1
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Mitochondrial respiratory chain complex I dysfunction induced by N-methyl carbamate ex vivo can be alleviated with a cell-permeable succinate prodrug. Toxicol In Vitro 2020; 65:104794. [PMID: 32057835 PMCID: PMC7152559 DOI: 10.1016/j.tiv.2020.104794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/28/2020] [Accepted: 02/11/2020] [Indexed: 01/09/2023]
Abstract
Human exposure to carbamates and organophosphates poses a serious threat to society and current pharmacological treatment is solely targeting the compounds' inhibitory effect on acetylcholinesterase. This toxicological pathway, responsible for acute symptom presentation, can be counteracted with currently available therapies such as atropine and oximes. However, there is still significant long-term morbidity and mortality. We propose mitochondrial dysfunction as an additional cellular mechanism of carbamate toxicity and suggest pharmacological targeting of mitochondria to overcome acute metabolic decompensation. Here, we investigated the effects on mitochondrial respiratory function of N-succinimidyl N-methylcarbamate (NSNM), a surrogate for carbamate insecticides, ex vivo in human platelets. Characterization of the mitochondrial toxicity of NSNM in platelets revealed a dose-dependent decrease in mitochondral oxygen consumption linked to respiratory chain complex I while the pathway through complex II was unaffected. In intact platelets, an increase in lactate production was seen, due to a compensatory shift towards anaerobic metabolism. Treatment with a cell-permeable succinate prodrug restored the NSNM-induced (100 μM) decrease in mitochondrial oxygen consumption and normalized lactate production to the level of control. We have demonstrated that carbamate-induced mitochondrial complex I dysfunction can be alleviated with a mitochondrial targeted countermeasure: a cell-permeable prodrug of the mitochondrial complex II substrate succinate.
Collapse
|
3
|
Nick HJ, Rioux JS, Veress LA, Bratcher PE, Bloomquist LA, Anantharam P, Croutch CR, Tuttle RS, Peters E, Sosna W, White CW. Alleviation of methyl isocyanate-induced airway obstruction and mortality by tissue plasminogen activator. Ann N Y Acad Sci 2020; 1479:134-147. [PMID: 32233099 DOI: 10.1111/nyas.14344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/23/2022]
Abstract
Methyl isocyanate (MIC, "Bhopal agent") is a highly reactive, toxic industrial chemical. Inhalation of high levels (500-1000 ppm) of MIC vapor is almost uniformly fatal. No therapeutic interventions other than supportive care have been described that can delay the onset of illness or death due to MIC. Recently, we found that inhalation of MIC caused the appearance of activated tissue factor in circulation with subsequent activation of the coagulation cascade. Herein, we report that MIC exposure (500 ppm for 30 min, nose-only) caused deposition of fibrin-rich casts in the conducting airways resulting in respiratory failure and death within 24 h in a rat model (LC90-100 ). We thus investigated the effect of airway delivery of the fibrinolytic agent tissue plasminogen activator (tPA) on mortality and morbidity in this model. Intratracheal administration of tPA was initiated 11 h post MIC exposure and repeated every 4 h for the duration of the study. Treatment with tPA afforded nearly 60% survival at 24 h post MIC exposure and was associated with decreased airway fibrin casts, stabilization of hypoxemia and respiratory distress, and improved acidosis. This work supports the potential of airway-delivered tPA therapy as a useful countermeasure in stabilizing victims of high-level MIC exposure.
Collapse
Affiliation(s)
- Heidi J Nick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jacqueline S Rioux
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Livia A Veress
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Preston E Bratcher
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Leslie A Bloomquist
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | | | | | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Mishra PK, Raghuram GV, Panwar H, Jain D, Pandey H, Maudar KK. Mitochondrial oxidative stress elicits chromosomal instability after exposure to isocyanates in human kidney epithelial cells. Free Radic Res 2010; 43:718-28. [PMID: 19513903 DOI: 10.1080/10715760903037699] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of oxidative stress is often attributed in environmental renal diseases. Isocyanates, a ubiquitous chemical group with diverse industrial applications, are known to undergo bio-transformation reactions upon accidental and occupational exposure. This study delineates the role of isocyanate-mediated mitochondrial oxidative stress in eliciting chromosomal instability in cultured human kidney epithelial cells. Cells treated with 0.005 microM concentration of methyl isocyanate displayed morphological transformation and stress-induced senescence. Along the time course, an increase in DCF fluorescence indicative of oxidative stress, depletion of superoxide dismutase (SOD) and glutathione reductase (GR) and consistent accumulation of 8-oxo-dG were noticed. Thus, endogenous oxidative stress resulted in aberrant expression of p53, p21, cyclin E and CDK2 proteins, suggestive of deregulated cell cycle, chromosomal aberrations, centromeric amplification, aneuploidy and genomic instability.
Collapse
|
5
|
Kerger H, Dodidou P, Passani-Kruppa D, Grüttner J, Birmelin M, Volz A, Waschke KF. Excessive methaemoglobinaemia and multi-organ failure following 4-DMAP antidote therapy. Resuscitation 2005; 66:231-5. [PMID: 15950359 DOI: 10.1016/j.resuscitation.2005.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 01/24/2005] [Accepted: 02/11/2005] [Indexed: 10/25/2022]
Abstract
This report describes the clinical history of a patient intoxicated with methyl isocyanate (MIC), a toxic agent first receiving attention in 1984 after a mass accident in a pesticide plant in Bhopal, India, and treated with the cyanide-specific antidote 4-DMAP. The numerous clinical conditions requiring 39-day intensive care treatment included ARDS, renal and hepatic failure, haemolysis, bone marrow depression, septic encephalopathy and critical illness polyneuropathy. The most outstanding condition, however, was a methaemoglobinemia of 86.7%, which was predominantly related to the use of 4-DMAP, although uptake of MIC may have been a significant contributing factor. Since significant cyanide intoxication could be excluded clinically and by laboratory testing in the initial phase of emergency treatment, most of the clinical effects were due to the side-effects of the antidote therapy. Due to intensive therapy, the patient survived without any neurological or organ deficit. This case shows that antidotes should be used cautiously in cases where uncertainties about the nature of the underlying toxic agent exist. This may prevent severe side-effects associated with antidote therapy, e.g. 4-DMAP, if there is-as in our case-a mismatch between the toxic agent and the antidote.
Collapse
Affiliation(s)
- Heinz Kerger
- Clinic for Anesthesiology and Critical Care Medicine, Evangelical Diakony Hospital, Wirthstr. 11, D-79110 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Matecki S, Py G, Lambert K, Peyreigne C, Mercier J, Prefaut C, Ramonatxo M. Effect of prolonged undernutrition on rat diaphragm mitochondrial respiration. Am J Respir Cell Mol Biol 2002; 26:239-45. [PMID: 11804876 DOI: 10.1165/ajrcmb.26.2.4581] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that undernutrition induces an impairment of the respiratory muscle function in patients with chronic lung disease. To explain this, we hypothesized that undernutrition could decrease oxidative metabolism in the diaphragm. We therefore examined the effect of prolonged undernutrition on diaphragm mitochondrial oxygen uptake with pyruvate and palmitate as substrates in adult rats. Ten rats served as controls (CTL). Ten nutritionally deprived rats (ND) received 40% of their estimated daily nutrition. Five weeks of undernutrition induced a 33% decrease in state 3 respiration with pyruvate plus malate as substrate (993 +/- 171 versus 1488 +/- 167 nmol atomic O/mg/min, P < 0.01) and a 39% decrease with palmitate plus malate (516 +/- 89 versus 850 +/- 165 nmol atomic O/mg/min, P < 0.05). With succinate plus rotenone, there was no significant difference in the respiratory rate between groups. In the ND group, we found a significant decrease in citrate synthase activity (P < 0.01), and also in reduced nicotinamine adenine dinucleotide (NADH) dehydrogenase activity (P < 0.05), which cannot alone induce such a state 3 respiratory decrease. This showed that undernutrition in rat diaphragm does not induce an alteration in protein complexes I, II, III, and IV, or the F complex containing the mitochondrial ATPase of the electron transport chain. In conclusion, the main result of this study was that prolonged undernutrition induced a decrease in mitochondrial respiration secondary to a significant reduction in NADH generation by the Krebs cycle, which may affect respiratory muscle function with implications for patient care.
Collapse
Affiliation(s)
- Stefan Matecki
- Laboratoire de Physiologie des Interactions, Service Central de Physiologie Clinique, Hôpital Arnaud de Villeneuve, 34295 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
7
|
Benaiges A, Armengol R, Mateu B, Sagristá ML, Mora M. Effect of germinated seeds extract on the respiratory activity of human skin fibroblasts and sheep liver mitochondria. Influence on cell viability and proliferation and their uselfulness as active cosmetic ingredient. Int J Cosmet Sci 2001; 23:245-55. [DOI: 10.1046/j.1467-2494.2001.00086.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Abstract
The present study describes the effect of methyl isocyanate (MIC) on rabbit cardiac microsomal Na+, K(+)-ATPase. Addition of MIC in vitro resulted in dose-dependent inhibition of Na+, K(+)-ATPase, Mg(2+)-ATPase and K(+)-activated p-nitrophenyl phosphatase (K(+)-PNPPase). Activation of Na+, K(+)-ATPase by ATP in the presence of MIC showed a decrease in Vmax with no change in Km. Similarly, activation of K+ PNPPase by PNPP in the presence of MIC showed a decrease in Vmax with no change in Km. The circular dichroism spectral studies revealed that MIC interaction with Na+, K(+)-ATPase led to a conformation of the protein wherein the substrates Na+ and K+ were no longer able to bind at the Na(+)- and K(+)-activation sites. The data suggest that the inhibition of Na+, K(+)-ATPase was non-competitive and occurred by interference with the dephosphorylation of the enzyme-phosphoryl complex.
Collapse
Affiliation(s)
- K Jeevaratnam
- Division of Pharmacology and Toxicology, Defense Research and Development Establishment, India
| |
Collapse
|
9
|
Palmeira CM, Moreno AJ, Madeira VM. Mitochondrial bioenergetics is affected by the herbicide paraquat. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1229:187-92. [PMID: 7727498 DOI: 10.1016/0005-2728(94)00202-g] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The potential toxicity of the herbicide paraquat (1,1-dimethyl-4,4'-bipyridylium dichloride) was tested in bioenergetic functions of isolated rat liver mitochondria. Paraquat increases the rate of State 4 respiration, doubling at 10 mM, indicating uncoupling effects. Additionally, State 3 respiration is depressed by about 15%, at 10 mM paraquat, whereas uncoupled respiration in the presence of CCCP is depressed by about 30%. Furthermore, paraquat partially inhibits the ATPase activity through a direct effect on this enzyme complex. However, at high concentrations (5-10 mM), the ATPase activity is stimulated, probably as consequence of the described uncoupling effect. Depression of respiratory activity is mediated through partial inhibitions of mitochondrial complexes III and IV. Paraquat depresses delta psi as a function of herbicide concentration. In addition, the depolarization induced by ADP is decreased and repolarization is biphasic suggesting a double effect. Repolarization resumes at a level consistently higher than the initial level before ADP addition, for paraquat concentrations up to 10 mM. This particular effect is clear at 1 mM paraquat and tends to fade out with increasing concentrations of the herbicide.
Collapse
Affiliation(s)
- C M Palmeira
- Department of Zoology, University of Coimbra, Portugal
| | | | | |
Collapse
|
10
|
Varma DR, Guest I. The Bhopal accident and methyl isocyanate toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1993; 40:513-29. [PMID: 8277516 DOI: 10.1080/15287399309531816] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Bhopal accident, the world's worst industrial disaster, in which nearly 40 metric tons of methyl isocyanate (MIC) was released from the Union Carbide pesticide plant, occurred nearly 10 yr ago during the night of December 2 and 3, 1984. Over 3000 people residing in areas adjacent to the plant died of pulmonary edema within 3 d of the accident. Follow-up studies revealed pulmonary, ophthalmic, reproductive, immunologic, neurological, and hematologic toxicity among the survivors. Despite high reactivity, MIC can traverse cell membranes and reach distant organs, perhaps as a reversible conjugate with glutathione, which may explain some of the systemic effects of MIC. MIC can be degraded as a result of pyrolysis and interaction with water, but none of the breakdown products can duplicate the toxicity observed in Bhopal and in animal models. MIC may be the most toxic of all isocyanates because of its very high vapor pressure relative to other isocyanates and because of its ability to exert toxic effects on numerous organ systems.
Collapse
Affiliation(s)
- D R Varma
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | |
Collapse
|
11
|
Varma DR, Guest I. The Bhopal accident and methyl isocyanate toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1993; 40:513-529. [PMID: 8277516 DOI: 10.1016/b978-012088523-7/50008-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Bhopal accident, the world's worst industrial disaster, in which nearly 40 metric tons of methyl isocyanate (MIC) was released from the Union Carbide pesticide plant, occurred nearly 10 yr ago during the night of December 2 and 3, 1984. Over 3000 people residing in areas adjacent to the plant died of pulmonary edema within 3 d of the accident. Follow-up studies revealed pulmonary, ophthalmic, reproductive, immunologic, neurological, and hematologic toxicity among the survivors. Despite high reactivity, MIC can traverse cell membranes and reach distant organs, perhaps as a reversible conjugate with glutathione, which may explain some of the systemic effects of MIC. MIC can be degraded as a result of pyrolysis and interaction with water, but none of the breakdown products can duplicate the toxicity observed in Bhopal and in animal models. MIC may be the most toxic of all isocyanates because of its very high vapor pressure relative to other isocyanates and because of its ability to exert toxic effects on numerous organ systems.
Collapse
Affiliation(s)
- D R Varma
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | |
Collapse
|