1
|
Romanazzi M, Filardi ETM, Pires GMM, Cerveja MF, Melo-dos-Santos G, Oliveira IS, Ferreira IG, Cerni FA, Santos-Filho NA, Monteiro WM, Almeida JR, Vaiyapuri S, Pucca MB. The Versatility of Serine Proteases from Brazilian Bothrops Venom: Their Roles in Snakebites and Drug Discovery. Biomolecules 2025; 15:154. [PMID: 40001458 PMCID: PMC11852464 DOI: 10.3390/biom15020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Serine proteases are multifunctional and versatile venom components found in viper snakes, including the Bothrops species, a widely distributed genus notorious for causing the highest number of snakebites across Latin America. These enzymes, representing a significant fraction of Bothrops venom proteomes, exhibit a wide range of biological activities that influence blood coagulation, fibrinolysis, and inflammation. This review provides a comprehensive overview of serine proteases, with a particular focus on those found in the venom of Brazilian Bothrops snakes. The discussion begins with a summary of snake species found in Brazil and their medical relevance. Specifically addressing the Bothrops genus, this review explores the distribution of these species across Brazilian territory and their associated medical importance. Subsequently, the article investigates the biochemistry of Bothrops venoms and the clinical manifestations induced by envenomation. Finally, it offers an in-depth discussion on the serine proteases, highlighting their biochemical properties, mechanisms of action, and potential therapeutic applications. Furthermore, this review provides an in-depth exploration of the diverse serine proteases found in Bothrops venoms and their functional significance, from thrombin-like effects to potent fibrinogenolytic actions, which determine the clinical manifestations of envenomation. This review delves into the evolutionary adaptations and biochemical diversity of serine proteases in Bothrops venoms, emphasizing their critical roles in venom functionality and the resulting pathophysiological effects. Additionally, it opens new avenues for utilizing these enzymes in biomedical applications, underscoring their potential beyond toxinology.
Collapse
Affiliation(s)
- Marcela Romanazzi
- Graduate Program in Bioscience and Biotechnology Applied to Pharmacy, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 19060-900, Brazil; (M.R.); (M.F.C.)
| | - Eloise T. M. Filardi
- Graduate Program in Bioscience and Biotechnology Applied to Pharmacy, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 19060-900, Brazil; (M.R.); (M.F.C.)
| | - Geovanna M. M. Pires
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 19060-900, Brazil
| | - Marcos F. Cerveja
- Graduate Program in Bioscience and Biotechnology Applied to Pharmacy, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 19060-900, Brazil; (M.R.); (M.F.C.)
| | - Guilherme Melo-dos-Santos
- Graduate Program in Bioscience and Biotechnology Applied to Pharmacy, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 19060-900, Brazil; (M.R.); (M.F.C.)
| | - Isadora S. Oliveira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 19040-903, Brazil
| | - Isabela G. Ferreira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 19040-903, Brazil
| | - Felipe A. Cerni
- Medical School, Federal University of Roraima, Boa Vista 69310-000, Brazil
| | - Norival Alves Santos-Filho
- Graduate Program in Bioscience and Biotechnology Applied to Pharmacy, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 19060-900, Brazil; (M.R.); (M.F.C.)
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, Brazil
| | - Wuelton M. Monteiro
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69850-000, Brazil;
| | - José R. Almeida
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| | | | - Manuela B. Pucca
- Graduate Program in Bioscience and Biotechnology Applied to Pharmacy, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 19060-900, Brazil; (M.R.); (M.F.C.)
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 19060-900, Brazil
| |
Collapse
|
2
|
Vidal JFD, Schwartz MF, Garay AV, Valadares NF, Bueno RV, Monteiro ACL, de Freitas SM, Barbosa JARG. Exploring the Diversity and Function of Serine Proteases in Toxicofera Reptile Venoms: A Comprehensive Overview. Toxins (Basel) 2024; 16:428. [PMID: 39453204 PMCID: PMC11511063 DOI: 10.3390/toxins16100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 10/26/2024] Open
Abstract
Toxicofera reptile venoms are composed of several toxins, including serine proteases. These proteases are glycosylated enzymes that affect the prey's hemostatic system. Their actions extend across the coagulation cascade, the kallikrein-kinin system, and platelet activation. Despite their specificity for different substrates, these enzymes are homologous across all toxicoferans and display high sequence similarity. The aim of this review is to compile decades of knowledge about venom serine proteases, showing the diversity of biochemically and biophysically characterized enzymes, their structural characteristics, advances in understanding their origin and evolution, as well as methods of obtaining enzymes and their biotechnological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - João Alexandre R. G. Barbosa
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, Darcy Ribeiro Campus, University of Brasília, Asa Norte, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
3
|
Rima M, Alavi Naini SM, Karam M, Sadek R, Sabatier JM, Fajloun Z. Vipers of the Middle East: A Rich Source of Bioactive Molecules. Molecules 2018; 23:molecules23102721. [PMID: 30360399 PMCID: PMC6222703 DOI: 10.3390/molecules23102721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022] Open
Abstract
Snake venom serves as a tool of defense against threat and helps in prey digestion. It consists of a mixture of enzymes, such as phospholipase A2, metalloproteases, and l-amino acid oxidase, and toxins, including neurotoxins and cytotoxins. Beside their toxicity, venom components possess many pharmacological effects and have been used to design drugs and as biomarkers of diseases. Viperidae is one family of venomous snakes that is found nearly worldwide. However, three main vipers exist in the Middle Eastern region: Montivipera bornmuelleri, Macrovipera lebetina, and Vipera (Daboia) palaestinae. The venoms of these vipers have been the subject of many studies and are considered as a promising source of bioactive molecules. In this review, we present an overview of these three vipers, with a special focus on their venom composition as well as their biological activities, and we discuss further frameworks for the exploration of each venom.
Collapse
Affiliation(s)
- Mohamad Rima
- Department of Neuroscience, Institut de Biologie Paris Seine (IBPS), INSERM, CNRS, Sorbonne Université, F-75005 Paris, France.
| | - Seyedeh Maryam Alavi Naini
- Department of Neuroscience, Institut de Biologie Paris Seine (IBPS), INSERM, CNRS, Sorbonne Université, F-75005 Paris, France.
| | - Marc Karam
- Department of Biology, Faculty of Sciences, University of Balamand, Kourah3843, Lebanon.
| | - Riyad Sadek
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon.
| | - Jean-Marc Sabatier
- Laboratory INSERM UMR 1097, Aix-Marseille University, 163, Parc Scientifique et Technologique de Luminy, Avenue de Luminy, Bâtiment TPR2, Case 939, 13288 Marseille, France.
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences III, Lebanese University, Tripoli 1300, Lebanon.
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon.
| |
Collapse
|
4
|
de Oliveira F, de Sousa BB, Mamede CCN, de Morais NCG, de Queiroz MR, da Cunha Pereira DF, Matias MS, Homi Brandeburgo MI. Biochemical and functional characterization of BmooSP, a new serine protease from Bothrops moojeni snake venom. Toxicon 2016; 111:130-8. [PMID: 26797102 DOI: 10.1016/j.toxicon.2016.01.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/30/2015] [Accepted: 01/10/2016] [Indexed: 09/30/2022]
Abstract
In this work, we describe the purification and characterization of a new serine protease enzyme from Bothrops moojeni snake venom (BmooSP). On SDS-PAGE, BmooSP was found to be a single-chain protein with an apparent molecular mass of 36,000 and 32,000 under reduced and non-reduced conditions, respectively. Mass spectrometry analysis showed that the BmooSP is composed by two isoforms with molecular mass of 30,363 and 30,070, respectively. The purified enzyme consists of 277 amino acid residues, disregarding the cysteine and tryptophan residues that have been degraded by acid hydrolysis, and its N-terminal sequence showed similarity with other serine protease enzymes. BmooSP induced blood-clotting in vitro, defibrination in vivo, caseinolytic and fibrin(ogen)olytic activities. The enzyme is stable at high temperatures (up to 100 °C) and shows maximum activity at pH around 7.0. Preliminary results show that BmooSP can induce the formation of a stable fibrin clot for more than 10 days. BmooSP presents medical interest because it can be used as biodegradable fibrin glue and for the treatment and prevention of cardiovascular disorders because of its ability to promote the defibrination in vivo, decreasing blood viscosity and improving blood circulation.
Collapse
Affiliation(s)
- Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil.
| | - Bruna Barbosa de Sousa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | - Carla Cristine Neves Mamede
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | - Nadia Cristina Gomes de Morais
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | - Mayara Ribeiro de Queiroz
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | | | - Mariana S Matias
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil
| | | |
Collapse
|
5
|
Aird SD, Aggarwal S, Villar-Briones A, Tin MMY, Terada K, Mikheyev AS. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly. BMC Genomics 2015; 16:647. [PMID: 26315097 PMCID: PMC4552096 DOI: 10.1186/s12864-015-1832-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
Background While many studies have shown that extracellular proteins evolve rapidly, how selection acts on them remains poorly understood. We used snake venoms to understand the interaction between ecology, expression level, and evolutionary rate in secreted protein systems. Venomous snakes employ well-integrated systems of proteins and organic constituents to immobilize prey. Venoms are generally optimized to subdue preferred prey more effectively than non-prey, and many venom protein families manifest positive selection and rapid gene family diversification. Although previous studies have illuminated how individual venom protein families evolve, how selection acts on venoms as integrated systems, is unknown. Results Using next-generation transcriptome sequencing and mass spectrometry, we examined microevolution in two pitvipers, allopatrically separated for at least 1.6 million years, and their hybrids. Transcriptomes of parental species had generally similar compositions in regard to protein families, but for a given protein family, the homologs present and concentrations thereof sometimes differed dramatically. For instance, a phospholipase A2 transcript comprising 73.4 % of the Protobothrops elegans transcriptome, was barely present in the P. flavoviridis transcriptome (<0.05 %). Hybrids produced most proteins found in both parental venoms. Protein evolutionary rates were positively correlated with transcriptomic and proteomic abundances, and the most abundant proteins showed positive selection. This pattern holds with the addition of four other published crotaline transcriptomes, from two more genera, and also for the recently published king cobra genome, suggesting that rapid evolution of abundant proteins may be generally true for snake venoms. Looking more broadly at Protobothrops, we show that rapid evolution of the most abundant components is due to positive selection, suggesting an interplay between abundance and adaptation. Conclusions Given log-scale differences in toxin abundance, which are likely correlated with biosynthetic costs, we hypothesize that as a result of natural selection, snakes optimize return on energetic investment by producing more of venom proteins that increase their fitness. Natural selection then acts on the additive genetic variance of these components, in proportion to their contributions to overall fitness. Adaptive evolution of venoms may occur most rapidly through changes in expression levels that alter fitness contributions, and thus the strength of selection acting on specific secretome components. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1832-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven D Aird
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan.
| | - Shikha Aggarwal
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan. .,University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| | - Alejandro Villar-Briones
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan.
| | - Mandy Man-Ying Tin
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan.
| | - Kouki Terada
- Okinawa Prefectural Institute of Health and the Environment, Biology and Ecology Group, 2003 Ozato, Ozato, Nanjo-shi, Okinawa, 901-1202, Japan.
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan. .,Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
6
|
Amel KS, Fatima LD. Purification and Characterization of a New Serine Protease (VLCII) Isolated fromVipera lebetinaVenom: Its Role in Hemostasis. J Biochem Mol Toxicol 2015; 29:388-97. [DOI: 10.1002/jbt.21709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Kadi-Saci Amel
- USTHB, Faculty of Biological Sciences; Laboratory of Cellular and Molecular Biology; BP32 El-Alia Bab Ezzouar Algiers Algeria
| | - Laraba-Djebari Fatima
- USTHB, Faculty of Biological Sciences; Laboratory of Cellular and Molecular Biology; BP32 El-Alia Bab Ezzouar Algiers Algeria
| |
Collapse
|
7
|
Monteiro-Machado M, Tomaz MA, Fonseca RJC, Strauch MA, Cons BL, Borges PA, Patrão-Neto FC, Tavares-Henriques MS, Teixeira-Cruz JM, Calil-Elias S, Cintra ACO, Martinez AMB, Mourão PAS, Melo PA. Occurrence of sulfated fucose branches in fucosylated chondroitin sulfate are essential for the polysaccharide effect preventing muscle damage induced by toxins and crude venom from Bothrops jararacussu snake. Toxicon 2015; 98:20-33. [PMID: 25702961 DOI: 10.1016/j.toxicon.2015.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/10/2015] [Accepted: 02/18/2015] [Indexed: 12/29/2022]
Abstract
Snake envenoming is an important public health problem around the world, particularly in tropics. Beyond deaths, morbidity induced by snake venoms, such as myotoxicity, is of pivotal consequence to population. Bothrops jararacussu is the main venomous snake in southeast region of Brazil, and particularly presents strong myotoxic effect. The only available therapy, antibothropic antivenom, poorly affects venom-induced myotoxicity. The aim of this study is to assess the ability of fucosylated chondroitin sulfate (fucCS), a glycosaminoglycan with anticoagulant and antithrombotic properties, and its derivatives to inhibit toxic activities of B. jararacussu crude venom and its isolated toxins, named bothropstoxins (BthTX-I and BthTX-II). The in vitro myotoxic activities induced by crude venom, by BthTX-I alone and by toxins together were abolished by fucCS. Carboxyl reduction (fucCS-CR) kept this ability whereas defucosilation (defucCS) abrogates myoprotection. We observed the same pattern in the response of these polysaccharides in antagonizing the increase in plasma creatine kinase (CK) levels, the reduction of skeletal muscle CK content and the rise of myeloperoxidase (MPO) activity induced by crude venom and isolated toxins. FucCS inhibited edematogenic activity and partially prevented the reduction of total leukocytes in blood when pre-incubated with crude venom. Furthermore, the venom procoagulant effect was completely antagonized by increasing concentrations of fucCS, although this polyanion could stop neither the tail bleeding nor the skin hemorrhage induced by Bothrops jararaca venom. The B. jararacussu phospholipase, hyaluronidase, proteolytic and collagenase activities were inhibited in vitro. The results suggest that fucCS could be able to interact with both toxins, and it is able to inhibit BthTX-II phospholipase activity. Light microscopy of extensor digitorum longus muscle (EDL) muscle showed myoprotection by fucCS, once necrotic areas, edema and inflammatory cells were all decreased as compared to venom injection alone. Altogether, data show that fucCS was able to inhibit myotoxicity and inflammation induced by B. jararacussu venom and its phospholipase toxins, BthTX-I and BthTX-II. Thus, fucosylated chondroitin sulfate is a new polyanion with potential to be used as an adjuvant in the treatment of snakebites in the future.
Collapse
Affiliation(s)
- Marcos Monteiro-Machado
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo A Tomaz
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Roberto J C Fonseca
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo A Strauch
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno L Cons
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paula A Borges
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando C Patrão-Neto
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Matheus S Tavares-Henriques
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jhonatha M Teixeira-Cruz
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sabrina Calil-Elias
- Departamento de Farmácia e Administração Farmacêutica, Faculdade de Farmácia, UFF, Niterói, RJ, Brazil
| | - Adélia C O Cintra
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Maria B Martinez
- Programa de Pesquisa em Neurociência Básica e Clínica, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paulo A S Mourão
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo A Melo
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Rodrigues MA, Dias L, Rennó AL, Sousa NC, Smaal A, Silva DAD, Hyslop S. Rat atrial responses to Bothrops jararacussu (jararacuçu) snake venom. Toxicology 2014; 323:109-24. [DOI: 10.1016/j.tox.2014.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
|
9
|
Rapid purification of serine proteinases from Bothrops alternatus and Bothrops moojeni venoms. Toxicon 2013; 76:282-90. [DOI: 10.1016/j.toxicon.2013.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 11/22/2022]
|
10
|
Torres FS, Rates B, Gomes MTR, Salas CE, Pimenta AMC, Oliveira F, Santoro MM, de Lima ME. Bmoo FIBMP-I: A New Fibrinogenolytic Metalloproteinase from Bothrops moojeni Snake Venom. ISRN TOXICOLOGY 2012; 2012:673941. [PMID: 23762636 PMCID: PMC3671731 DOI: 10.5402/2012/673941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/08/2012] [Indexed: 06/02/2023]
Abstract
A new fibrinogenolytic metalloproteinase (Bmoo FIBMP-I) was purified from Bothrops moojeni snake venom. This enzyme was isolated through a combination of three chromatographic steps (ion-exchange, molecular exclusion, and affinity chromatography). Analyses by reverse phase chromatography, followed by mass spectrometry, showed the presence of enzyme isoforms with average molecular mass of 22.8 kDa. The SDS-PAGE analyses showed a single chain of 27.6 kDa, in the presence and absence of reducing agent. The protein has a blocked N-terminal. One of the peptides obtained by enzymatic digestion of a reduced and S-alkylated isoform was completely sequenced by mass spectrometry (MS/MS). Bmoo FIBMP-I showed similarity with hemorrhagic factor and several metalloproteinases (MP). This enzyme degraded Aα-chain faster than the Bβ-chain and did not affect the γ-chain of bovine fibrinogen. The absence of proteolytic activity after treatment with EDTA, together with the observed molecular mass, led us to suggest that Bmoo FIBMP-I is a member of the P-I class of the snake venom MP family. Bmoo FIBMP-I showed pH-dependent proteolytic activity on azocasein, but was devoid of coagulant, defibrinating, or hemorrhagic activities. The kinetic parameters of proteolytic activity in azocasein were determined (V max = 0.4596 Uh(-1)nmol(-1) ± 0.1031 and K m = 14.59 mg/mL ± 4.610).
Collapse
Affiliation(s)
- F. S. Torres
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - B. Rates
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - M. T. R. Gomes
- Laboratório de Biologia Molecular de Produtos Naturais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - C. E. Salas
- Laboratório de Biologia Molecular de Produtos Naturais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - A. M. C. Pimenta
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - F. Oliveira
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | - M. M. Santoro
- Laboratório de Físico-Química de Proteínas e Enzimologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - M. E. de Lima
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Menaldo DL, Bernardes CP, Santos-Filho NA, Moura LDA, Fuly AL, Arantes EC, Sampaio SV. Biochemical characterization and comparative analysis of two distinct serine proteases from Bothrops pirajai snake venom. Biochimie 2012; 94:2545-58. [PMID: 22819993 DOI: 10.1016/j.biochi.2012.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/05/2012] [Indexed: 11/29/2022]
Abstract
This study reports the isolation and biochemical characterization of two different serine proteases from Bothrops pirajai snake venom, thus providing a comparative analysis of the enzymes. The isolation process consisted of three consecutive chromatographic steps (Sephacryl S-200, Benzamidine Sepharose and C2/C18), resulting in two serine proteases, named BpirSP27 and BpirSP41 after their molecular masses by mass spectrometry (27,121 and 40,639 Da, respectively). Estimation by SDS-PAGE under denaturing conditions showed that, when deglycosylated with PNGase F, BpirSP27 and BpirSP41 had their molecular masses reduced by approximately 15 and 42%, respectively. Both are acidic enzymes, with pI of approximately 4.7 for BpirSP27 and 3.7 for BpirSP41, and their N-terminal amino acid sequences showed 57% identity to each other, with high similarity to the sequences of other snake venom serine proteases (SVSPs). The enzymes showed different actions on bovine fibrinogen, with BpirSP27 acting preferentially on the Bβ chain and BpirSP41 on both Aα and Bβ chains. The two serine proteases were also able to degrade fibrin and blood clots in vitro depending on the doses and incubation periods, with higher results for BpirSP41. Both enzymes coagulated the human plasma in a dose-dependent manner, and BpirSP41 showed a higher coagulant potential, with minimum coagulant dose (MCD) of ∼3.5 μg versus 20 μg for BpirSP27. The enzymes were capable of hydrolyzing different chromogenic substrates, including S-2238 for thrombin-like enzymes, but only BpirSP27 acted on the substrate S-2251 for plasmin. They also showed high stability against variations of temperature and pH, but their activities were significantly reduced after preincubation with Cu(2+) ion and specific serine protease inhibitors. In addition, BpirSP27 induced aggregation of washed platelets to a greater extent than BpirSP41. The results showed significant structural and functional differences between B. pirajai serine proteases, providing interesting insights into the structure-function relationship of SVSPs.
Collapse
Affiliation(s)
- Danilo Luccas Menaldo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Av. do Café, s/n°, CEP 14040-903, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Salazar AM, Vivas J, Sánchez EE, Rodríguez-Acosta A, Ibarra C, Gil A, Carvajal Z, Girón ME, Estrella A, Navarrete LF, Guerrero B. Hemostatic and toxinological diversities in venom of Micrurus tener tener, Micrurus fulvius fulvius and Micrurus isozonus coral snakes. Toxicon 2011; 58:35-45. [PMID: 21596052 PMCID: PMC3304457 DOI: 10.1016/j.toxicon.2011.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
The coral snake Micrurus tener tener (Mtt) from the Elapidae family inhabits the southwestern United States and produces severe cases of envenomations. Although the majority of Mtt venom components are neurotoxins and phospholipase A₂s, this study demonstrated, by SDS-PAGE and molecular exclusion chromatography (MEC), that these venoms also contain high-molecular-weight proteins between 50 and 150 kDa that target the hemostatic system. The biological aspects of other Micrurus venoms were also studied, such as the LD₅₀s of Micrurus isozonus (from 0.52 to 0.61 mg/kg). A pool from these venoms presented a LD₅₀ of 0.57 mg/kg, Micrurus f. fulvius (Mff) and Mtt had LD₅₀s of 0.32 and 0.78 mg/kg, respectively. These venoms contained fibrino(geno)lytic activity, they inhibited platelet aggregation, as well as factor Xa and/or plasmin-like activities. M. isozonus venoms from different Venezuelan geographical regions inhibited ADP-induced platelet aggregation (from 50 to 68%). Micrurus tener tener venom from the United States was the most active with a 95.2% inhibitory effect. This venom showed thrombin-like activity on fibrinogen and human plasma. Fractions of Mtt showed fibrino(geno)lytic activity and inhibition on plasmin amidolytic activity. Several fractions degraded the fibrinogen Aα chains, and fractions F2 and F7 completely degraded both fibrinogen Aα and Bβ chains. To our knowledge, this is the first report on thrombin-like and fibrino(geno)lytic activity and plasmin or factor Xa inhibitors described in Micrurus venoms. Further purification and characterization of these Micrurus venom components could be of therapeutic use in the treatment of hemostatic disorders.
Collapse
Affiliation(s)
- Ana M. Salazar
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela
| | - Jeilyn Vivas
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela
| | - Elda E. Sánchez
- Department of Chemistry and The National Natural Toxins Research Center, Texas A & M University-Kingsville, Kingsville, TX 78363, USA
| | - Alexis Rodríguez-Acosta
- Sección de Inmunoquímica, Instituto de Medicina Tropical de la Universidad Central de Venezuela, Caracas, Venezuela
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela
| | - Carlos Ibarra
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela
| | - Amparo Gil
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela
| | - Zoila Carvajal
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela
| | - María E. Girón
- Sección de Inmunoquímica, Instituto de Medicina Tropical de la Universidad Central de Venezuela, Caracas, Venezuela
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela
| | - Amalid Estrella
- Sección de Inmunoquímica, Instituto de Medicina Tropical de la Universidad Central de Venezuela, Caracas, Venezuela
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela
| | - Luis F. Navarrete
- Sección de Inmunoquímica, Instituto de Medicina Tropical de la Universidad Central de Venezuela, Caracas, Venezuela
| | - Belsy Guerrero
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela
| |
Collapse
|
14
|
Cardoso KC, Da Silva MJ, Costa GGL, Torres TT, Del Bem LEV, Vidal RO, Menossi M, Hyslop S. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu). BMC Genomics 2010; 11:605. [PMID: 20977763 PMCID: PMC3017861 DOI: 10.1186/1471-2164-11-605] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 10/26/2010] [Indexed: 01/13/2023] Open
Abstract
Background The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. Results A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A2 (5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. Conclusions Bothrops alternatus venom gland contains the major toxin classes described for other Bothrops venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA2 agrees with the lower myotoxicity of this venom compared to other Bothrops species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.
Collapse
Affiliation(s)
- Kiara C Cardoso
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, CP 6111, 13083-970, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
de Oliveira DGL, Murakami MT, Cintra ACO, Franco JJ, Sampaio SV, Arni RK. Functional and structural analysis of two fibrinogen-activating enzymes isolated from the venoms of Crotalus durissus terrificus and Crotalus durissus collilineatus. Acta Biochim Biophys Sin (Shanghai) 2009; 41:21-9. [PMID: 19129947 DOI: 10.1093/abbs/gmn003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fibrinogen-activating enzymes, widely distributed in Crotalidae and Viperidae venoms, are single-chain glycosylated serine proteases that display high macromolecular selectivity and are often referred to as thrombin-like enzymes (TLEs). TLEs serve as structural models to extend our understanding of the structure-function relationships of blood coagulation factors, have been clinically used for the treatment of thrombotic diseases, and are used as tools in clinical assays. The combination of gel filtration and ion-exchange chromatography proved to be successful in obtaining milligram quantities of pure samples of TLEs from the venoms of Crotalus durissus terrificus (white venom) and Crotalus durissus collilineatus (yellow venom). Functional characterization indicates that both enzymes preferentially degrade the Bb chain of bovine fibrinogen and possess edema-inducing and coagulant activities. However, the TLE from C. d. collilineatus venom shows twofold higher coagulant activity with a minimum coagulant dose (MCD) of 0.6 microg/microl, whereas the enzyme isolated from C. d. terrificus indicated an MCD of 1.5 microg/microl. Molecular modeling of gyroxin and structural comparisons with other highly conserved snake venom serine proteases, underlines the key role played by the surface charge distribution and the double insertion in the 174-surface loop in macromolecular substrate recognition by TLEs.
Collapse
Affiliation(s)
- Daniela G L de Oliveira
- Department of Physics, Center for Structural & Molecular Biology, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Sant'Ana CD, Bernardes CP, Izidoro LFM, Mazzi MV, Soares SG, Fuly AL, Zingali RB, Magro AJ, Braz ASK, Fontes MRM, Stábeli RG, Sampaio SV, Soares AM. Molecular characterization of BjussuSP-I, a new thrombin-like enzyme with procoagulant and kallikrein-like activity isolated from Bothrops jararacussu snake venom. Biochimie 2007; 90:500-7. [PMID: 17996740 DOI: 10.1016/j.biochi.2007.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 10/12/2007] [Indexed: 11/16/2022]
Abstract
A thrombin-like enzyme, named BjussuSP-I, isolated from Bothrops jararacussu snake venom, is an acidic single-chain glycoprotein with M(r)=61,000, pI approximately 3.8 and 6% sugar. BjussuSP-I shows high proteolytic activity upon synthetic substrates, such as S-2238 and S-2288. It also shows procoagulant and kallikrein-like activity, but is unable to act on platelets and plasmin. These activities are inhibited by specific inhibitors of this class of enzymes. The complete cDNA sequence of BjussuSP-I with 696bp encodes open reading frames of 232 amino acid residues, which conserve the common domains of thrombin-like serine proteases. BjussuSP-I shows a high structural homology with other thrombin-like enzymes from snake venoms where common amino acid residues are identified as those corresponding to the catalytic site and subsites S1, S2 and S3 already reported. In this study, we also demonstrated the importance of N-linked glycans to improve thrombin-like activity of BjussuSP-I toxin.
Collapse
Affiliation(s)
- Carolina D Sant'Ana
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Silva-Junior FP, Guedes HLM, Garvey LC, Aguiar AS, Bourguignon SC, Di Cera E, Giovanni-De-Simone S. BJ-48, a novel thrombin-like enzyme from the Bothrops jararacussu venom with high selectivity for Arg over Lys in P1: Role of N-glycosylation in thermostability and active site accessibility. Toxicon 2007; 50:18-31. [PMID: 17433397 DOI: 10.1016/j.toxicon.2007.02.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/09/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
BJ-48, a serine protease from the venom of Bothrops jararacussu, was purified to homogeneity using affinity chromatography on p-aminobenzamidine-agarose followed by HPLC gel filtration. BJ-48 presented 52kDa by SDS-PAGE analysis and 48,036Da by electron spray mass spectrometry. The enzyme was shown to be highly glycosylated with 42% of N-linked carbohydrates composed of Fuc(1):GalN(4):GlcN(5):Gal(1):Man(2) and a high content of sialic acid residues (8-12%). BJ-48 had optimal esterase activity at pH 7.5 and displayed maximum catalytic rate at 50 degrees C. Its hydrolytic activity was strongly inhibited by aprotinin and dithiothreitol while N-tosyl-l-phenylalanine chloromethyl ketone, 6-aminocaproic acid, E-64 and soybean trypsin inhibitor (SBTI) were ineffective. The kinetics of BJ-48 with chromogenic substrates revealed an unprecedented selectivity (10(4)-fold) for Arg over Lys in P1. BJ-48 proved to be a thrombin-like enzyme (TLE) with a specific fibrinogen-clotting activity of 73.4NIH units/mg. The TLE rapidly digested human fibrinogen Bbeta chain, but the Aalpha chain was cleaved specifically to release fibrinopeptide A with k(cat)/K(m)=2.1 microM(-1)s(-1). The TLE showed no activity toward other thrombin substrates like protein C, protease-activated receptor-1 or inhibitors such as hirudin and antithrombin. A non-denaturing procedure using PNGase F and neuraminidase followed by hydrophobic interaction chromatography was employed to obtain active BJ-48 forms with variable carbohydrate content. Compared to the native enzyme, total or partially deglycosylated BJ-48 forms presented up to 2-fold reduction in their specific activities upon heating at 55/65 degrees C or treatment with SBTI. These results point out a role for BJ-48 glycosylation in thermostability and controlling the access of some canonical protein inhibitors to the active site.
Collapse
Affiliation(s)
- Floriano P Silva-Junior
- Laboratório de Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, 21045 900 RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Sant' Ana CD, Ticli FK, Oliveira LL, Giglio JR, Rechia CGV, Fuly AL, Selistre de Araújo HS, Franco JJ, Stabeli RG, Soares AM, Sampaio SV. BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom. Comp Biochem Physiol A Mol Integr Physiol 2007; 151:443-454. [PMID: 17466550 DOI: 10.1016/j.cbpa.2007.02.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 02/05/2007] [Accepted: 02/28/2007] [Indexed: 12/20/2022]
Abstract
A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr=61,000 under reducing conditions and pI approximately 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated serine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca(2+) and Mg(2+)). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against 11 venom samples of Bothrops, 1 of Crotalus, and 1 of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDINEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom.
Collapse
Affiliation(s)
- Carolina D Sant' Ana
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, FCFRP-USP, Ribeirão Preto - SP, Brazil
| | - Fabio K Ticli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, FCFRP-USP, Ribeirão Preto - SP, Brazil
| | - Leandro L Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo, FMRP-USP, Ribeirão Preto - SP, Brazil
| | - Jose R Giglio
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo, FMRP-USP, Ribeirão Preto - SP, Brazil
| | - Carem G V Rechia
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, FCFRP-USP, Ribeirão Preto - SP, Brazil
| | - André L Fuly
- Instituto de Biologia, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, UFF, Niterói, RJ, Brazil
| | | | - João J Franco
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, FCFRP-USP, Ribeirão Preto - SP, Brazil
| | - Rodrigo G Stabeli
- Laboratório de Bioquímica e Biotecnologia, Instituto de Pesquisas em Patologias Tropicais (IPEPATRO), Universidade de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Andreimar M Soares
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, FCFRP-USP, Ribeirão Preto - SP, Brazil.
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, FCFRP-USP, Ribeirão Preto - SP, Brazil.
| |
Collapse
|
19
|
Neto HS, Marques MJ. Microvessel damage by B. jararacussu snake venom: pathogenesis and influence on muscle regeneration. Toxicon 2005; 46:814-9. [PMID: 16198390 DOI: 10.1016/j.toxicon.2005.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/18/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
The loss of muscle mass consequent to poor muscle regeneration is a common sequela following the injection of Bothrops jararacussu snake venom. Since an intact microvasculature plays a central role in the success of muscle regeneration, the poor muscle regeneration seen after envenomation could be explained by damage to the local microvasculature. In this work, we investigated the pathogenesis of microvessel damage caused by B. jararacussu venom and its correlation with poor muscle regeneration. The right soleus muscle of adult mice was injected with 80 microg of venom and the mice were killed from 2 min to 3 months later. Similarly, the soleus muscle of other mice was injected with 80 microg of bothrosptoxin-I (BthTX-I), a non-vasculotoxic myotoxin. Tissue samples were prepared for analysis by electron (venom only) and light (venom and BthTX-I) microscopy. The extent of revascularization was assessed using light microscopy by examining recanalization of thrombi and calculating the individual capillary-to-fiber-ratio, the number of capillaries around a fiber and the capillary/muscle cell ratio. Microvessel damage by venom started within 5 min and, after 6 h, there was total degeneration of the capillaries with failure of the local microcirculation. The time-course of the ultrastructural lesions suggested that endothelial cells were probably damaged by a direct action of B. jararacussu venom on these cells. The revascularization of muscle damaged by venom, but not by BthTX-I, occurred later and was very poor. These results indicate a central role for vascular lesions in muscle regeneration after damage by B. jararacussu venom.
Collapse
Affiliation(s)
- Humberto Santo Neto
- Departamento de Anatomia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, 13083-970 Campinas, SP, Brazil.
| | | |
Collapse
|
20
|
Nawarak J, Phutrakul S, Chen ST. Analysis of Lectin-Bound Glycoproteins in Snake Venom from the Elapidae and Viperidae Families. J Proteome Res 2004; 3:383-92. [PMID: 15253418 DOI: 10.1021/pr034052+] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes an efficient method of studying the glycoproteins found in snake venom. The glycosylation profiles of the Elapidae and Viperidae snake families were analyzed using FITC-labeled lectin glycoconjugates. The Con A-agarose affinity enrichment technique was used to fractionate glycoproteins from the N. naja kaouthia venom. The results revealed a large number of Con A binding glycoproteins, most of which have moderate to high molecular weights. To identify the proteins, the isolated glycoprotein fractions were subjected to two-dimensional electrophoresis and MALDI-TOF MS. Protein sequences were compared with published protein databases to determine for their biological functions.
Collapse
Affiliation(s)
- Jiraporn Nawarak
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | |
Collapse
|
21
|
Benvenuti LA, França FOS, Barbaro KC, Nunes JR, Cardoso JLC. Pulmonary haemorrhage causing rapid death after Bothrops jararacussu snakebite: a case report. Toxicon 2003; 42:331-4. [PMID: 14559086 DOI: 10.1016/s0041-0101(03)00167-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 36-year old woman was bitten on the left ankle by a Bothrops jararacussu, and died 45 min after the bite. At necropsy, there were local signs of envenoming with haemorrhage, thrombosis and necrosis of the subcutaneous and muscular tissue. Multiple fibrin and platelet thrombi were found in the microcirculation of the heart and lungs, suggesting the occurrence of disseminated intravascular coagulation. Pulmonary haemorrhage probably secondary to the action of haemorrhagins, consumption coagulopathy and disseminated intravascular coagulation was the immediate cause of death. Intravenous inoculation of the venom could have occurred in the present case, which would explain the rapid onset of coagulation disorders, haemorrhage and death.
Collapse
Affiliation(s)
- Luiz A Benvenuti
- Laboratory of Pathology, Heart Institute (InCor), University of Sao Paulo Medical School, Av. Dr Enéas de Carvalho Aguiar 44, São Paulo, SP 05403-000, Brazil.
| | | | | | | | | |
Collapse
|
22
|
Bortoleto RK, Murakami MT, Watanabe L, Soares AM, Arni RK. Purification, characterization and crystallization of Jararacussin-I, a fibrinogen-clotting enzyme isolated from the venom of Bothrops jararacussu. Toxicon 2002; 40:1307-12. [PMID: 12220716 DOI: 10.1016/s0041-0101(02)00140-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A fibrinogen-clotting enzyme, Jararacussin-I, was purified from the venom of Bothrops jararacussu by a combination of ion exchange chromatography using Resource 15S resin and affinity chromatography using Benzamidine Sepharose 6B resin. Jararacussin-I displays a molecular mass of 28 kDa as estimated by sodium dodecyl sulphate-PAGE and possesses an isoelectric point of 5.0. The coagulant specific activity of the enzyme was determined to be 45.8 NIHU/mg using bovine fibrinogen as the substrate and the esterase specific activity was determined to be 258.7 U/mg. The protease inhibitors, benzamidine and DTT inhibited the esterase specific activity by 72.4 and 69.7%, respectively. The optimal temperature and pH for the degradation of both chains of fibrinogen and esterase specific activity were determined to be 37 degrees C and 7.4-8.0, respectively. The enzyme was inactivated at both 4 and 75 degrees C. Single crystals of Jararacussin-I were obtained and complete three-dimensional X-ray diffraction data was collected at the Brazilian National Synchrotron Source (LNLS) to a resolution of 2.4A.
Collapse
Affiliation(s)
- Raquel K Bortoleto
- Department of Physics, IBILCE/UNESP, Cristovão Colombo, 2265, Caixa Postal 136, SP, São José do Rio Preto 15054-000, Brazil
| | | | | | | | | |
Collapse
|
23
|
Jagadeesha DK, Shashidhara murthy R, Girish KS, Kemparaju K. A non-toxic anticoagulant metalloprotease: purification and characterization from Indian cobra (Naja naja naja) venom. Toxicon 2002; 40:667-75. [PMID: 12175602 DOI: 10.1016/s0041-0101(01)00216-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A non-toxic potent anticoagulant metalloprotease NN-PF(3) has been purified to homogeneity from the Indian cobra (Naja naja naja) venom through a combination of column chromatography and electrophoresis. NN-PF(3) is a single chain protein with a molecular weight of 68 kDa by SDS-PAGE. It hydrolysed casein, gelatin, haemoglobin and bovine fibrinogen, but did not hydrolyse bovine serum albumin or synthetic substrates such as TAME, BAEE and BAPNA. EDTA, EGTA and cyanide inhibited the enzymatic activity while 1,10-phenanthroline, PMSF, leupetin and pepstatin did not show any effect. NN-PF(3) is a metalloprotease containing Ca(2+) and Zn(2+) at a molar ratio of 1:1.2 and 1:0.4, respectively, as revealed by atomic absorption spectroscopy. NN-PF(3) was non-lethal up to an i.p. dose of 15 mg/kg body weight of mice and is devoid of myotoxicity, cytotoxicity and haemorrhagic activity. It is weakly oedematic, but strongly anticoagulant in property and the effect observed was both dose and time dependent.
Collapse
Affiliation(s)
- D K Jagadeesha
- Department of Studies in Biochemistry, University of Mysore, Manasa Gangothri, Mysore -570 006, India
| | | | | | | |
Collapse
|
24
|
Jorge da Silva N, Aird SD. Prey specificity, comparative lethality and compositional differences of coral snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 2001; 128:425-56. [PMID: 11255115 DOI: 10.1016/s1532-0456(00)00215-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Toxicities of crude venoms from 49 coral snake (Micrurus sp.) populations, representing 15 nominal taxa, were examined in both laboratory mice and in native prey animals and compared with data gathered from two non-micrurine elapids and a crotalid, which served as outgroups. These venoms were further compared on the basis of 23 enzymatic activities. Both toxicities and enzymatic activities were analyzed with respect to natural prey preferences, as determined from stomach content analyses and literature reports. Venoms of nearly all Micrurus for which prey preferences are known, are more toxic to natural prey than to non-prey species. Except for amphisbaenians, prey are more susceptible to venoms of Micrurus that feed upon them, than to venoms of those that eat other organisms. All venoms were more toxic i.v.>i.p.>i.m. Route-specific differences in toxicity are generally greatest for preferred prey species. Cluster analyses of venom enzymatic activities resulted in five clusters, with the fish-eating M. surinamensis more distant from other Micrurus than even the crotalid, Bothrops moojeni. Ophiophagous and amphisbaenian-eating Micrurus formed two close subclusters, one allied to the outgroup species Naja naja and the other to the fossorial, ophiophagous Bungarus multicinctus. Prey preference is shown to be the most important determinant of venom composition in Micrurus.
Collapse
Affiliation(s)
- N Jorge da Silva
- Centro de Estudos e Pesquisas Biológicas, Departamento de Biologia, Universidade Católica de Goiás, Avenida Universitária, 1440-Setor Universitário, Goiânia, 74605-010, Goiás, Brazil
| | | |
Collapse
|
25
|
Petretski JH, Kanashiro M, Silva CP, Alves EW, Kipnis TL. Two related thrombin-like enzymes present in Bothrops atrox venom. Braz J Med Biol Res 2000; 33:1293-300. [PMID: 11050658 DOI: 10.1590/s0100-879x2000001100005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article describes the presence of two new forms of a thrombin-like enzyme, both with apparent molecular masses of 38 kDa, in Bothrops atrox venom. Both share the ability to cleave fibrinogen into fibrin and to digest casein. Both present identical K(m) on the substrate BApNA. Their N-terminal amino acid sequences are identical for 26 residues, sharing 80% homology with batroxobin and flavoxobin. Two groups of monoclonal antibodies (mAbs) raised against the purified enzyme forms recognized different epitopes of the putative corresponding enzymes present in B. atrox crude venom. On Western blotting analysis of B. atrox crude venom, mAbs 5DB2C8, 5AA10 and 5CF11, but not mAbs 6CC5 and 6AD2-G5, revealed two or more protein bands ranging from 25 to 38 kDa. By immunoprecipitation assays, the 6AD2-G5 mAb was able to precipitate protein bands of 36-38 kDa from B. atrox, B. leucurus, B. pradoi, B. moojeni, B. jararaca and B. neuwiedii crude venoms. Fibrinogen-clotting activity was inhibited when the same venom specimens were pre-incubated with mAb 6AD2-G5, except for B. jararaca and B. neuwiedii.
Collapse
Affiliation(s)
- J H Petretski
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil
| | | | | | | | | |
Collapse
|
26
|
Rodrigues VM, Soares AM, Guerra-Sá R, Rodrigues V, Fontes MR, Giglio JR. Structural and functional characterization of neuwiedase, a nonhemorrhagic fibrin(ogen)olytic metalloprotease from Bothrops neuwiedi snake venom. Arch Biochem Biophys 2000; 381:213-24. [PMID: 11032408 DOI: 10.1006/abbi.2000.1958] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A fibrino(geno)lytic nonhemorrhagic metalloprotease (neuwiedase) was purified from Bothrops neuwiedi snake venom by a single chromatographic step procedure on a CM-Sepharose column. Neuwiedase represented 4.5% (w/w) of the crude desiccated venom, with an approximate Mr of 20,000 and pI 5.9. As regards the amino acid composition, neuwiedase showed similarities with other metalloproteases, with high proportions of Asx, Glx, Leu, and Ser. Atomic absorption spectroscopy showed that one mole of Zn2+ and one mole of Ca2+ were present per mole of protein. The cDNA encoding neuwiedase was isolated by RT-PCR from venom gland RNA, using oligonucleotides based on the partially determined amino-acid sequences of this metalloprotease. The full sequence contained approximately 594 bp, which codified the 198 amino acid residues with an estimated molecular weight of 22,375. Comparison of the nucleotide and amino acid sequences of neuwiedase with those of other snake venom metalloproteases showed a high level of sequential similarity. Neuwiedase has two highly conserved characteristics sequences H142E143XXH146XXG149XXH152 and C164I165M166. The three-dimensional structure of neuwiedase was modeled based on the crystal structure of Crotalus adamanteus Adamalysin II. This model revealed that the zinc binding site region showed a high structural similarity with other metalloproteases. The proteolyitc specificity, using the Bbeta-chain of oxidized insulin as substrate, was shown to be directed to the Ala14-Leu15 and Tyr16-Leu17 peptide bonds which were preferentially hydrolyzed. Neuwiedase is a Aalpha,Bbeta fibrinogenase. Its activity upon the Aalpha chain of fibrinogen was detected within 15 min of incubation. The optimal temperature and pH for the degradation of both Aalpha and Bbeta chains were 37 degrees C and 7.4-8.0, respectively. This activity was inhibited by EDTA and 1,10-phenantroline. Neuwiedase also showed proteolytic activity upon fibrin and some components of the extracellular matrix. However, it did not show TAME esterase activity and was not able to inhibit platelet aggregation.
Collapse
Affiliation(s)
- V M Rodrigues
- Departamento de Bioquímica, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
THOMAZINI-SANTOS IA, GIANNINI MJSM, TOSCANO E, MACHADO P, LIMA CRG, BARRAVIERA B. THE EVALUATION OF CLOTTING TIME IN BOVINE THROMBIN, REPTILASE ® , AND THROMBIN-LIKE FRACTION OF Crotalus durissus terrificus VENOM USING BOVINE, EQUINE, OVINE, BUBALINE AND HUMAN CRYOPRECIPITATES. ACTA ACUST UNITED AC 1998. [DOI: 10.1590/s0104-79301998000200004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - E. TOSCANO
- School of Pharmaceutical Sciences of Araraquara; UNESP
| | | | | | | |
Collapse
|
28
|
Andrião-Escarso SH, Sampaio SV, Cunha OA, Marangoni S, Oliveira B, Giglio JR. Isolation and characterization of a new clotting factor from Bothrops jararacussu (jararacuçu) venom. Toxicon 1997; 35:1043-52. [PMID: 9248003 DOI: 10.1016/s0041-0101(96)00222-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A detailed procedure for the isolation of a new clotting enzyme from the venom of Bothrops jararacussu (common name jararacuçu) is described. The estimated mol. wt of the native protein was 30,100 but 37,500 after reduction by dithiothreitol. Two major close bands corresponding to pI 5.18 and 5.20 were detected by electrofocusing but, after methanolysis, a single band focused at pI 8.20. The mol. wt of the protein moiety of this glycoprotein was 28,500, showing V-V-G-A-D-N-C-N-F-N... as N-terminal sequence. The content of neutral sugar was 4.8% and that of total sugars 5.3%. This clotting factor degraded only the A alpha-chain of the fibrinogen molecule. The stability of the clot, when produced in the presence of aprotinin opens new uses for snake clotting enzymes in the production of fibrin glue.
Collapse
Affiliation(s)
- S H Andrião-Escarso
- Departamento de Bioquímica, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|