1
|
Macías-Cortés E. Understanding Why Homeopathic Medicines are Used for Menopause: Searching for Insights into Neuroendocrine Features. HOMEOPATHY 2024; 113:54-66. [PMID: 37399836 DOI: 10.1055/s-0043-1769734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
BACKGROUND Menopause is a physiological event that marks the end of a woman's reproductive stage in life. Vasomotor symptoms and changes in mood are among its most important effects. Homeopathy has been used for many years in treating menopausal complaints, though clinical and pre-clinical research in this field is limited. Homeopathy often bases its prescription on neuropsychiatric symptoms, but it is unknown if homeopathic medicines (HMs) exert a neuroendocrine effect that causes an improvement in vasomotor symptoms and mood during menopause. OBJECTIVES The study's objectives were to address the pathophysiological changes of menopause that could help in the understanding of the possible effect of HMs at a neuroendocrine level, to review the current evidence for two of the most frequently prescribed HMs for menopause (Lachesis mutus and Sepia officinalis), and to discuss the future directions of research in this field. METHODS An extensive literature search for the pathophysiologic events of menopause and depression, as well as for the current evidence for HMs in menopause and depression, was performed. RESULTS Neuroendocrine changes are involved in the pathophysiology of vasomotor symptoms and changes in mood during menopause. Gonadal hormones modulate neurotransmitter systems. Both play a role in mood disorders and temperature regulation. It has been demonstrated that Gelsemium sempervirens, Ignatia amara and Chamomilla matricaria exert anxiolytic effects in rodent models. Lachesis mutus and Sepia officinalis are frequently prescribed for important neuropsychiatric and vasomotor symptoms. Dopamine, a neurotransmitter involved in mood, is among the constituents of the ink of the common cuttlefish, Sepia officinalis. CONCLUSION Based on all the pathophysiologic events of menopause and the improvement in menopausal complaints that certain HMs show in daily practice, these medicines might have a direct or indirect neuroendocrine effect in the body, possibly triggered via an as-yet unidentified biological mechanism. Many unanswered questions in this field require further pre-clinical and clinical research.
Collapse
Affiliation(s)
- Emma Macías-Cortés
- Outpatient Homeopathy Service, Hospital Juárez de México, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
2
|
Galizio NC, Moraes-Santos LS, Yabunaka AC, Demico PJ, Torres-Bonilla KA, Varón JCG, Silva NJD, Tanaka-Azevedo AM, Rocha MMTD, Hyslop S, Floriano RS, Morais-Zani KD. Biochemical and toxicological profiles of venoms from an adult female South American bushmaster (Lachesis muta rhombeata) and her offspring. Toxicon 2024; 241:107680. [PMID: 38452976 DOI: 10.1016/j.toxicon.2024.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
In this work, we compared the biochemical and toxicological profiles of venoms from an adult female specimen of Lachesis muta rhombeata (South American bushmaster) and her seven offspring born in captivity, based on SDS-PAGE, RP-HPLC, enzymatic, coagulant, and hemorrhagic assays. Although adult and juvenile venoms showed comparable SDS-PAGE profiles, juveniles lacked some chromatographic peaks compared with adult venom. Adult venom had higher proteolytic (caseinolytic) activity than juvenile venoms (p < 0.05), but there were no significant inter-venom variations in the esterase, PLA2, phosphodiesterase and L-amino acid oxidase (LAAO) activities, although the latter activity was highly variable among the venoms. Juveniles displayed higher coagulant activity on human plasma, with a minimum coagulant dose ∼42% lower than the adult venom (p < 0.05), but there were no age-related differences in thrombin-like activity. Adult venom was more fibrinogenolytic (based on the rate of fibrinogen chain degradation) and hemorrhagic than juvenile venoms (p < 0.05). The effective dose of Bothrops/Lachesis antivenom (produced by the Instituto Butantan) needed to neutralize the coagulant activity was ∼57% greater for juvenile venoms (p < 0.05), whereas antivenom did not attenuate the thrombin-like activity of juvenile and adult venoms. Antivenom significantly reduced the hemorrhagic activity of adult venom (400 μg/kg, i. d.), but not that of juvenile venoms. Overall, these data indicate a compositional and functional ontogenetic shift in L. m. rhombeata venom.
Collapse
Affiliation(s)
- Nathália C Galizio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP, Brazil; Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil; Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Laura S Moraes-Santos
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Ana C Yabunaka
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Poliana J Demico
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Kristian A Torres-Bonilla
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Julian C G Varón
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nelson J da Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás (PUC-GO), Goiânia, GO, Brazil
| | - Anita M Tanaka-Azevedo
- Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil; Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Marisa M Teixeira da Rocha
- Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil
| | - Stephen Hyslop
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Karen de Morais-Zani
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP, Brazil; Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil; Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Cañas CA, Castaño-Valencia S, Castro-Herrera F. The Colombian bushmasters Lachesis acrochorda (García, 1896) and Lachesis muta (Linnaeus, 1766): Snake species, venoms, envenomation, and its management. Toxicon 2023; 230:107152. [PMID: 37178796 DOI: 10.1016/j.toxicon.2023.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
In Colombia, there are two species of bushmaster snakes, Lachesis acrochorda, which is distributed mainly in the west of the country (in the Choco region), and Lachesis muta in the southeast (in the Amazon and Orinoquia region), whose presence has been reduced due to the destruction of their habitats. Captive maintenance is challenging, making it difficult to obtain their venom for study and antivenom manufacturing. They are the largest vipers in the world. The occurrence of human envenomation is quite rare, but when it occurs, it is associated with high mortality. Bushmaster venom is necrotizing, hemorrhagic, myotoxic, hemolytic, and cardiovascular depressant. Due to the presence of bradycardia, hypotension, emesis, and diarrhea in some patients (Lachesis syndrome), the possibility of a vagal or cholinergic effect is raised. The treatment of envenomation is hindered by the scarcity of antivenom and the need to use high doses. A review of the most relevant biological and medical aspects of bushmaster snakes is presented, mainly for those occurring in Colombia, to facilitate their recognition and raise awareness about the need for special attention to improve their conservation and advance scientific knowledge, in particular, about their venom.
Collapse
Affiliation(s)
- Carlos A Cañas
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, 760031, Colombia; Fundación Valle del Lili, Departamento de Reumatología, Cali, 760026, Colombia.
| | - Santiago Castaño-Valencia
- Department of Physiological Sciences, Department of Health Sciences, Universidad del Valle. Cali 760042, Colombia; Laboratorio de Herpetología y Toxinología, Universidad del Valle. Cali 760042, Colombia
| | | |
Collapse
|
4
|
Gutierres PG, Pereira DR, Vieira NL, Arantes LF, Silva NJ, Torres-Bonilla KA, Hyslop S, Morais-Zani K, Nogueira RMB, Rowan EG, Floriano RS. Action of Varespladib (LY-315920), a Phospholipase A 2 Inhibitor, on the Enzymatic, Coagulant and Haemorrhagic Activities of Lachesis muta rhombeata (South-American Bushmaster) Venom. Front Pharmacol 2022; 12:812295. [PMID: 35095526 PMCID: PMC8790531 DOI: 10.3389/fphar.2021.812295] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Varespladib (VPL) was primarily developed to treat inflammatory disturbances associated with high levels of serum phospholipase A2 (PLA2). VPL has also demonstrated to be a potential antivenom support agent to prevent PLA2-dependent effects produced by snake venoms. In this study, we examined the action of VPL on the coagulant, haemorrhagic and enzymatic activities of Lachesis muta rhombeata (South-American bushmaster) venom. Conventional colorimetric enzymatic assays were performed for PLA2, caseinolytic and esterasic activities; in vitro coagulant activities for prothrombin time (PT) and activated partial thromboplastin time (aPTT) were performed in rat citrated plasma through a quick timer coagulometer, whereas the dimensions of haemorrhagic haloes obtained after i.d. injections of venom in Wistar rats were determined using ImageJ software. Venom (1 mg/ml) exhibited accentuated enzymatic activities for proteases and PLA2in vitro, with VPL abolishing the PLA2 activity from 0.01 mM; VPL did not affect caseinolytic and esterasic activities at any tested concentrations (0.001–1 mM). In rat citrated plasma in vitro, VPL (1 mM) alone efficiently prevented the venom (1 mg/ml)-induced procoagulant disorder associated to extrinsic (PT) pathway, whereas its association with a commercial antivenom successfully prevented changes in both intrinsic (aPTT) and extrinsic (PT) pathways; commercial antivenom by itself failed to avoid the procoagulant disorders by this venom. Venom (0.5 mg/kg)-induced hemorrhagic activity was slightly reduced by VPL (1 mM) alone or combined with antivenom (antivenom:venom ratio 1:3 ‘v/w’) in rats, with antivenom alone producing no protective action on this parameter. In conclusion, VPL does not inhibit other major enzymatic groups of L. m. rhombeata venom, with its high PLA2 antagonize activity efficaciously preventing the venom-induced coagulation disturbances.
Collapse
Affiliation(s)
- Pamella G Gutierres
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Diego R Pereira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Nataly L Vieira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Lilian F Arantes
- Graduate Program in Zootechnics, Rural Federal University of Pernambuco, Recife, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Kristian A Torres-Bonilla
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | - Rosa M B Nogueira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| |
Collapse
|
5
|
Leão-Torres AG, Pires CV, Ribelato AC, Zerbinatti MC, Santarém CL, Nogueira RMB, Giometti IC, Giuffrida R, Silva EO, Gerez JR, Silva NJ, Rowan EG, Floriano RS. Protective action of N-acetyl-L-cysteine associated with a polyvalent antivenom on the envenomation induced by Lachesis muta muta (South American bushmaster) in rats. Toxicon 2021; 198:36-47. [PMID: 33915137 DOI: 10.1016/j.toxicon.2021.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
In this study, we examined the potential use of N-acetyl-L-cysteine (NAC) in association with a polyvalent antivenom and as stand-alone therapy to reduce the acute local and systemic effects induced by Lachesis muta muta venom in rats. Male Wistar rats (300-350 g) were exposed to L. m. muta venom (1.5 mg/kg - i.m.) and subsequently treated with anti-Bothrops/Lachesis serum (antivenom:venom ratio 1:3 'v/w' - i.p.) and NAC (150 mg/kg - i.p.) separately or in association; the animals were monitored for 120 min to assess changes in temperature, locomotor activity, local oedema formation and the prevalence of haemorrhaging. After this time, animals were anesthetized in order to collect blood samples through intracardiac puncture and then euthanized for collecting tissue samples; the hematological-biochemical and histopathological analyses were performed through conventional methods. L. m. muta venom produced pronounced local oedema, subcutaneous haemorrhage and myonecrosis, with both antivenom and NAC successfully reducing the extent of the myonecrotic lesion when individually administered; their association also prevented the occurrence of subcutaneous haemorrhage. Venom-induced creatine kinase (CK) release was significantly prevented by NAC alone or in combination with antivenom; NAC alone failed to reduce the release of hepatotoxic (alanine aminotransferase) and nephrotoxic (creatinine) serum biomarkers induced by L. m. muta venom. Venom induced significant increase of leucocytes which was also associated with an increase of neutrophils, eosinophils and monocytes; antivenom and NAC partially reduced these alterations, with NAC alone significantly preventing the increase of eosinophils whereas neither NAC or antivenom prevented the increase in monocytes. Venom did not induce changes in the erythrogram parameters. In the absence of a suitable antivenom, NAC has the potential to reduce a number of local and systemic effects caused by L. m. muta venom.
Collapse
Affiliation(s)
- Aline G Leão-Torres
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Carina V Pires
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Amanda C Ribelato
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Maria C Zerbinatti
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Cecília L Santarém
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Rosa M B Nogueira
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Inês C Giometti
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Rogério Giuffrida
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Elisangela O Silva
- Laboratory of Pathological Anatomy, Veterinary Hospital, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Juliana R Gerez
- Department of Histology, State University of Londrina, Rodovia Celso Garcia Cid Km 380, 86057-970, Londrina, PR, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás (PUC Goiás), Rua 232, 128, 74605-140, Goiânia, GO, Brazil
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE, Glasgow, UK
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil.
| |
Collapse
|
6
|
Disorders on cardiovascular parameters in rats and in human blood cells caused by Lachesis acrochorda snake venom. Toxicon 2020; 184:180-191. [DOI: 10.1016/j.toxicon.2020.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 11/19/2022]
|
7
|
Diniz-Sousa R, Moraes JDN, Rodrigues-da-Silva TM, Oliveira CS, Caldeira CADS. A brief review on the natural history, venomics and the medical importance of bushmaster ( Lachesis) pit viper snakes. Toxicon X 2020; 7:100053. [PMID: 32793880 PMCID: PMC7408722 DOI: 10.1016/j.toxcx.2020.100053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022] Open
Abstract
Snakes of the genus Lachesis, commonly known as bushmasters, are the largest venomous snakes in the Americas. Because these snakes have their habitats in areas of remote forests they are difficult to find, and consequently there are few studies of Lachesis taxa in their natural ecosystems. Bushmasters are distributed in tropical forest areas of South and Central America. In Brazil they can be found in the Amazon Rainforest and the Atlantic Forest. Despite the low incidence of cases, laquetic envenoming causes severe permanent sequelae due to the high amount of inoculated venom. These accidents are characterized by local pain, hemorrhage and myonecrosis that can be confused with bothropic envenomings. However, victims of Lachesis bites develop symptoms characteristic of Lachesis envenoming, known as vagal syndrome. An important message of this bibliographic synthesis exercise is that, despite having the proteomic profiles of all the taxa of the genus available, very few structure-function correlation studies have been carried out. Therefore the motivation for this review was to fill a gap in the literature on the genus Lachesis, about which there is no recent review. Here we discuss data scattered in a number of original articles published in specialized journals, spanning the evolutionary history and extant phylogeographic distribution of the bushmasters, their venom composition and diet, as well as the pathophysiology of their bites to humans and the biological activities and possible biotechnological applicability of their venom toxins.
Collapse
Affiliation(s)
- Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
- Sao Lucas University Center (UniSL), Porto Velho, RO, Brazil
| | - Jeane do N. Moraes
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | | | - Cláudia S. Oliveira
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Cleópatra A. da S. Caldeira
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| |
Collapse
|
8
|
Wiezel GA, Bordon KC, Silva RR, Gomes MS, Cabral H, Rodrigues VM, Ueberheide B, Arantes EC. Subproteome of Lachesis muta rhombeata venom and preliminary studies on LmrSP-4, a novel snake venom serine proteinase. J Venom Anim Toxins Incl Trop Dis 2019; 25:e147018. [PMID: 31131000 PMCID: PMC6521711 DOI: 10.1590/1678-9199-jvatitd-1470-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/02/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Lachesis muta rhombeata is one of the venomous snakes of
medical importance in Brazil whose envenoming is characterized by local and
systemic effects which may produce even shock and death. Its venom is mainly
comprised of serine and metalloproteinases, phospholipases A2 and
bradykinin-potentiating peptides. Based on a previously reported
fractionation of L. m. rhombeata venom (LmrV), we decided
to perform a subproteome analysis of its major fraction and investigated a
novel component present in this venom. Methods: LmrV was fractionated through molecular exclusion chromatography and the main
fraction (S5) was submitted to fibrinogenolytic activity assay and
fractionated by reversed-phase chromatography. The N-terminal sequences of
the subfractions eluted from reversed-phase chromatography were determined
by automated Edman degradation. Enzyme activity of LmrSP-4 was evaluated
upon chromogenic substrates for thrombin (S-2238), plasma kallikrein
(S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and
Factor Xa (S-2222) and upon fibrinogen. All assays were carried out in the
presence or absence of possible inhibitors. The fluorescence resonance
energy transfer substrate Abz-KLRSSKQ-EDDnp was used to determine the
optimal conditions for LmrSP-4 activity. Molecular mass of LmrSP-4 was
determined by MALDI-TOF and digested peptides after trypsin and Glu-C
treatments were analyzed by high resolution MS/MS using different
fragmentation modes. Results: Fraction S5 showed strong proteolytic activity upon fibrinogen. Its
fractionation by reversed-phase chromatography gave rise to 6 main fractions
(S5C1-S5C6). S5C1-S5C5 fractions correspond to serine proteinases whereas
S5C6 represents a C-type lectin. S5C4 (named LmrSP-4) had its N-terminal
determined by Edman degradation up to the 53rd amino acid residue
and was chosen for characterization studies. LmrSP-4 is a fibrinogenolytic
serine proteinase with high activity against S-2302, being inhibited by PMSF
and benzamidine, but not by 1,10-phenantroline. In addition, this enzyme
exhibited maximum activity within the pH range from neutral to basic and
between 40 and 50 °C. About 68% of the LmrSP-4 primary structure was
covered, and its molecular mass is 28,190 Da. Conclusions: Novel serine proteinase isoforms and a lectin were identified in LmrV.
Additionally, a kallikrein-like serine proteinase that might be useful as
molecular tool for investigating bradykinin-involving process was isolated
and partially characterized.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Karla Cf Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ronivaldo R Silva
- Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, SP, Brazil
| | - Mário Sr Gomes
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Av. Pará, 1720, 38400-902, Uberlândia, MG, Brazil.,Department of Chemical and Physical, State University of Southwest Bahia, Rua José Moreira Sobrinho, até 873 874, 45506-210, Jequié, BA, Brazil
| | - Hamilton Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Veridiana M Rodrigues
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Av. Pará, 1720, 38400-902, Uberlândia, MG, Brazil
| | - Beatrix Ueberheide
- Proteomics Resource Center, New York University Langone Medical Center, 430 East 29th St., 10016, New York City, USA
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
Dias L, Rodrigues MA, Rennó AL, Stroka A, Inoue BR, Panunto PC, Melgarejo AR, Hyslop S. Hemodynamic responses to Lachesis muta (South American bushmaster) snake venom in anesthetized rats. Toxicon 2016; 123:1-14. [DOI: 10.1016/j.toxicon.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
|
10
|
Dias L, Rodrigues MA, Inoue BR, Rodrigues RL, Rennó AL, de Souza VB, Torres-Huaco FD, Sousa NC, Stroka A, Melgarejo AR, Hyslop S. Pharmacological analysis of hemodynamic responses to Lachesis muta (South American bushmaster) snake venom in anesthetized rats. Toxicon 2016; 123:25-44. [DOI: 10.1016/j.toxicon.2016.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 01/23/2023]
|
11
|
Cremonez CM, Leite FP, Bordon KDCF, Cerni FA, Cardoso IA, Gregório ZMDO, de Souza RCG, de Souza AM, Arantes EC. Experimental Lachesis muta rhombeata envenomation and effects of soursop (Annona muricata) as natural antivenom. J Venom Anim Toxins Incl Trop Dis 2016; 22:12. [PMID: 26957955 PMCID: PMC4782340 DOI: 10.1186/s40409-016-0067-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/29/2016] [Indexed: 12/30/2022] Open
Abstract
Background In the Atlantic forest of the North and Northeast regions of Brazil, local population often uses the fruit juice and the aqueous extract of leaves of soursop (Annona muricata L.) to treat Lachesis muta rhombeata envenomation. Envenomation is a relevant health issue in these areas, especially due to its severity and because the production and distribution of antivenom is limited in these regions. The aim of the present study was to evaluate the relevance of the use of soursop leaf extract and its juice against envenomation by Lachesis muta rhombeata. Methods We evaluated the biochemical, hematological and hemostatic parameters, the blood pressure, the inflammation process and the lethality induced by Lachesis muta rhombeata snake venom. We also assessed the action of the aqueous extract of leaves (AmL) and juice (AmJ) from A. muricata on the animal organism injected with L. m. rhombeata venom (LmrV) in the laboratory environment. Results LmrV induced a decrease of total protein, albumin and glucose; and increase of creatine kinase, aspartate aminotransferase, and urea concentrations. It provoked hemoconcentration followed by reduction of hematocrit, an increase in prothrombin time and partial thromboplastin time and a decrease of the blood pressure. LmrV induced the release of interleukin-6, an increase in neutrophils and changes in the serum protein profile, characteristic of the acute inflammatory process. LD50 values were similar for the groups injected with LmrV and treated or untreated with AmJ and AmL. Both treatments play a role on the maintenance of blood glucose, urea and coagulation parameters and exert a protective action against the myotoxicity. However, they seem to worsen the hypotension caused by LmrV. Conclusion The treatments with AmJ and AmL present some beneficial actions, but they might intensify some effects of the venom. Therefore, additional studies on A. muricata are necessary to enable its use as natural antivenom for bushmaster snakebite.
Collapse
Affiliation(s)
- Caroline Marroni Cremonez
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Flávia Pine Leite
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Felipe Augusto Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Iara Aimê Cardoso
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Zita Maria de Oliveira Gregório
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | | | - Ana Maria de Souza
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| |
Collapse
|
12
|
Campos LB, Pucca MB, Roncolato EC, Netto JC, Barbosa JE. Analysis of phospholipase A2, L-amino acid oxidase, and proteinase enzymatic activities of the Lachesis muta rhombeata venom. J Biochem Mol Toxicol 2012; 26:308-14. [PMID: 22730029 DOI: 10.1002/jbt.21422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 04/27/2012] [Accepted: 05/15/2012] [Indexed: 01/03/2023]
Abstract
The study of venom components is an important step toward understanding the mechanism of action of such venoms and is indispensable for the development of new therapies. This work aimed to investigate the venom of Lachesis muta rhombeata and evaluate enzymes related to its toxicity. Phospholipase A2 (PLA(2)), L-amino acid oxidase (LAAO), and proteinase activities were measured, and the molecular weights were estimated. We found the venom to contain one PLA(2) (17 kDa), one LAAO (132 kDa), and three serine proteinases (40, 31, and 20 kDa). Although only serine proteinases were observed in the zymogram, metalloproteinases were found to contribute more to the total proteolytic activity than did serine proteinases. The work confirmed the presence of highly active enzymes; and, moreover, we proposed a novel method for confirming the presence of LAAOs by zymography. We also suggested a simple step to increase the sensitivity of proteinase assays.
Collapse
Affiliation(s)
- Lucas Benício Campos
- Department of Biochemistry and Immunology, University of São Paulo at Ribeirão Preto School of Medicine 14049-900, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
13
|
Damico DCS, Nascimento JM, Lomonte B, Ponce-Soto LA, Joazeiro PP, Novello JC, Marangoni S, Collares-Buzato CB. Cytotoxicity of Lachesis muta muta snake (bushmaster) venom and its purified basic phospholipase A2 (LmTX-I) in cultured cells. Toxicon 2007; 49:678-92. [PMID: 17208264 DOI: 10.1016/j.toxicon.2006.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 11/07/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Human envenoming by Lachesis muta muta venom, although infrequent, is rather severe, being characterized by pronounced local tissue damage and systemic dysfunctions. Studies on the pharmacological actions of L. m. muta venom are relatively scant and the direct actions of the crude venom and its purified phospholipase A(2) (PLA(2)) have not been addressed using in vitro models. In this work, we investigated the cytotoxicity of L. m. muta venom and its purified PLA(2) isoform LmTX-I in cultured Madin-Darby canine kidney (MDCK) and in a skeletal muscle (C2C12) cell lines. As revealed by neutral red dye uptake assay, the crude venom (10 or 100 microg/ml) induced a significant decrease in cell viability of MDCK cells. LmTX-I at the concentrations tested (70-270 microg/ml or 5-20 microM) displayed no cytotoxicity in both MDCK and C2C12 cell lines. Morphometric analysis of Feulgen nuclear reaction revealed a significant increase in chromatin condensation (pyknosis), apparent reduction in the number of mitotic nuclei and nuclear fragmentation of some MDCK cells after incubation with L. m. muta venom. Monolayer exposure to crude venom resulted in morphological changes as assessed by scanning electron microscopy. The staining with TRITC-labelled phalloidin showed a marked disarray of the actin stress fiber following L. m. muta venom exposure. In contrast, LmTX-I had no effect on nucleus and cell morphologies as well as on stress fiber organization. These results indicate that L. m. muta venom exerts toxic effects on cultured MDCK cells. The LmTX-I probably does not contribute per se to the direct venom cytotoxicity, these effects are mediated by metalloproteinases/disintegrins and other components of the venom.
Collapse
Affiliation(s)
- Daniela C S Damico
- Department of Biochemistry, Institute of Biology, State University of Campinas, PO Box 6109, CEP 13083-970 Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Damico DCS, Bueno LGF, Rodrigues-Simioni L, Marangoni S, da Cruz-Höfling MA, Novello JC. Functional characterization of a basic D49 phospholipase A2 (LmTX-I) from the venom of the snake Lachesis muta muta (bushmaster). Toxicon 2006; 47:759-65. [PMID: 16626776 DOI: 10.1016/j.toxicon.2006.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 02/02/2006] [Accepted: 02/03/2006] [Indexed: 11/16/2022]
Abstract
The whole venom of Lachesis muta muta is preponderantly neurotoxic but moderately myotoxic on the chick biventer cervicis preparation (BCp). We have now examined these toxic activities of a basic phospholipase A(2), LmTX-I, isolated from the whole venom. LmTX-I caused a significant concentration-dependent neuromuscular blockade in the BCp. The time to produce 50% neuromuscular blockade was 14.7+/-0.75 min (30 microg/ml), 23.6+/-0.9 min (10 microg/ml), 34+/-1.7 min (2.5 microg/ml) and 39.2+/-3.6 min (1 microg/ml), (n=5/concentration; p<0.05). Complete blockade with all tested concentrations was not accompanied by inhibition of the response to ACh. At the highest concentration, LmTX-I (30 microg/ml) significantly reduced contractures elicited by exogenous KCl (20mM), increased the release of creatine kinase (1542.5+/-183.9 IU/L vs 442.7+/-39.8 IU/L for controls after 120 min, p<0.05), and induced the appearance of degenerating muscle fibers ( approximately 15%). Quantification of myonecrosis indicated 14.8+/-0.8 and 2.0+/-0.4%, with 30 and 10 microg/mlvenom concentration, respectively, against 1.07+/-0.4% for control preparations. The findings indicate that the basic PLA(2) present on venom from L. m. muta (LmTX-I) possesses a dominant neurotoxic action on isolated chick nerve-muscle preparations, whereas myotoxicity was mainly observed at the highest concentration used (30 microg/ml). These effects of LmTX-I closely reproduce the effects of the whole venom of L. m. muta in chick neuromuscular preparations.
Collapse
Affiliation(s)
- Daniela C S Damico
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), P.O. Box 6109, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Junqueira-de-Azevedo ILM, Ching ATC, Carvalho E, Faria F, Nishiyama MY, Ho PL, Diniz MRV. Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics 2006; 173:877-89. [PMID: 16582429 PMCID: PMC1526512 DOI: 10.1534/genetics.106.056515] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efforts to describe toxins from the two major families of venomous snakes (Viperidae and Elapidae) usually reveal proteins belonging to few structural types, particular of each family. Here we carried on an effort to determine uncommon cDNAs that represent possible new toxins from Lachesis muta (Viperidae). In addition to nine classes of typical toxins, atypical molecules never observed in the hundreds of Viperidae snakes studied so far are highly expressed: a diverging C-type lectin that is related to Viperidae toxins but appears to be independently originated; an ohanin-like toxin, which would be the third member of the most recently described class of Elapidae toxins, related to human butyrophilin and B30.2 proteins; and a 3FTx-like toxin, a new member of the widely studied three-finger family of proteins, which includes major Elapidae neurotoxins and CD59 antigen. The presence of these common and uncommon molecules suggests that the repertoire of toxins could be more conserved between families than has been considered, and their features indicate a dynamic process of venom evolution through molecular mechanisms, such as multiple recruitments of important scaffolds and domain exchange between paralogs, always keeping a minimalist nature in most toxin structures in opposition to their nontoxin counterparts.
Collapse
|
16
|
Weinberg MLD, Felicori LF, Bello CA, Magalhães HPB, Almeida AP, Magalhães A, Sanchez EF. Biochemical properties of a bushmaster snake venom serine proteinase (LV-Ka), and its kinin releasing activity evaluated in rat mesenteric arterial rings. J Pharmacol Sci 2004; 96:333-42. [PMID: 15539759 DOI: 10.1254/jphs.fpj04005x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A serine proteinase with kallikrein-like activity (LV-Ka) has been purified to homogeneity from bushmaster snake (Lachesis muta muta) venom. Physicochemical studies indicated that LV-Ka is a single chain glycoprotein with a molecular mass (Mr) of 33 kDa under reducing conditions which was reduced to 28 kDa after treatment with N-Glycosidase F (PNGase F). LV-Ka can be bounded and neutralized by serum alpha2-macroglobulin (alpha2-M), a prevalent mammalian protease inhibitor that is capable of forming a macromolecular complex with LV-Ka (Mr >180 kDa). Cleavage of alpha2-M by the enzyme resulted in the formation of 90-kDa fragments. The proteolytic activity of LV-Ka against dimethylcasein could be inhibited by alpha2-M, and the binding ratio of the inhibitor:enzyme complex was found to be 1:1. The Michaelis constant, Km, and catalytic rate constant, kcat, of LV-Ka on four selective chromogenic substrates were obtained from Lineweaver-Burk plots. LV-Ka exhibits substrate specificities not only for the glandular kallikrein H-D-Val-Leu-Arg-pNA (S-2266) but also for the plasmin substrates S-2251 and Tos-Gly-Pro-Lys-pNA. Bovine kininogen incubated with LV-Ka generated a polypeptide that dose dependently contracted mesenteric arterial rings from spontaneously hypertensive rats (SHR) in a similar way as bradykinin (BK) does. As it happens with BK, LV-Ka generated polypeptide was inhibited by HOE-140, a bradykinin B2-receptor antagonist and by indomethacin, a cyclo-oxygenase inhibitor. These results strongly suggest that the polypeptide generated by LV-Ka by cleavage of bovine kininogen is bradykinin. In addition, our studies may help to understand the mechanism of action involved in hypotension produced by envenomation of bushmaster snake.
Collapse
Affiliation(s)
- Maria L D Weinberg
- Vascular Smooth Muscle Laboratory, Department of Physiology and Biophysics, ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Felicori LF, Souza CT, Velarde DT, Magalhaes A, Almeida AP, Figueiredo S, Richardson M, Diniz CR, Sanchez EF. Kallikrein-like proteinase from bushmaster snake venom. Protein Expr Purif 2003; 30:32-42. [PMID: 12821319 DOI: 10.1016/s1046-5928(03)00053-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A kallikrein-like proteinase of Lachesis muta muta (bushmaster) venom, designated LV-Ka, was purified by gel filtration and anion exchange chromatographies. Physicochemical studies indicated that the purified enzyme is a 33 kDa monomeric glycoprotein, the Mr of which fell to 28 kDa after deglycosylation with PNGase F. Approximately 77% of the protein sequence was determined by sequencing the various fragments derived from digestions with endoproteases. The partial sequence obtained suggests that LV-Ka is of a similar size to other serine proteinases (i.e., approximately 234 amino acid residues). Sequence studies on the NH2-terminal region of the protein indicate that LV-Ka shares a high degree of sequence homology with the kallikrein-like enzymes EI and EII from Crotalus atrox, with crotalase from Crotalus adamanteus and significant homology with other serine proteinases from snake venoms and vertebrate serum enzymes. LV-Ka showed kallikrein-like activity, releasing bradikinin from kininogen as evidenced by guinea pig bioassay. In addition, intravenous injection of the proteinase (0.8 microg/g) was shown to lower blood pressure in experimental rats. In vitro, the isolated proteinase was shown to have neither fibrin(ogeno)lytic activity nor coagulant effect. LV-Ka was active upon the kallikrein substrates S-2266 and S-2302 (specific activity=13.0 and 31.5 U/mg, respectively; crude venom=0.25 and 6.0 U/mg) but had no proteolytic effect on dimethylcasein and insulin B chain. Its enzymatic activity was inhibited by NPGB and PMSF, indicating that the enzyme is a serine proteinase. Interestingly, one of the other reactions catalyzed by plasma kallikrein, the activation of plasminogen was one of the activities exhibited by LV-Ka.
Collapse
Affiliation(s)
- Liza F Felicori
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro # 80, Belo Horizonte, MG 30510-010, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Snake envenomation employs three well integrated strategies: prey immobilization via hypotension, prey immobilization via paralysis, and prey digestion. Purines (adenosine, guanosine and inosine) evidently play a central role in the envenomation strategies of most advanced snakes. Purines constitute the perfect multifunctional toxins, participating simultaneously in all three envenomation strategies. Because they are endogenous regulatory compounds in all vertebrates, it is impossible for any prey organism to develop resistance to them. Purine generation from endogenous precursors in the prey explains the presence of many hitherto unexplained enzyme activities in snake venoms: 5'-nucleotidase, endonucleases (including ribonuclease), phosphodiesterase, ATPase, ADPase, phosphomonoesterase, and NADase. Phospholipases A(2), cytotoxins, myotoxins, and heparinase also participate in purine liberation, in addition to their better known functions. Adenosine contributes to prey immobilization by activation of neuronal adenosine A(1) receptors, suppressing acetylcholine release from motor neurons and excitatory neurotransmitters from central sites. It also exacerbates venom-induced hypotension by activating A(2) receptors in the vasculature. Adenosine and inosine both activate mast cell A(3) receptors, liberating vasoactive substances and increasing vascular permeability. Guanosine probably contributes to hypotension, by augmenting vascular endothelial cGMP levels via an unknown mechanism. Novel functions are suggested for toxins that act upon blood coagulation factors, including nitric oxide production, using the prey's carboxypeptidases. Leucine aminopeptidase may link venom hemorrhagic metalloproteases and endogenous chymotrypsin-like proteases with venom L-amino acid oxidase (LAO), accelerating the latter. The primary function of LAO is probably to promote prey hypotension by activating soluble guanylate cyclase in the presence of superoxide dismutase. LAO's apoptotic activity, too slow to be relevant to prey capture, is undoubtedly secondary and probably serves principally a digestive function. It is concluded that the principal function of L-type Ca(2+) channel antagonists and muscarinic toxins, in Dendroaspis venoms, and acetylcholinesterase in other elapid venoms, is to promote hypotension. Venom dipeptidyl peptidase IV-like enzymes probably also contribute to hypotension by destroying vasoconstrictive peptides such as Peptide YY, neuropeptide Y and substance P. Purines apparently bind to other toxins which then serve as molecular chaperones to deposit the bound purines at specific subsets of purine receptors. The assignment of pharmacological activities such as transient neurotransmitter suppression, histamine release and antinociception, to a variety of proteinaceous toxins, is probably erroneous. Such effects are probably due instead to purines bound to these toxins, and/or to free venom purines.
Collapse
Affiliation(s)
- Steven D Aird
- Laboratório de Toxinas Naturais, Universidade Estadual do Ceará, Avenida Paranjana, 1700, Itaperí, 60740-000, Fortaleza, CE, Brazil.
| |
Collapse
|
19
|
Camillo MA, Arruda Paes PC, Troncone LR, Rogero JR. Gyroxin fails to modify in vitro release of labelled dopamine and acetylcholine from rat and mouse striatal tissue. Toxicon 2001; 39:843-53. [PMID: 11137545 DOI: 10.1016/s0041-0101(00)00222-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gyroxin fails to modify in vitro release of labelled dopamine and acetylcholine from rat and mouse striatal tissue. Gyroxin is a thrombin-like peptide with amidasic, esterasic and fibrinogenolitic activities, found in the venom of snakes like Lachesis muta muta and Crotalus durissus terrificus. Intravenous injections of small doses of gyroxin induce a typical barrel rotation behaviour that has been thought to be a neurotoxic effect. The aim of this study was to determine whether gyroxin-induced barrel rotation behaviour involves changes in neurotransmitter release. Gyroxin was isolated from crude venoms by gel filtration and affinity chromatography. Its properties were determined by assaying esterasic, amidasic and fibrinogenolitic enzymatic activities and tested for barrel rotation behaviour. Neurotransmitter release tests employed rat and mouse superfused brain striatal chopped tissue preloaded with [(3)H]-dopamine, [(3)H]-acetylcholine or in a double labelling procedure. They were stimulated by 20mM K(+) in control conditions or in the presence of several concentrations of toxins. Crotoxin and crotamine were used as positive controls. Gyroxins failed at modifying both basal and stimulated neurotransmitter releases, suggesting a lack of direct neurotoxic effect. We therefore suggest that gyroxin may not be a neurotoxin but rather, induces this behavioural syndrome by other means possibly related to haemodynamic disturbance. The possible role of vasopressin is discussed.
Collapse
Affiliation(s)
- M A Camillo
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Travessa R, no. 400, Cidade Universitária, São Paulo, SP 05508-900, Brazil.
| | | | | | | |
Collapse
|
20
|
Colombini M, Fernandes I, Cardoso DF, Moura-da-Silva AM. Lachesis muta muta venom: immunological differences compared with Bothrops atrox venom and importance of specific antivenom therapy. Toxicon 2001; 39:711-9. [PMID: 11072051 DOI: 10.1016/s0041-0101(00)00201-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lachesis muta muta and Bothrops atrox snakes are responsible for most accidents occurring in the Amazon. The clinical features of the accidents are similar; however, there are still controversies about the efficacy of Bothrops antivenoms for treating L. m. muta accidents. In this work, we evaluated the antigenic cross-reactivity between these venoms using polyclonal and monoclonal antibodies and the efficacy of B. atrox and L. m. muta experimental antivenoms in cross-neutralizing the main toxic activities of each venom. Electrophoretic patterns differed consistently between the species. However, antigenic cross-reactivity was extensive except for a few bands. Several species-specific monoclonal antibodies were obtained by immunization of Balb/c mice with L. m. muta whole venom or B. atrox and L. m. muta specific antigens. The monoclonal antibodies specific to L. m. muta recognized different bands of this venom and the antibodies specific to B. atrox recognized a complex pattern on whole venom by Western blotting. These antibodies are important tools for developing an immunoassay able to discriminate patients bitten by these snakes. The experiments involving cross-neutralization of the main activities of the venoms showed that hemorrhage and blood incoagulability induced by B. atrox venom were similarly neutralized by both B. atrox and L. m. muta antivenoms. However, B. atrox antivenom partially neutralized the hemorrhage and completely failed in neutralizing coagulopathy induced by L. m. muta venom. Therefore, antigenic variation between B. atrox and L. m. muta venoms does occur and the use of specific antivenom is suggested for patients bitten by Lachesis snakes.
Collapse
Affiliation(s)
- M Colombini
- Laboratório de Imunopatologia, Instituto Butantan, 05503-900, SP, São Paulo, Brazil
| | | | | | | |
Collapse
|
21
|
Sanchez EF, Santos CI, Magalhaes A, Diniz CR, Figueiredo S, Gilroy J, Richardson M. Isolation of a proteinase with plasminogen-activating activity from Lachesis muta muta (bushmaster) snake venom. Arch Biochem Biophys 2000; 378:131-41. [PMID: 10871053 DOI: 10.1006/abbi.2000.1781] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A plasminogen activator enzyme (LV-PA) from Lachesis muta muta venom was purified to homogeneity using gel filtration and anion exchange chromatography. SDS-PAGE under reducing conditions showed a single protein band with an Mr of 33,000 Da. It is an acidic glycoprotein which activates plasminogen to plasmin indirectly, functioning via prior formation of a molecular complex, known as plasminogen activator. The purified preparation catalyzes the hydrolysis of several p-nitroanilide peptide substrates containing Lys at the scissile bond. In contrast, no hydrolysis was detected on the synthetic substrates TAME and BAPNA, which contain arginine. By the use of the plasmin-specific chromogenic substrate Tos-Gly-Pro-Lys-pNA, the preparation had a plasmin-like activity of 0.68 U/mg, which was 35.8-fold higher than that of the crude venom from which it was prepared. In vitro, fibrin hydrolysis using LV-PA as plasminogen activator displayed more similarity with the effect produced by streptokinase (SK). SDS-PAGE (10%) analysis showed a 115-kDa complex formation after incubation of plasminogen with either LV-PA or SK. At a molar ratio of 50:1 (fibrinogen:enzyme), the preparation exhibited weakly fibrinogenolytic activity. However, LV-PA is distinguished from thrombin in that it does not clot fibrinogen. After incubation of LV-PA with platelet-rich plasma, the enzyme (2 microM) showed no effect on platelet aggregation induced by ADP, epinephrine, or collagen. Comparison of the N-terminal sequence of LV-PA with other snake venom plasminogen activators revealed that LV-PA exhibits a high degree of sequence identity with the TsVPA from Trimeresurus stejnegeri (90%) and with the Haly-PA from Agkistrodon halys (85%). LV-PA also has homology with other snake venom serine proteinases such as the thrombin-like/gyroxin analogue (38%) from bushmaster venom and with other coagulation serine proteases. The proteinase was readily inhibited by treatment with p-nitrophenyl p-guanidinebenzoate, p-aminobenzamidine, and phenylmethanesulfonyl fluoride but was not affected by metal chelators.
Collapse
Affiliation(s)
- E F Sanchez
- Centro de Pesquisa e Desenvolvimento, Fundacão Ezequiel Dias, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | |
Collapse
|
22
|
Fortes-Dias CL, Jannotti ML, Franco FJ, Magalhães A, Diniz CR. Studies on the specificity of CNF, a phospholipase A2 inhibitor isolated from the blood plasma of the South American rattlesnake (Crotalus durissus terrificus). I. Interaction with PLA2 from Lachesis muta muta snake venom. Toxicon 1999; 37:1747-59. [PMID: 10519652 DOI: 10.1016/s0041-0101(99)00116-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A phospholipase A2 inhibitor has been previously purified and cloned from the blood plasma of the South American rattlesnake, Crotalus durissus terrificus. This inhibitor, named CNF for Crotalus neutralizing factor, interacts with crotoxin, the main neurotoxin from C. d. terrificus venom, abolishing its phospholipase A2 activity. Crotoxin is a heterodimer of an acidic subunit (CA) and a basic phospholipase A2 (CB). CNF acts by forming a stable non-toxic complex with CB, replacing CA in the toxic CA-CB of crotoxin. In the present investigation, we have shown that CNF has a broader specificity. It is able to inhibit the PLA2 activity of the whole venom from the bushmaster snake (Lachesis muta muta), a species evolutionary related to Crotalus. Inhibition experiments have been carried out with four PLA2 active components isolated from L. m. muta venom, one basic and three acidic ones. CNF inhibition is not restricted to the basic PLA2, but extended to the three acidic forms as well.
Collapse
Affiliation(s)
- C L Fortes-Dias
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
23
|
Giovanni-De-Simone S, Aguiar AS, Gimenez AR, Novellino K, de Moura RS. Purification, properties, and N-terminal amino acid sequence of a kallikrein-like enzyme from the venom of Lachesis muta rhombeata (Bushmaster). JOURNAL OF PROTEIN CHEMISTRY 1997; 16:809-18. [PMID: 9365929 DOI: 10.1023/a:1026372018547] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pit viper venoms contain multiple proteinases which cause considerable damage in tissues and systemic effects after envenomation. A proteinase, kallikrein-like enzyme, belonging to the serine group must play a very important role on systemic effects. The corresponding enzyme from Lachesis muta rhombeata venom was purified to homogeneity by a combination of isoelectrofocusing fractionation followed by one step of gel filtration HPLC. The enzyme focused with pI 5.0-6.5, it had a molecular mass of 32 kDa by gel filtration HPLC, had edematogenic activity, and induced a hypotensic effect in anesthetized rats. It exhibited strong N-alpha-tosyl-L-Arg methyl esterase (955.38 units/mg) and N-Bz-DL-Arg-pNA amidolytic (233.02 units/mg) activities, hydrolyzed tripeptide nitroanilide derivatives weakly or not at all, and cleaved selectively the A-alpha and B-beta chains of fibrinogen, apparently leaving the Y-chain unaffected. The 30 N-terminal amino acid sequence of the L. m. rhombeata protein showed greatest identity (74% in 26 amino acids) with Crotalus viridis kallikrein-like protein, but significant similarities in sequence were observed with enzymes from other snake venoms and pig pancreatic kallikrein.
Collapse
Affiliation(s)
- S Giovanni-De-Simone
- Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
24
|
Abstract
This review treats the general biology, taxonomy, distribution and venom apparatus of the venomous snakes of Central America. Consideration has been given to the chemistry, pharmacology and immunology of the venom, and particular attention is dispensed to the clinical problem, including the treatment, of envenomations by these reptiles.
Collapse
Affiliation(s)
- F E Russell
- Department of Pharmacology, Toxicology and Emergency Medicine, Health Sciences, University of Arizona, Tucson 85721, USA
| | | | | | | |
Collapse
|
25
|
Jorge MT, Sano-Martins IS, Tomy SC, Castro SC, Ferrari RA, Ribeiro LA, Warrell DA. Snakebite by the bushmaster (Lachesis muta) in Brazil: case report and review of the literature. Toxicon 1997; 35:545-54. [PMID: 9133709 DOI: 10.1016/s0041-0101(96)00142-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The bushmaster (Lachesis muta) of Central and South America, the world's longest pit viper, is capable of injecting a large dose of potent venom when it bites. A 28-year-old man, bitten by a 1.82 m long L. m. muta in Brazil, developed pain and oedema at the bite site, nausea, vomiting, diarrhoea and sweating. There was peripheral neutrophil leucocytosis and evidence of fibrinogen consumption with secondary activation of the fibrinolytic system. Two hours after the bite, eight ampoules of Instituto Butantan Lachesis antivenom was administered, and haemostasis was normal 24 hr later. A review of reports of 20 cases of bites in humans reliably attributed to this snake in Costa Rica, French Guiana, Brazil, Colombia and Venezuela confirms a syndrome of nausea, vomiting, abdominal colic, diarrhoea, sweating, hypotension, bradycardia and shock, possibly autopharmacological or autonomic in origin, not seen in victims of other American crotaline snakes. These, and other symptoms of bushmaster envenoming, are explained by haemorrhagic, coagulant and neurotoxic venom activities. The therapeutic efficacy of non-specific Bothrops/Crotalus polyvalent antivenoms in these cases has been unimpressive. For the treatment of bites by a snake which potentially injects a large dose (> 300 mg dry weight) of venom with a range of life-threatening activities, there is an urgent need to develop more potent specific antivenoms and to treat the dramatic and life-threatening cardiovascular symptoms.
Collapse
Affiliation(s)
- M T Jorge
- Hospital Vital Brazil, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Marsh N, Gattullo D, Pagliaro P, Losano G. The Gaboon viper, Bitis gabonica: hemorrhagic, metabolic, cardiovascular and clinical effects of the venom. Life Sci 1997; 61:763-9. [PMID: 9275005 DOI: 10.1016/s0024-3205(97)00244-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of Bitis gabonica venom have been studied in several animal species, including the monkey, dog, rabbit, rat and guinea pig. Further information has been provided by observations on the effects of snake bite in man. Bitis gabonica venom exerts a number of cytotoxic and cardiovascular effects: cytotoxic effects include widespread hemorrhage, caused by the presence of two hemorrhagic proteins. These hemorrhagins bring about separation of vascular endothelial cells and extravasation of blood into the tissue spaces. Metabolic alterations include decreased oxygen utilization by tissues and increased plasma glucose and lactate concentrations. Metabolic non-compensated acidosis has also been seen in the rat as a consequence of the cytotoxicity of the venom. Cardiovascular effects include disturbances in atrio-ventricular conduction and reduction in amplitude and duration of the action potential brought about by a decreased calcium membrane conductance. A progressive decrease in myocardial contractility can also be attributed to the decreased calcium conductance, which together with the severe acidosis may cause death in experimental animals. A severe, though reversible, vasodilatation was observed after envenomation due to unidentified compounds in the venom. In man, envenomation causes a variable clinical picture depending on the time course and severity of envenomation. Frequently seen effects include hypotension, hemorrhage at the site of the bite and elsewhere and disseminated intravascular coagulation. Envenomation can be satisfactorily treated with antivenom.
Collapse
Affiliation(s)
- N Marsh
- School of Life Science, Queensland University of Technology, Brisbane, Australia
| | | | | | | |
Collapse
|
27
|
Raspi G. Kallikrein and kallikrein-like proteinases: purification and determination by chromatographic and electrophoretic methods. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 684:265-87. [PMID: 8906477 DOI: 10.1016/0378-4347(96)00144-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Kallikreins and kallikrein-like enzymes make up a family of serine proteinases present in tissues and body fluids of mammals and in some snake venoms. This review deals with the procedures of purification, detection and determination of these enzymes by chromatographic and electrophoretic methods. The procedures are reported in tables, described and discussed with the aim of illustrating the state-of-the-art of research in the field.
Collapse
Affiliation(s)
- G Raspi
- Dipartimento di Chimica e Chimica Industriale dell'Università and Istituto di Chimica Analitica Strumentale del C.N.R. Pisa, Italy
| |
Collapse
|
28
|
Sánchez EF, Costa MI, Chavez-Olortegui C, Assakura MT, Mandelbaum FR, Diniz CR. Characterization of a hemorrhagic factor, LHF-I, isolated from the bushmaster snake (Lachesis muta muta) venom. Toxicon 1995; 33:1653-67. [PMID: 8866622 DOI: 10.1016/0041-0101(95)00097-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hemorrhagic factor I (LHF-I) was previously purified from the venom of the bushmaster snake (Lachesis muta muta). In terms of biochemical and immunological properties, LHF-I is a glycoprotein (mol. wt 100,000, pI 4.7) consisting of two subunits; it loses its activity following mercaptoethanol treatment. LHF-I contains 0.7 g-atom zinc and 1.2 g-atom calcium per mole protein. The hemorrhagic and the proteinase activities are inhibited by EDTA; subsequent addition of Ca2+ or Mg2+ does not reverse the EDTA-induced inhibition of the hemorrhagic activity. The metalloenzyme does not hyrolyze arginine esters and is devoid of phospholipase A2 activity. It hydrolyzes the A alpha- > B beta-chain of fibrinogen without clot formation and hydrolyzes selectively the alpha-chain of fibrin, leaving the B beta- and tau-chains unaffected. Antibodies to the hemorrhagic factor in bushmaster venom were produced by immunizing rabbits with the purified protein. The antibody was purified by protein-A affinity chromatography. This antibody was also used to screen other Crotalinae venom samples for immunologically similar epitopes by ELISA assay. The purified antibody reacted only with LHF-I and two samples of bushmaster venom from different geographical locations.
Collapse
Affiliation(s)
- E F Sánchez
- Centro de Pesquisa e Desenvolvimento, Fundaçao Ezequiel Dias, Belo Horizonte, M.G., Brazil
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
al-Joufi A, Bailey GS. Purification by HPLC anion-exchange chromatography and some properties of a kinin-releasing enzyme from the venom of Agkistrodon halys ussuriensis. Toxicon 1994; 32:157-63. [PMID: 8153955 DOI: 10.1016/0041-0101(94)90104-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A kinin-releasing enzyme was isolated from the venom of Agkistrodon halys ussuriensis using a very convenient two-step procedure consisting of HPLC anion-exchange chromatography. The relative molecular mass was estimated as 24,000 by SDS gel electrophoresis and an isoelectric point of pH 3.7 was established by gel isoelectric focusing. The kinin-releasing enzyme resembled a typical tissue kallikrein in the values of such physiochemical parameters, in its thermal stability, in its lack of activity towards fibrinogen and casein, and in its behaviour with potential inhibitors. Thus, the enzyme can be classified as a kallikrein-like enzyme.
Collapse
Affiliation(s)
- A al-Joufi
- Department of Chemistry and Biological Chemistry, University of Essex, Colchester, U.K
| | | |
Collapse
|
31
|
Bard R, Lima JCRD, Sa Neto RPD, Oliveira SGD, Santos MCD. Ineficácia do antiveneno botrópico na neutralização da atividade coagulante do veneno de Lachesis muta muta: relato de caso e comprovação experimental. Rev Inst Med Trop Sao Paulo 1994. [DOI: 10.1590/s0036-46651994000100012] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
No Estado do Amazonas, nas regiões circunvizinhas à cidade de Manaus, as principais espécies de serpentes causadoras de acidentes são Bothrops atrox e Lachesis muta muta com um percentual de ocorrência, dos acidentes confirmados, de 76% e 17%, respectivamente. Rotineiramente, na ausência dos soros antilaquético e antibotrópico-laquético o Instituto de Medicina Tropical de Manaus (IMTM), utiliza-se do soro antibotrópico no tratamento do acidente laquético. Neste trabalho relatamos um caso de acidente por L m. muta, onde o paciente foi tratado com 20 ampolas do soro antibotrópico e permaneceu com o sangue incoagulável até o 13º dia após o acidente. Experimentos foram realizados para obtenção das potências do soro antibotrópico para as atividades coagulante e hemorrágica dos venenos de L. m. muta e de B. atrox. Os resultados mostram que as potências do soro para a atividade hemorrágica dos venenos de L. m. muta e de B. atrox foram similares enquanto que a potência, para a atividade coagulante do veneno de L. m. muta, foi 9,2 vezes menor. Os títulos de anticorpos de três diferentes lotes de soro antibotrópico variaram para o veneno de L. m. muta e foram constantes para o veneno de B. atrox. Devido a ineficácia do soro antibotrópico em neutralizar, principalmente, a atividade coagulante do veneno de L. m. muta, sugerimos a não utilização do antibotrópico no tratamento dos acidentes por L. m. muta.
Collapse
Affiliation(s)
- Ramza Bard
- Instituto de Medicina Tropical de Manaus, Brasil
| | | | | | | | | |
Collapse
|