1
|
Comparison of urinary and serum levels of di-22:6-bis(monoacylglycerol)phosphate as noninvasive biomarkers of phospholipidosis in rats. Toxicol Lett 2012; 213:285-91. [DOI: 10.1016/j.toxlet.2012.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/12/2012] [Accepted: 07/14/2012] [Indexed: 12/18/2022]
|
2
|
Thompson KL, Haskins K, Rosenzweig BA, Stewart S, Zhang J, Peters D, Knapton A, Rouse R, Mans D, Colatsky T. Comparison of the Diagnostic Accuracy of Di-22:6-Bis(monoacylglycerol)Phosphate and Other Urinary Phospholipids for Drug-Induced Phospholipidosis or Tissue Injury in the Rat. Int J Toxicol 2012; 31:14-24. [DOI: 10.1177/1091581811430167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cationic amphiphilic drugs and aminoglycoside antibiotics can induce phospholipidosis (PLD), an abnormal accumulation of phospholipids in lysosome-derived vesicles, in preclinical studies. The incidence of PLD in patients and its clinical relevance are difficult to assess without noninvasive biomarkers. Di-docosahexaenoyl bis(monoacylglycerol)phosphate (di-22:6-BMP) is a phospholipid that is enriched in lysosomal membranes and a proposed urinary biomarker of drug-induced PLD. The specificity of di-22:6-BMP for PLD was compared to other phospholipid species that can increase in urine with nephrotoxicity. Using liquid chromatography coupled to mass spectrometry, 12 phospholipids were assayed in the urine of rats treated with drugs that induced PLD or caused renal or skeletal muscle injury. In receiver operating curve analyses, urinary di-22:6-BMP was a significantly better predictor of PLD and the least predictive of tissue injury of the phospholipids assayed. The data provide evidence supporting the use of di-22:6-BMP as a urinary biomarker of PLD in rats.
Collapse
Affiliation(s)
- Karol L. Thompson
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Kylie Haskins
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
- Present address: Emergent Biosolutions, Rockville, MD, USA
| | - Barry A. Rosenzweig
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Sharron Stewart
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Jun Zhang
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - David Peters
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Alan Knapton
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Rodney Rouse
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Daniel Mans
- Division of Pharmaceutical Analysis, CDER, FDA, St. Louis, MO, USA
| | - Thomas Colatsky
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| |
Collapse
|
3
|
Bernstein PR, Ciaccio P, Morelli J. Drug-Induced Phospholipidosis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1016/b978-0-12-386009-5.00001-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Pelletier DJ, Gehlhaar D, Tilloy-Ellul A, Johnson TO, Greene N. Evaluation of a Published in Silico Model and Construction of a Novel Bayesian Model for Predicting Phospholipidosis Inducing Potential. J Chem Inf Model 2007; 47:1196-205. [PMID: 17428028 DOI: 10.1021/ci6004542] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The identification of phospholipidosis (PPL) during preclinical testing in animals is a recognized problem in the pharmaceutical industry. Depending on the intended indication and dosing regimen, PPL can delay or stop development of a compound in the drug discovery process. Therefore, for programs and projects where a PPL finding would have adverse impact on the success of the project, it would be desirable to be able to rapidly identify and screen out those compounds with the potential to induce PPL as early as possible. Currently, electron microscopy is the gold standard method for identifying phospholipidosis, but it is low-throughput and resource-demanding. Therefore, a low-cost, high-throughput screening strategy is required to overcome these limitations and be applicable in the drug discovery cycle. A recent publication by Ploemen et al. (Exp. Toxicol. Pathol. 2004, 55, 347-55) describes a method using the computed physicochemical properties pKa and ClogP as part of a simple calculation to determine a compound's potential to induce PPL. We have evaluated this method using a set of 201 compounds, both public and proprietary, with known in vivo PPL-inducing ability and have found the overall concordance to be 75%. We have proposed simple modifications to the model rules, which improve the model's concordance to 80%. Finally, we describe the development of a Bayesian model using the same compound set and found its overall concordance to be 83%.
Collapse
Affiliation(s)
- Dennis J Pelletier
- Toxicoinformatics Group, Pfizer Global Research, Groton, Connecticut 06340, USA.
| | | | | | | | | |
Collapse
|
5
|
Abstract
The chapter describes different aspects of the respiratory tract. In preclinical safety studies, pathologies of the respiratory system can be a result of an intercurrent disease or can be induced by systemically administered drugs. Intranasal or inhalation modes of therapy pose particular challenges in terms of the formulations and technologies required to administer a drug. A complex technology is developed to support the assessment of adverse effects of inhaled substances in rodent and nonrodent species, and the extrapolation of experimental findings to humans. The nasal chambers are the structures that are first to be subjected to the effects of inhaled substances, whether microorganisms or chemical substances. In rodents, the relatively small size of the nose and nasal sinuses facilitates a histological examination. Findings show that infectious agents cause inflammation in the nose and nasal sinuses, and this may be associated with inflammation in the conjunctiva, the middle ear, and the oral cavity. It has been observed that a particular response of the rodent nasal mucosa to some irritant substances, including pharmaceutical agents, is the formation of rounded eosinophilic inclusions in the cytoplasm of sustentacular cells of the olfactory epithelium, and to a lesser extent in respiratory and glandular epithelial cells.
Collapse
|
6
|
Reasor MJ, Hastings KL, Ulrich RG. Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 2006; 5:567-83. [PMID: 16774494 DOI: 10.1517/14740338.5.4.567] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Numerous drugs containing a cationic amphiphilic structure are capable of inducing phospholipidosis in cells under conditions of in vivo administration or ex vivo incubation. The principal characteristics of this condition include the reversible accumulation of polar phospholipids in association with the development of unicentric or multicentric lamellated bodies within cells. There is an abundance of data providing an understanding of potential mechanisms for the induction of phospholipidosis; however, the process is likely to be complex and may differ from one drug to another. The functional consequences of the presence of this condition on cellular or tissue function are not well understood. The general consensus is that the condition is an adaptive response rather than a toxicological manifestation; however, additional studies to examine this question are needed. Until this issue is resolved, concerns about phospholipidosis will continue to exist at regulatory agencies. Procedures for the screening of potential phospholipogenic candidate compounds are available. In contrast, a clear need exists for the identification of valid biomarkers to assess the development of phospholipidosis in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mark J Reasor
- Robert C Byrd Health Sciences Center of West Virginia University, Department of Physiology and Pharmacology, P.O. Box 9229, Morgantown, WV 26506, USA.
| | | | | |
Collapse
|
7
|
Prince JS, Kohen C, Kohen E, Jimenez J, Brada Z. Direct connection between myelinosomes, endoplasmic reticulum and nuclear envelope in mouse hepatocytes grown with the amphiphilic drug, quinacrine. Tissue Cell 1993; 25:103-10. [PMID: 8385812 DOI: 10.1016/0040-8166(93)90067-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mouse hepatocytes grown in 4 microM quinacrine had numerous myelinosomes which were directly connected to expanded cisternae of the rough endoplasmic reticulum (RER). The cisternae of the RER either subtended the electron transparent space of the myelinosome, expanded to form the outer membrane of the myelinosome or penetrated into it. Material of low electron density was frequently seen within the area where the cisternae penetrated into the electron transparent space of the myelinosome. Myelinosomes were also associated with the nuclear envelope in a pattern similar to that of the RER. Quinacrine appears to bind with the phospholipids of the membranes of the endoplasmic reticulum and nuclear envelope and this drug-lipid complex is then moved into myelinosomes effectively removing the drug from the cell.
Collapse
Affiliation(s)
- J S Prince
- Biology Department, University of Miami, Coral Gables, Florida 33124
| | | | | | | | | |
Collapse
|
8
|
Lewis JH, Mullick F, Ishak KG, Ranard RC, Ragsdale B, Perse RM, Rusnock EJ, Wolke A, Benjamin SB, Seeff LB. Histopathologic analysis of suspected amiodarone hepatotoxicity. Hum Pathol 1990; 21:59-67. [PMID: 2403975 DOI: 10.1016/0046-8177(90)90076-h] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This analysis of the morphology of suspected amiodarone (AD) liver disease is based on a study of liver specimens from 17 individuals. Changes similar to alcoholic liver injury were commonly seen. Steatosis, both macrovesicular and microvesicular, was the most frequent histopathologic feature. Ballooning of hepatocytes, Mallory bodies, and fibrosis were also common. Other changes included nuclear unrest, acidophilic bodies, foam cells, glycogenated nuclei, and portal inflammation. Characteristic lamellar lysosomal inclusion bodies representing phospholipidosis were found in two of 14 specimens studied ultrastructurally. These changes of pseudoalcoholic hepatitis and/or phospholipidosis were present in liver specimens from asymptomatic, anicteric patients with mild elevations in serum aminotransferase or alkaline phosphatase values with or without hepatomegaly, as well as in patients with clinically overt symptoms of hepatotoxicity. Phospholipidosis appears to be a generalized systemic effect of cationic amphophilic compounds, such as AD. The cytotoxic pseudoalcoholic changes appear to be an independent phenomenon in susceptible patients, whom we speculate may have been unable or less able to metabolize AD through normal pathways. The true incidence of hepatic injury from AD remains to be determined from prospective evaluations of pretreatment and follow-up liver biopsies.
Collapse
Affiliation(s)
- J H Lewis
- Division of Gastroenterology, Georgetown University School of Medicine, Washington, DC 20007
| | | | | | | | | | | | | | | | | | | |
Collapse
|