa Chanawanno
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | | | | | | | |
Collapse
|
27
|
Deng J, Zhao B, Deng J. Optically Active Helical Polyacetylene Bearing Ferrocenyl Amino-Acid Derivative in Pendants. Preparation and Application as Chiral Organocatalyst for Asymmetric Aldol Reaction. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinrui Deng
- State Key Laboratory of Chemical Resource Engineering, and ‡College of Materials
Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, and ‡College of Materials
Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, and ‡College of Materials
Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
28
|
Kovačević M, Kodrin I, Cetina M, Kmetič I, Murati T, Semenčić MČ, Roca S, Barišić L. The conjugates of ferrocene-1,1'-diamine and amino acids. A novel synthetic approach and conformational analysis. Dalton Trans 2016; 44:16405-20. [PMID: 26308626 DOI: 10.1039/c5dt01610j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthetic approach toward a poorly explored bioorganometallic consisting of ferrocene-1,1'-diamine bearing structurally and chirally diverse amino acid sequences is reported. Until now, ferrocene-1,1'-diamine was suitable for accommodating only identical amino acid sequences at its N-termini, leading to the symmetrically disubstituted homochiral products stabilized through a 14-membered intramolecular hydrogen-bonded ring as is seen in antiparallel β-sheet peptides. The key step of the novel synthetic pathway is the transformation of Ac-Ala-NH-Fn-COOH (5) (Fn = 1,1'-ferrocenylene) to orthogonally protected Ac-Ala-NH-Fn-NHBoc (7). The spectroscopic analysis (IR, NMR, CD) of the novel compounds, corroborated with DFT studies, suggests the interesting feature of the ferrocene-1,1'-diamine scaffold. The same hydrogen-bonding pattern, i.e. a 14-membered hydrogen-bonded ring, was determined both in solution and in the solid state, thus making them promising, yet simple scaffolds capable of mimicking β-sheet peptides. In vitro screening of potential anticancer activity in Hep G2 human liver carcinoma cells and Hs 578 T human breast cancer cells revealed a cytotoxic pattern for novel compounds (150-500 μM) with significantly decreased cell proliferation.
Collapse
Affiliation(s)
- Monika Kovačević
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
MORIUCHI T, HIRAO T. Self-Assemblies of Bioorganometallic Conjugates. KOBUNSHI RONBUNSHU 2016. [DOI: 10.1295/koron.2015-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Toshiyuki MORIUCHI
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Toshikazu HIRAO
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
- Institute of Industrial and Scientific Research, Osaka University
| |
Collapse
|
30
|
Han G, Ferranco A, Feng X, Chen Z, Kraatz H. Synthesis, Characterization of Some Ferrocenoyl Cysteine and Histidine Conjugates, and Their Interactions with Some Metal Ions. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guo‐Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, P. R. China, http://rsc.guet.edu.cn/RSC/public/show.aspx?par2=0014&par=864
| | - Annaleizle Ferranco
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada, http://www.utsc.utoronto.ca/~bkraatz/
| | - Xiao‐Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, P. R. China, http://rsc.guet.edu.cn/RSC/public/show.aspx?par2=0014&par=864
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, P. R. China, http://rsc.guet.edu.cn/RSC/public/show.aspx?par2=0014&par=864
| | - Heinz‐Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada, http://www.utsc.utoronto.ca/~bkraatz/
| |
Collapse
|
31
|
Sista P, Ghosh K, Martinez JS, Rocha RC. Metallo-Biopolymers: Conjugation Strategies and Applications. POLYM REV 2014. [DOI: 10.1080/15583724.2014.913063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Kokan Z, Glasovac Z, Majerić Elenkov M, Gredičak M, Jerić I, Kirin SI. “Backdoor Induction” of Chirality: Asymmetric Hydrogenation with Rhodium(I) Complexes of Triphenylphosphane-Substituted β-Turn Mimetics. Organometallics 2014. [DOI: 10.1021/om5005385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zoran Kokan
- Ruđer Bošković Institute, Bijenička
cesta 54, HR-10000 Zagreb, Croatia
| | - Zoran Glasovac
- Ruđer Bošković Institute, Bijenička
cesta 54, HR-10000 Zagreb, Croatia
| | | | - Matija Gredičak
- Ruđer Bošković Institute, Bijenička
cesta 54, HR-10000 Zagreb, Croatia
| | - Ivanka Jerić
- Ruđer Bošković Institute, Bijenička
cesta 54, HR-10000 Zagreb, Croatia
| | - Srećko I. Kirin
- Ruđer Bošković Institute, Bijenička
cesta 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
33
|
Adhikari B, Lough AJ, Barker B, Shah A, Xiang C, Kraatz HB. Bis-amino Acid Derivatives of 1,1′-Ferrocenedicarboxylic Acid: Structural, Electrochemical, and Metal Ion Binding Studies. Organometallics 2014. [DOI: 10.1021/om500032p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bimalendu Adhikari
- Department
of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, M1C 1 A4 Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 Canada
| | - Alan J. Lough
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 Canada
| | - Bryan Barker
- Department
of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, M1C 1 A4 Canada
| | - Afzal Shah
- Department
of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, M1C 1 A4 Canada
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Cuili Xiang
- Department
of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, M1C 1 A4 Canada
| | - Heinz-Bernhard Kraatz
- Department
of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, M1C 1 A4 Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 Canada
| |
Collapse
|
34
|
1′-Acetylferrocene amino acid esters and amides. A simple model for parallel β-helical peptides. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.02.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Vera JL, Rullán J, Santos N, Jiménez J, Rivera J, Santana A, Briggs J, Rheingold AL, Matta J, Meléndez E. Functionalized ferrocenes: The role of the para substituent on the phenoxy pendant group. J Organomet Chem 2014; 749:204-214. [PMID: 27453588 PMCID: PMC4957819 DOI: 10.1016/j.jorganchem.2013.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Six ferrocenecarboxylates with phenyl, 4-(1H-pyrrol-1-yl)phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, 4-iodophenyl as pendant groups were synthesized and fully characterized by spectroscopic, electrochemical and X-ray diffraction methods. The anti-proliferative activity of these complexes were investigated in hormone dependent MCF-7 breast cancer and MCF-10A normal breast cell lines, to determine the role of the para substituent on the phenoxy pendant group. The 4-fluorophenyl ferrocenecarboxylate is inactive in both cell lines while 4-(1H-pyrrol-1-yl)phenyl ferrocenecarboxylate is highly cytotoxic in both cell lines. 4-chlorophenyl and 4-bromophenyl ferrocenecarboxylates have moderate to good anti-proliferative activity in MCF-7 and low anti-proliferative activity on normal breast cell line, MCF-10A whereas the 4-iodophenyl analog is highly toxic on normal breast cell line. The phenyl ferrocenecarboxylate has proliferative effects on MCF-7 and is inactive in MCF-10A. Docking studies between the complexes and the alpha-estrogen receptor (ERα) were performed to search for key interactions which may explain the anti-proliferative activity of 4-bromophenyl ferrocenecarboxylate. Docking studies suggest the anti-proliferative activity of these ferrocenecarboxylates is attributed to the cytotoxic effects of the ferrocene group and not to anti-estrogenic effects.
Collapse
Affiliation(s)
- José L. Vera
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Jorge Rullán
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Natasha Santos
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Jesús Jiménez
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Joshua Rivera
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Alberto Santana
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Jon Briggs
- University of California-San Diego, Department of Chemistry, Urey Hall 5128, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Arnold L. Rheingold
- University of California-San Diego, Department of Chemistry, Urey Hall 5128, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Jaime Matta
- Department of Pharmacology, Toxicology and Physiology, Ponce School of Medicine and Health Sciences, Ponce 00732-7004, Puerto Rico
| | - Enrique Meléndez
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| |
Collapse
|
36
|
The Mannich Route to Amino-Functionalized [3]Ferrocenophanes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2014. [DOI: 10.1016/b978-0-12-800976-5.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
37
|
Patti A, Pedotti S. Synthesis of Hybrid Ferrocene-Proline Amides as Active Catalysts for Asymmetric Aldol Reactions in Water. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Kokan Z, Kirin SI. “Backdoor Induction” of Chirality in Asymmetric Hydrogenation with Rhodium(I) Complexes of Amino Acid Substituted Triphenylphosphane Ligands. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Gorges J, Ullrich A, Kazmaier U. Straightforward Approach to Ferrocenyl Amino Acids and Peptides by Allylic Alkylation. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo
| |
Collapse
|
41
|
Kovač V, Semenčić MČ, Molčanov K, Sabljić I, Iveković D, Žinić M, Rapić V. Synthesis and structure of bis- and tris-ferrocene containing N-methylimide foldamers. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Beheshti S, Martić S, Kraatz HB. Hierarchical Organization of Ferrocene-Peptides. Chemistry 2012; 18:9099-105. [DOI: 10.1002/chem.201200666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/24/2012] [Indexed: 01/09/2023]
|
43
|
Moriuchi T, Morimoto K, Sakamoto Y, Hirao T. Molecular Structures of Dipeptide–Palladium(II) Conjugated Complexes. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Toshiyuki Moriuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada‐oka, Suita, Osaka 565‐0871, Japan, Fax: +81‐6‐6879‐7415
| | - Kunihiro Morimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada‐oka, Suita, Osaka 565‐0871, Japan, Fax: +81‐6‐6879‐7415
| | - Yuki Sakamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada‐oka, Suita, Osaka 565‐0871, Japan, Fax: +81‐6‐6879‐7415
| | - Toshikazu Hirao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada‐oka, Suita, Osaka 565‐0871, Japan, Fax: +81‐6‐6879‐7415
| |
Collapse
|
44
|
Förster C, Kovačević M, Barišić L, Rapić V, Heinze K. Ferrocenyl-Labeled Sugar Amino Acids: Conformation and Properties. Organometallics 2012. [DOI: 10.1021/om300174p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christoph Förster
- Institute
of Inorganic and Analytical
Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Monika Kovačević
- Department of Chemistry and
Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb,
Croatia
| | - Lidija Barišić
- Department of Chemistry and
Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb,
Croatia
| | - Vladimir Rapić
- Department of Chemistry and
Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb,
Croatia
| | - Katja Heinze
- Institute
of Inorganic and Analytical
Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
45
|
|
46
|
Barišić L, Kovačević M, Mamić M, Kodrin I, Mihalić Z, Rapić V. Synthesis and Conformational Analysis of Methyl N-Alanyl-1′-aminoferrocene-1-carboxylate. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Kokan Z, Kirin SI. The application of “backdoor induction” in bioinspired asymmetric catalysis. RSC Adv 2012. [DOI: 10.1039/c2ra20598j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Vera J, Gao LM, Santana A, Matta J, Meléndez E. Vectorized ferrocenes with estrogens and vitamin D2: synthesis, cytotoxic activity and docking studies. Dalton Trans 2011; 40:9557-65. [PMID: 21850331 PMCID: PMC4461443 DOI: 10.1039/c1dt10995b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three ferrocene complexes vectorized with estrogens and vitamin D(2) were synthesized and fully characterized by spectroscopic, electrochemical and computational methods. The synthesis of these esters was accomplished by reacting ferrocenoyl chloride with the corresponding ROH groups (R = ergocalciferol, estradiol, estrone). The cytotoxicity of these complexes in HT-29 colon cancer and MCF-7 breast cancer cell lines was investigated in vitro. Only ferrocenoyl 17β-hydroxy-estra-1,3,5(10)-trien-3-olate showed good cytotoxic activity in both cell lines, exceeding those of ferrocenium and ferrocene. In MCF-7, ferrocenoyl 17β-hydroxy-estra-1,3,5(10)-trien-3-olate exhibited remarkable IC(50), in the low micromolar range. This may be attributed to the presence of the estradiol vector. Docking studies between alpha-estrogen receptor ligand binding site and ferrocenoyl 17β-hydroxy-estra-1,3,5(10)-trien-3-olate revealed some key hydrophobic interactions that might explain the cytotoxic activity of this ester.
Collapse
Affiliation(s)
- José Vera
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayaguez, PR, 00681
| | - Li Ming Gao
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayaguez, PR, 00681
| | - Alberto Santana
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayaguez, PR, 00681
| | - Jaime Matta
- Department of Pharmacology, Toxicology and Physiology, Ponce School of Medicine and Health Sciences, Ponce, PR, 00732-7004
| | - Enrique Meléndez
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayaguez, PR, 00681
| |
Collapse
|
49
|
Beck W. Metal Complexes of Biologically Important Ligands, CLXXVI.[1] Formation of Peptides within the Coordination Sphere of Metal Ions and of Classical and Organometallic Complexes and Some Aspects of Prebiotic Chemistry. Z Anorg Allg Chem 2011. [DOI: 10.1002/zaac.201100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Synthesis and characterization of unsymmetrical disubstituted ferrocenes possessing hydroxyl group as a new donor/acceptor of hydrogen bond. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.01.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|