1
|
Ait Laaradia M, Laadraoui J, Ettitaou A, Agouram F, Oubella K, Moubtakir S, Aboufatima R, Chait A. Variation in venom yield, protein concentration and regeneration toxicity in the scorpion Buthus lienhardi. Toxicon 2025; 255:108254. [PMID: 39862930 DOI: 10.1016/j.toxicon.2025.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Scorpion venom research aims to develop treatments for dangerous species and identify candidates for new drugs. The extraction of high-quality venom, which is essential, requires mastery of the extraction and maintenance of scorpions. It is in this perspective that we have undertaken this present work which aims to contribute to scientifically mastering venom yields and the factors that influence them in scorpions. Two experiments were conducted. In the first, the volume yield and protein concentration of venom from 121 Buthus lienhardi scorpions were examined according to their size, sex, mass and place of origin. In the second experiment, the quality and quantity of venom regenerated over 30 days after extraction were measured on 80 scorpions, with samples collected at different time points (8 H, 16 H, 24 H, 32 H, 48 H, 3 days (D), 7 D, 11 D, 15 D and 30 D). In addition, the toxicity of venom samples collected from mice at different stages was evaluated. The volume of venom extracted by electrical stimulation was linearly related to body length. Body length and protein concentration were not correlated. When considering the multiple influences on production volume in Buthus lienhardi, the most important factor was body length, but volume was also positively associated with mesosome length and relative body mass. Male scorpions produced a greater volume of venom with a higher protein concentration than females. For venom regeneration, the volume of venom extracted after depletion showed a significant increase over the days, reaching a complete recovery by day 11. In contrast, protein regeneration and toxicity were slower than that of volume, with a complete recovery observed by day 15. This study should lead to the design of better venom extraction protocols for several studies such as treatment development, basic research and especially for drug development.
Collapse
Affiliation(s)
- Mehdi Ait Laaradia
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco; Higher Institute of Nursing Professions and Health Techniques, Ministry of Health and Social Protection, Beni Mellal, Morocco.
| | - Jawad Laadraoui
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco; Laboratory of Physiopathology, Genetic Molecular and Biotechnology, Faculty of Sciences, Aïn Chock, Hassan II University, Casablanca, Morocco
| | - Amina Ettitaou
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Fatimzahra Agouram
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Khadija Oubella
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Soad Moubtakir
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Rachida Aboufatima
- Laboratory of Biological Engineering, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| |
Collapse
|
2
|
de Melo-Braga MN, Moreira RDS, Gervásio JHDB, Felicori LF. Overview of protein posttranslational modifications in Arthropoda venoms. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210047. [PMID: 35519418 PMCID: PMC9036706 DOI: 10.1590/1678-9199-jvatitd-2021-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
Accidents with venomous animals are a public health issue worldwide. Among the species involved in these accidents are scorpions, spiders, bees, wasps, and other members of the phylum Arthropoda. The knowledge of the function of proteins present in these venoms is important to guide diagnosis, therapeutics, besides being a source of a large variety of biotechnological active molecules. Although our understanding about the characteristics and function of arthropod venoms has been evolving in the last decades, a major aspect crucial for the function of these proteins remains poorly studied, the posttranslational modifications (PTMs). Comprehension of such modifications can contribute to better understanding the basis of envenomation, leading to improvements in the specificities of potential therapeutic toxins. Therefore, in this review, we bring to light protein/toxin PTMs in arthropod venoms by accessing the information present in the UniProtKB/Swiss-Prot database, including experimental and putative inferences. Then, we concentrate our discussion on the current knowledge on protein phosphorylation and glycosylation, highlighting the potential functionality of these modifications in arthropod venom. We also briefly describe general approaches to study "PTM-functional-venomics", herein referred to the integration of PTM-venomics with a functional investigation of PTM impact on venom biology. Furthermore, we discuss the bottlenecks in toxinology studies covering PTM investigation. In conclusion, through the mining of PTMs in arthropod venoms, we observed a large gap in this field that limits our understanding on the biology of these venoms, affecting the diagnosis and therapeutics development. Hence, we encourage community efforts to draw attention to a better understanding of PTM in arthropod venom toxins.
Collapse
Affiliation(s)
- Marcella Nunes de Melo-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raniele da Silva Moreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - João Henrique Diniz Brandão Gervásio
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Fingermann M, de Roodt AR, Cascone O, Miranda MV. Biotechnological potential of Phospholipase D for Loxosceles antivenom development. Toxicon X 2020; 6:100036. [PMID: 32550591 PMCID: PMC7286061 DOI: 10.1016/j.toxcx.2020.100036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/26/2023] Open
Abstract
Loxoscelism is one of the most important forms of araneism in South America. The Health Authorities from countries with the highest incidence and longer history in registering loxoscelism cases indicate that specific antivenom should be administered during the first hours after the accident, especially in the presence or at risk of the most severe clinical outcome. Current antivenoms are based on immunoglobulins or their fragments, obtained from plasma of hyperimmunized horses. Antivenom has been produced using the same traditional techniques for more than 120 years. Although the whole composition of the spider venom remains unknown, the discovery and biotechnological production of the phospholipase D enzymes represented a milestone for the knowledge of the physiopathology of envenomation and for the introduction of new innovative tools in antivenom production. The fact that this protein is a principal toxin of the venom opens the possibility of replacing the use of whole venom as an immunogen, an attractive alternative considering the laborious techniques and low yields associated with venom extraction. This challenge warrants technological innovation to facilitate production and obtain more effective antidotes. In this review, we compile the reported studies, examining the advances in the expression and application of phospholipase D as a new immunogen and how the new biotechnological tools have introduced some degree of innovation in this field.
Collapse
Affiliation(s)
- Matías Fingermann
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina
| | - Adolfo Rafael de Roodt
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Área de Zootoxicología, Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, 2155, (1113) Buenos Aires, Argentina
| | - Osvaldo Cascone
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina.,Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
| | - María Victoria Miranda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina.,Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
| |
Collapse
|
4
|
Chaves-Moreira D, Senff-Ribeiro A, Wille ACM, Gremski LH, Chaim OM, Veiga SS. Highlights in the knowledge of brown spider toxins. J Venom Anim Toxins Incl Trop Dis 2017; 23:6. [PMID: 28194160 PMCID: PMC5299669 DOI: 10.1186/s40409-017-0097-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/24/2017] [Indexed: 12/11/2022] Open
Abstract
Brown spiders are venomous arthropods that use their venom for predation and defense. In humans, bites of these animals provoke injuries including dermonecrosis with gravitational spread of lesions, hematological abnormalities and impaired renal function. The signs and symptoms observed following a brown spider bite are called loxoscelism. Brown spider venom is a complex mixture of toxins enriched in low molecular mass proteins (4-40 kDa). Characterization of the venom confirmed the presence of three highly expressed protein classes: phospholipases D, metalloproteases (astacins) and insecticidal peptides (knottins). Recently, toxins with low levels of expression have also been found in Loxosceles venom, such as serine proteases, protease inhibitors (serpins), hyaluronidases, allergen-like toxins and histamine-releasing factors. The toxin belonging to the phospholipase-D family (also known as the dermonecrotic toxin) is the most studied class of brown spider toxins. This class of toxins single-handedly can induce inflammatory response, dermonecrosis, hemolysis, thrombocytopenia and renal failure. The functional role of the hyaluronidase toxin as a spreading factor in loxoscelism has also been demonstrated. However, the biological characterization of other toxins remains unclear and the mechanism by which Loxosceles toxins exert their noxious effects is yet to be fully elucidated. The aim of this review is to provide an insight into brown spider venom toxins and toxicology, including a description of historical data already available in the literature. In this review article, the identification processes of novel Loxosceles toxins by molecular biology and proteomic approaches, their biological characterization and structural description based on x-ray crystallography and putative biotechnological uses are described along with the future perspectives in this field.
Collapse
Affiliation(s)
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR Brazil
| | - Ana Carolina Martins Wille
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR Brazil.,Department of Structural and Molecular Biology, State University of Ponta Grossa (UEPG), Ponta Grossa, PR Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR Brazil
| | - Olga Meiri Chaim
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR Brazil
| |
Collapse
|
5
|
Cooper AM, Fox GA, Nelsen DR, Hayes WK. Variation in venom yield and protein concentration of the centipedes Scolopendra polymorpha and Scolopendra subspinipes. Toxicon 2014; 82:30-51. [PMID: 24548696 DOI: 10.1016/j.toxicon.2014.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/14/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Venom generally comprises a complex mixture of compounds representing a non-trivial metabolic expense. Accordingly, natural selection should fine-tune the amount of venom carried within an animal's venom gland(s). The venom supply of scolopendromorph centipedes likely influences their venom use and has implications for the severity of human envenomations, yet we understand very little about their venom yields and the factors influencing them. We investigated how size, specifically body length, influenced volume yield and protein concentration of electrically extracted venom in Scolopendra polymorpha and Scolopendra subspinipes. We also examined additional potential influences on yield in S. polymorpha, including relative forcipule size, relative mass, geographic origin (Arizona vs. California), sex, time in captivity, and milking history. Volume yield was linearly related to body length, and S. subspinipes yielded a larger length-specific volume than S. polymorpha. Body length and protein concentration were uncorrelated. When considering multiple influences on volume yield in S. polymorpha, the most important factor was body length, but yield was also positively associated with relative forcipule length and relative body mass. S. polymorpha from California yielded a greater volume of venom with a higher protein concentration than conspecifics from Arizona, all else being equal. Previously milked animals yielded less venom with a lower protein concentration. For both species, approximately two-thirds of extractable venom was expressed in the first two pulses, with remaining pulses yielding declining amounts, but venom protein concentration did not vary across pulses. Further study is necessary to ascertain the ecological significance of the factors influencing venom yield and how availability may influence venom use.
Collapse
Affiliation(s)
- Allen M Cooper
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA.
| | - Gerad A Fox
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| | - David R Nelsen
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| | - William K Hayes
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| |
Collapse
|
6
|
Vassilevski AA, Kozlov SA, Grishin EV. Molecular diversity of spider venom. BIOCHEMISTRY (MOSCOW) 2010; 74:1505-34. [PMID: 20210706 DOI: 10.1134/s0006297909130069] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spider venom, a factor that has played a decisive role in the evolution of one of the most successful groups of living organisms, is reviewed. Unique molecular diversity of venom components including substances of variable structure (from simple low molecular weight compounds to large multidomain proteins) with different functions is considered. Special attention is given to the structure, properties, and biosynthesis of toxins of polypeptide nature.
Collapse
Affiliation(s)
- A A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
7
|
Pace LB, Vetter RS. Brown recluse spider (Loxosceles reclusa) envenomation in small animals. J Vet Emerg Crit Care (San Antonio) 2009; 19:329-36. [PMID: 25164631 DOI: 10.1111/j.1476-4431.2009.00440.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To provide a comprehensive review of relevant literature regarding the brown recluse spider (BRS) and to define those criteria that must be satisfied before making a diagnosis of brown recluse envenomation. ETIOLOGY The complex venom of the BRS contains sphingomyelinase D, which is capable of producing all the clinical signs in the human and some animal models. DIAGNOSIS There is no current commercially available test. In humans there are many proposed guidelines to achieve a definitive diagnosis; however, there are no established guidelines for veterinary patients. THERAPY Currently, no consensus exists for treatment of BRS envenomation other than supportive care, which includes rest, thorough cleaning of the site, ice, compression, and elevation. PROGNOSIS Prognosis varies based on severity of clinical signs and response to supportive care.
Collapse
Affiliation(s)
- Lonny B Pace
- Central California Veterinary Specialty Center, Fresno, CA 93710the Department of Entomology, University of California, Riverside, CA 92521 and Biology Division, San Bernardino County Museum, Redlands, CA, 92373
| | | |
Collapse
|
8
|
Herzig V, Khalife AA, Chong Y, Isbister GK, Currie BJ, Churchill TB, Horner S, Escoubas P, Nicholson GM, Hodgson WC. Intersexual variations in Northern (Missulena pruinosa) and Eastern (M. bradleyi) mouse spider venom. Toxicon 2008; 51:1167-77. [DOI: 10.1016/j.toxicon.2008.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 01/31/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
|
9
|
Abstract
Loxoscelism (bites by spiders of the genus Loxosceles) is the only proven arachnological cause of dermonecrosis. Although Loxosceles spiders can be found worldwide, their distribution is heavily concentrated in the Western Hemisphere, particularly the tropical urban regions of South America. Although Loxosceles bites are usually mild, they may ulcerate or cause more severe, systemic reactions. These injuries mostly are due to sphingomyelinase D in the spider venom. There is no proven effective therapy for Loxosceles bites, although many therapies are reported in the literature.
Collapse
Affiliation(s)
- David L Swanson
- Department of Dermatology, Mayo Clinic, Scottsdale, AZ 85259, USA.
| | | |
Collapse
|
10
|
Abstract
Brown recluse spider bite is a common diagnosis in almost every state in America. In fact, cases have been reported in areas where the spider has never been seen. A review of medical literature reveals that most current concepts regarding brown recluse spider envenomation are based on supposition. In this article, we attempt to review critically our present understanding of brown recluse bites with a focus on the published evidence.
Collapse
Affiliation(s)
- R Brent Furbee
- Department of Emergency Medicine, Indiana University School of Medicine, Room AG373, 1701 North Senate Boulevard, Indianapolis, IN 46206, USA.
| | | | | |
Collapse
|
11
|
Herzig V, Ward RJ, Dos Santos WF. Ontogenetic changes in Phoneutria nigriventer (Araneae, Ctenidae) spider venom. Toxicon 2004; 44:635-40. [PMID: 15501289 DOI: 10.1016/j.toxicon.2004.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 04/28/2004] [Accepted: 07/26/2004] [Indexed: 11/18/2022]
Abstract
Venom-yield and composition of differently sized individuals of the medically most important Brazilian spider Phoneutria nigriventer (Keyserling, 1891) was analysed. During growth the venom-mass increases according to a fourth order function of the prosoma size, which mainly reflects an increase of the venom gland volume. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed increasing percentages of proteins < or = 17 kDa from 4.1% in the smallest analysed spiders (2-3 months-old) to 79.1% in adult female venom. Additionally, high-pressure liquid-chromatography showed an increase of a single ('main') peak from 4.6 to 64.9%, while the overall number of other major-peaks decreased. Venom from young instars completely lacked lethality in mice up to a dose of 3.28 mg/kg i.v. as compared to a LD(50) of 0.63 mg/kg for adult female or 1.57 mg/kg for adult male venom that we reported previously. In conclusion, ontogenetic changes in venom protein-composition of growing P. nigriventer are suggested to produce increasing lethality in vertebrates.
Collapse
Affiliation(s)
- Volker Herzig
- Department of Neuropharmacology, Zoological Institute, Faculty of Biology, University of Tübingen, Germany
| | | | | |
Collapse
|
12
|
Herzig V, John Ward R, Ferreira dos Santos W. Intersexual variations in the venom of the Brazilian 'armed' spider Phoneutria nigriventer (Keyserling, 1891). Toxicon 2002; 40:1399-406. [PMID: 12368110 DOI: 10.1016/s0041-0101(02)00136-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Venom from male and female specimens of the medically most important Brazilian Ctenidae spider Phoneutria nigriventer (Keyserling, 1891) has been compared. Males showed a slightly higher venom yield (386 microg) than equal sized females (296 microg), while adult females showed nearly a three times higher venom yield (1079 microg). High-pressure liquid-chromatography analyses revealed differences in the venom composition between males and females. A single peak in HPLC (peak 11) was only detected in venom from females carrying egg-sacs, and sodium dodecyl sulfate-gel electrophoresis showed a series of high molecular weight proteins only in the male venom pool. The median lethal dose (LD(50)) in mice for female venom was 0.63 microg kg(-1) (95% confidence interval [0.54; 0.71] and 0.61 [0.56; 0.73] microg kg(-1)) for females with egg-sacs, when compared to the male venom which showed a LD(50) of 1.57 [1.46; 1.88] microg kg(-1). The venom of both sexes was also tested in insects using a termite bioassay with doses of 2, 3, 4, and 5 microg per termite. No effect was detected for the lowest dose of female venom, whereas all the other venom doses from both sexes caused a decreased paralysis time and death of the termites. Comparing the venom of both sexes, it was observed that female venom provoked a faster reaction than male venom. The results indicate that males and females of P.nigriventer have differing venom composition which lead to different effects in biological assays.
Collapse
Affiliation(s)
- Volker Herzig
- Department of Neuropharmacology, Eberhard-Karls Universität Tübingen, Germany
| | | | | |
Collapse
|
13
|
Abstract
Spider venoms represent an incredible source of biologically active substances which selectively target a variety of vital physiological functions in both insects and mammals. Many toxins isolated from spider venoms have been invaluable in helping to determine the role and diversity of neuronal ion channels and the process of exocytosis. In addition, there is enormous potential for the use of insect specific toxins from animal sources in agriculture. For these reasons, the past 15-20 years has seen a dramatic increase in studies on the venoms of many animals, particularly scorpions and spiders. This review covers the pharmacological and biochemical activities of spider venoms and the nature of the active components. In particular, it focuses on the wide variety of ion channel toxins, novel non-neurotoxic peptide toxins, enzymes and low molecular weight compounds that have been isolated. It also discusses the intraspecific sex differences in given species of spiders.
Collapse
Affiliation(s)
- Lachlan D Rash
- Monash Venom Group, Department of Pharmacology, PO Box 13E, Monash University, Victoria 3800, Australia
| | | |
Collapse
|
14
|
Phillips S, Kohn M, Baker D, Vander Leest R, Gomez H, McKinney P, McGoldrick J, Brent J. Therapy of brown spider envenomation: a controlled trial of hyperbaric oxygen, dapsone, and cyproheptadine. Ann Emerg Med 1995; 25:363-8. [PMID: 7864478 DOI: 10.1016/s0196-0644(95)70296-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
STUDY OBJECTIVE To determine whether hyperbaric oxygen (HBO), dapsone, or cyproheptadine decreases the severity of skin lesions resulting from experimental Loxosceles envenomation. DESIGN Randomized, blinded, controlled study. SETTING Animal care facility. INTERVENTIONS We used New Zealand white rabbits. All groups received 20 micrograms of pooled L deserta venom intradermally. Our control group received 4 ml of a 5% ethanol solution by oral gavage every 12 hours for 4 days. The HBO group received hyperbaric oxygen at 2.5 ATA for 65 minutes every 12 hours for 2 days, plus 5% ethanol solution for 4 days. The dapsone group received dapsone 1.1 mg/kg in 5% ethanol by gavage every 12 hours for 4 days. The cyproheptadine group received cyproheptadine .125 mg/kg in 5% ethanol by gavage every 12 hours for 4 days. RESULTS Total lesion size and ulcer size were followed for 10 days. The lesions were then excised, examined microscopically, and ranked by the severity of the histopathology. The groups did not differ significantly with respect to lesion size, ulcer size, or histopathologic ranking. CONCLUSION Given the negative result in this study with adequate power to detect meaningful treatment benefits, we cannot recommend hyperbaric oxygen, dapsone, or cyproheptadine in the treatment of Loxosceles envenomation.
Collapse
Affiliation(s)
- S Phillips
- Toxicology Associates, Rocky Mountain Poison and Drug Center, Denver General Hospital, University of Colorado Health Sciences Center
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Strain GM, Snider TG, Tedford BL, Cohn GH. Hyperbaric oxygen effects on brown recluse spider (Loxosceles reclusa) envenomation in rabbits. Toxicon 1991; 29:989-96. [PMID: 1949069 DOI: 10.1016/0041-0101(91)90081-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human loxoscelism was modeled in albino rabbits by injection of brown recluse spider (Loxosceles reclusa) venom, and the effects of daily or twice-daily hyperbaric oxygen treatment on wound healing were investigated. Lesions similar to those seen in humans were produced in rabbits by intradermal injection of 200 microliters of a venom extract (0.21 microgram protein per microliter), including edema and erythema, ischemia and cyanosis in the first 12 hr, extensive purpura by 24 hr, and crateriform ulcer formation by day four, with induration and eschar formation. Hyperbaric oxygen treatments, consisting of two atmospheres absolute (2 ATA) for 60 min, were applied daily (n = 8) or twice daily (n = 8), while control animals (n = 8) received no treatment. Treatments were initiated 72 hr after venom injection (day 3) to duplicate typical clinical treatment delays, and were administered for seven consecutive days. No significant effects of hyperbaric oxygen treatment on lesion healing were seen as measured by lesion area. However, histologic evaluation of wound tissue collected at euthanasia on day 24 showed clear differences between rabbits receiving twice-daily treatments and those receiving daily or no treatment. The former showed complete re-epithelization or slight ulceration, while the latter usually had necrotic cavities extending into the dermis, with myonecrosis and inflammatory cell accumulation. Thus, no superficial differences were seen between groups, but twice-daily treatments resulted in enhanced recovery at the histologic level.
Collapse
Affiliation(s)
- G M Strain
- Department of Veterinary Physiology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803-8420
| | | | | | | |
Collapse
|
16
|
|
17
|
Abstract
Preliminary studies in rabbits demonstrate that envenomation by the male Tegenaria agrestis spider produces a slowly developing dermal lesion, which exhibits gravitational drift and extensive subcutaneous hemorrhaging. Petechial hemorrhages were present on the lungs, liver and kidneys of rabbits bitten by male Tegenaria agrestis. Female Tegenaria agrestis trials in rabbits produced no significant effects in New Zealand white rabbits, but produced dermal lesions in the California giant strain.
Collapse
|
18
|
Kent CG, Tu AT, Geren CR. Isotachophoretic and immunological analysis of venoms from sea snakes (Laticauda semifasciata) and brown recluse spiders (Loxosceles reclusa) of different morphology, locality, sex, and developmental stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1984; 77:303-11. [PMID: 6697691 DOI: 10.1016/0305-0491(84)90334-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sea snake venom: The venom compositions of sea snakes, Laticauda semifasciata, with different scale patterns were analyzed by isotachophoresis. The comparison showed quantitative rather than qualitative differences. Similarly, L. semifasciata venoms of Philippine and Japanese origins differed only in the quantity of certain proteins. Spider venom: 3. Loxosceles reclusa venom apparatus extract is rich in neutral and acidic proteins but contains relatively small quantities of basic proteins. Differences in venom apparatus extract composition between nymph and adult (male or female) were detected by isotachophoresis. The extracts of male and female venom apparatus were very similar. Extracts of venom apparatus of spiders collected in locations separated by 100 miles were the same.
Collapse
|
19
|
Babcock JL, Civello DJ, Geren CR. Purification and characterization of a toxin from brown recluse spider (Loxosceles reclusa) venom gland extracts. Toxicon 1981; 19:677-89. [PMID: 7302957 DOI: 10.1016/0041-0101(81)90105-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Beckwith ML, Babcock JL, Geren CR. Effects of antiserum on the systemic response in mice caused by a component isolated from an extract of the brown recluse spider (Loxosceles reclusa) venom apparatus. Toxicon 1980; 18:663-6. [PMID: 7222071 DOI: 10.1016/0041-0101(80)90095-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Futrell JM, Morgan BB, Morgan PN. An in vitro model for studying hemolysis associated with venom from the brown recluse spider (Loxosceles reclusa). Toxicon 1979; 17:355-62. [PMID: 494317 DOI: 10.1016/0041-0101(79)90263-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Jong YS, Norment BR, Heitz JR. Separation and characterization of venom components in the brown recluse spider (Loxosceles reclusa)--I. Preparative disc electrophoresis. Toxicon 1979; 17:307-12. [PMID: 473245 DOI: 10.1016/0041-0101(79)90220-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Morgan BB, Morgan PN, Bowling RE. Lysis of human erythrocytes by venom from the brown recluse spider, Loxosceles reclusa. Toxicon 1978; 16:85-8. [PMID: 622732 DOI: 10.1016/0041-0101(78)90066-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Majeski JA, Stinnett JD, Alexander JW, Durst GG. Action of venom from the brown recluse spider (Loxosceles reclusa) on human neutrophils. Toxicon 1977; 15:423-7. [PMID: 906025 DOI: 10.1016/0041-0101(77)90120-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
|
26
|
|
27
|
Finke JH, Campbell BJ, Barrett JT. Serodiagnostic test for Loxosceles reclusa bites. Clin Toxicol (Phila) 1974; 7:375-82. [PMID: 4426179 DOI: 10.3109/15563657408988000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Wright RP, Elgert KD, Campbell BJ, Barrett JT. Hyaluronidase and esterase activities of the venom of the poisonous brown recluse spider. Arch Biochem Biophys 1973; 159:415-26. [PMID: 4206202 DOI: 10.1016/0003-9861(73)90469-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|