1
|
Katsarou K, Adkar-Purushothama CR, Tassios E, Samiotaki M, Andronis C, Lisón P, Nikolaou C, Perreault JP, Kalantidis K. Revisiting the Non-Coding Nature of Pospiviroids. Cells 2022; 11:265. [PMID: 35053381 PMCID: PMC8773695 DOI: 10.3390/cells11020265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Viroids are small, circular, highly structured pathogens that infect a broad range of plants, causing economic losses. Since their discovery in the 1970s, they have been considered as non-coding pathogens. In the last few years, the discovery of other RNA entities, similar in terms of size and structure, that were shown to be translated (e.g., cirRNAs, precursors of miRNA, RNA satellites) as well as studies showing that some viroids are located in ribosomes, have reignited the idea that viroids may be translated. In this study, we used advanced bioinformatic analysis, in vitro experiments and LC-MS/MS to search for small viroid peptides of the PSTVd. Our results suggest that in our experimental conditions, even though the circular form of PSTVd is found in ribosomes, no produced peptides were identified. This indicates that the presence of PSTVd in ribosomes is most probably not related to peptide production but rather to another unknown function that requires further study.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| | - Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (C.R.A.-P.); (J.-P.P.)
| | - Emilios Tassios
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Christos Andronis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain;
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (C.R.A.-P.); (J.-P.P.)
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| |
Collapse
|
2
|
Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res 2015; 209:136-45. [PMID: 25738582 DOI: 10.1016/j.virusres.2015.02.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
Collapse
|
3
|
Flores R, Serra P, Minoia S, Di Serio F, Navarro B. Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs. Front Microbiol 2012; 3:217. [PMID: 22719735 PMCID: PMC3376415 DOI: 10.3389/fmicb.2012.00217] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/28/2012] [Indexed: 11/13/2022] Open
Abstract
As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson–Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunviroidae adopt multibranched conformations occasionally stabilized by kissing-loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunviroidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures – either global or local – determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC) Valencia, Spain
| | | | | | | | | |
Collapse
|
4
|
Branch AD, Robertson HD, Greer C, Gegenheimer P, Peebles C, Abelson J. Cell-free circularization of viroid progeny RNA by an RNA ligase from wheat germ. Science 2010; 217:1147-9. [PMID: 17740972 DOI: 10.1126/science.217.4565.1147] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Linear, potato spindle tuber viroid RNA has been used as a substrate for an RNA ligase purified from wheat germ. Linear viroid molecules are efficiently converted to circular molecules (circles) which are indistinguishable by electrophoretic mobility and two-dimensional oligonucleotide pattern from viroid circles extracted from infected plants. In light of recent evidence for multimeric viroid replication intermediates, cleavage followed by RNA ligation by a cellular enzyme may (i) be a normal step in the viroid life cycle and (ii) may also reflect cellular events.
Collapse
|
5
|
Grill LK, Semancik JS. RNA sequences complementary to citrus exocortis viroid in nucleic acid preparations from infected Gynura aurantiaca. Proc Natl Acad Sci U S A 2010; 75:896-900. [PMID: 16592500 PMCID: PMC411364 DOI: 10.1073/pnas.75.2.896] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Molecular hybridization with (125)I-labeled citrus exocortis viroid RNA has been used to survey nucleic acid preparations from Gynura aurantiaca for viroid complementary molecules. A differential hybridization effect was detected between nucleic acid extracts from healthy and infected tissue in which significant RNase-resistant (125)I-labeled citrus exocortis viroid resulted in hybridization studies with the infected tissue extracts. Subsequent characterization indicated that RNA from infected tissue was involved in the formation of a duplex molecule with citrus exocortis viroid RNA and had properties of an RNA.RNA hybrid. Subcellular fractionation of infected tissue indicates that the complementary RNA is present in nuclear and soluble RNA fractions. This RNA may represent an intermediate molecule in the replication of the viroid or a pathogenic expression and may have a regulatory role in the host cell.
Collapse
Affiliation(s)
- L K Grill
- Department of Plant Pathology and Cell Interaction Group, University of California, Riverside, California 92521
| | | |
Collapse
|
6
|
Visvader JE, Gould AR, Bruening GE, Symons RH. Citrus exocortis viroid: nucleotide sequence and secondary structure of an Australian isolate. FEBS Lett 2005; 137:288-92. [PMID: 15768484 DOI: 10.1016/0014-5793(82)80369-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J E Visvader
- Department of Biochemistry, University of Adelaide, SA 5001, Australia
| | | | | | | |
Collapse
|
7
|
De la Peña M, Flores R. Chrysanthemum chlorotic mottle viroid RNA: dissection of the pathogenicity determinant and comparative fitness of symptomatic and non-symptomatic variants. J Mol Biol 2002; 321:411-21. [PMID: 12162955 DOI: 10.1016/s0022-2836(02)00629-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chrysanthemum chlorotic mottle viroid (CChMVd) is a small RNA (398-401nt) with hammerhead ribozymes in both polarity strands that mediate self-cleavage of the oligomeric RNA intermediates generated in a rolling-circle mechanism of replication. Within the in vivo branched RNA conformation of CChMVd, a tetraloop has been identified as a major determinant of pathogenicity. Here we present a detailed study of this tetraloop by site-directed mutagenesis, bioassay of the CChMV-cDNA clones and analysis of the resulting progenies. None of the changes introduced in the tetraloop, including its substitution by a triloop or a pentaloop, abolished infectivity. In contrast to observations for other RNAs, the thermodynamically stable GAAA tetraloop characteristic of non-symptomatic CChMVd-NS strains was not functionally interchangeable for other stable tetraloops of the UNCG family, suggesting that the sequence, rather than the structure, is the major factor governing conservation of this motif. In most cases, the changes introduced initially led to symptomless infections, which eventually evolved to be symptomatic concurrently with the prevalence in the progeny of the UUUC tetraloop characteristic of symptomatic CChMVd-S strains. Only in one case did the GAAA tetraloop emerge and eventually dominate the progeny in infected plants that were non-symptomatic. These results revealed two major fitness peaks in the tetraloop (UUUC and GAAA), whose adjacent stem was also under strong selection pressure. Co-inoculations with CChMVd-S and -NS variants showed that only when the latter was in a 100- or 1000-fold excess did the infected plants remain symptomless, confirming the higher biological fitness of the S variant and explaining the lack of symptom expression previously observed in cross-protection experiments.
Collapse
Affiliation(s)
- Marcos De la Peña
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Avenida de los Naranjos s/n, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | | |
Collapse
|
8
|
Abstract
This chapter focuses on the second viroid family, whose members are also referred to as hammerhead viroids, taking into account their most outstanding feature. If the word “small” is the first to come to mind when considering viroids, perhaps the second word is “hammerhead,” because this class of ribozymes, which because of its structural simplicity has an enormous biotechnological potential, is described in avocado sunblotch viroid (ASBVd) as well as in a viroid-like satellite RNA. The most outstanding feature of the Avsunviroidae members is their potential to adopt hammerhead structures in both polarity strands and to self-cleave in vitro accordingly. Viroids differ from viruses not only in their genome size but also in other fundamental aspects, prominent among which is the lack of messenger activity of both viroid RNAs and their complementary strands.
Collapse
Affiliation(s)
- R Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Spain
| | | | | |
Collapse
|
9
|
Marcos JF, Flores R. Characterization of RNAs specific to avocado sunblotch viroid synthesized in vitro by a cell-free system from infected avocado leaves. Virology 1992; 186:481-8. [PMID: 1733098 DOI: 10.1016/0042-6822(92)90013-f] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Analysis by molecular hybridization of the RNAs transcribed by a cell-free fraction from avocado infected with avocado sunblotch viroid (ASBV) demonstrated the presence of newly synthesized viroid-specific sequences, most of which were of the same polarity as the mature infectious viroid RNA. Treatment of the cell-free fraction with DNase reduced the total synthesis of RNA considerably, but it did not influence that of the ASBV-specific RNAs, indicating that the latter were transcribed on an RNA template. Inhibition studies with alpha-amanitin showed that the synthesis of ASBV-specific RNAs was not affected by concentrations of 1 and 200 micrograms/ml of the drug, which typically inhibit RNA polymerase II and III, respectively, from most animal and plant systems. These results suggest that either RNA polymerase I or an unidentified RNA polymerase activity resistant to alpha-amanitin, acting on an RNA template, plays a role in the replication of ASBV, whereas for the rest of the viroids studied so far it appears that RNA polymerase II is involved. Analysis by polycrylamide gel electrophoresis under partially and fully denaturing conditions of the ASBV-specific RNAs synthesized in vitro showed that they contain unit and longer than unit length viroid strands, probably associated in complexes with single- and double-stranded regions. The structural properties of these complexes are similar to those of the RNAs accumulating in vivo in viroid-infected tissues, which are the postulated replicative intermediates of the rolling-circle mechanism proposed for viroid synthesis.
Collapse
Affiliation(s)
- J F Marcos
- Unidad de Biología Molecular y Celular de Plantas, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Valencia, Spain
| | | |
Collapse
|
10
|
Diener TO. Subviral pathogens of plants: the viroids. LA RICERCA IN CLINICA E IN LABORATORIO 1989; 19:105-28. [PMID: 2672273 DOI: 10.1007/bf02871800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Research during the last 15 years has conclusively shown that viroids are not only fundamentally different from viruses at the molecular level, but that they are most likely not directly related to viruses in an evolutionary sense. Today, viroids are among the most thoroughly studied biological macromolecules. Their molecular structures have been elucidated to a large extent, but much needs to be learned regarding the correlation between molecular structure and biological function. The availability of the tools of recombinant DNA technology in viroid research promises rapid progress in these areas of inquiry.
Collapse
Affiliation(s)
- T O Diener
- Center for Agricultural Biotechnology, University of Maryland, College Park
| |
Collapse
|
11
|
Ibáñez P, Garcerá M, Gavara A, Martínez R. Effect of JH and PII on the protein content of haemolymph and ovaries of Spilostethus pandurus. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0305-0491(87)90019-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Meshi T, Ishikawa M, Watanabe Y, Yamaya J, Okada Y, Sano T, Shikata E. The sequence necessary for the infectivity of hop stunt viroid cDNA clones. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00425424] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Visvader JE, Symons RH. Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Res 1985; 13:2907-20. [PMID: 2582367 PMCID: PMC341203 DOI: 10.1093/nar/13.8.2907] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Full-length double-stranded cDNA was prepared from purified circular RNA of two new Australian field isolates of citrus exocortis viroid (CEV) using two synthetic oligodeoxynucleotide primers. The cDNA was then cloned into the phage vector M13mp9 for sequence analysis. Sequencing of nine cDNA clones of isolate CEV-DE30 and eleven cDNA clones of isolate CEV-J indicated that both isolates consisted of a mixture of viroid species and led to the discovery of eleven new sequence variants of CEV. These new variants, together with the six reported previously, form two classes of sequence which differ by a minimum of 26 nucleotides in a total of 370 to 375 residues. These two classes correlate with two biologically distinct groups when propagated on tomato plants where one produces severe symptoms and the other gives rise to mild symptoms. Two regions of the native structure of CEV, comprising 18% of the total residues, differ between the sequence variants of mild and severe isolates. Whether or not both of these regions are essential for the variation in pathogenicity has yet to be determined.
Collapse
|
14
|
Ishikawa M, Meshi T, Ohno T, Okada Y, Sano T, Ueda I, Shikata E. A revised replication cycle for viroids: the role of longer than unit length RNA in viroid replication. MOLECULAR & GENERAL GENETICS : MGG 1984; 196:421-8. [PMID: 6094970 DOI: 10.1007/bf00436189] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Longer than unit length plus and minus strand RNAs were detected in hop stunt viroid (HSV) infected cucumber leaf tissues by Northern blot hybridization analysis using strand-specific probes. To elucidate the role of these longer than unit length RNAs in the viroid replication cycle, we synthesized tandemly repeated plus and minus strand HSV RNAs in vitro from cloned HSV cDNA and assayed their infectivities. Two and four unit tandemly repeated plus strand RNAs were infectious, but one unit plus, and one, two and four unit minus strands were noninfectious. Taking these data into consideration, we propose a revised rolling circle model for viroid replication.
Collapse
|
15
|
|
16
|
Galindo A J, Smith D, Diener T. A disease-associated host protein in viroid-infected tomato. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0048-4059(84)90001-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Detection and Characterization of Subgenomic RNA in Plant Viruses. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/b978-0-12-470207-3.50015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Abstract
Sequence homology was found by computer analysis between potato spindle tuber viroid (PSTV) RNA and U3B snRNA of Novikoff hepatoma cells. This homology is colinear in arrangement, extends in length to 81% of the entire U3B snRNA molecule and is involved in the PSTV molecule unique sites which, if depicted in terms of the secondary structure of the circular PSTV molecule, reveal a conspicuous regularity in their location. A strong relation in primary structure between PSTV and U3B snRNA is demonstrated by statistical analysis.
Collapse
|
19
|
Ohno T, Takamatsu N, Meshi T, Okada Y. Hop stunt viroid: molecular cloning and nucleotide sequence of the complete cDNA copy. Nucleic Acids Res 1983; 11:6185-97. [PMID: 6312412 PMCID: PMC326366 DOI: 10.1093/nar/11.18.6185] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The complete cDNA of hop stunt viroid (HSV) has been cloned by the method of Okayama and Berg (Mol.Cell.Biol.2,161-170. (1982] and the complete nucleotide sequence has been established. The covalently closed circular single-stranded HSV RNA consists of 297 nucleotides. The secondary structure predicted for HSV contains 67% of its residues base-paired. The native HSV can possess an extended rod-like structure characteristic of viroids previously established. The central region of the native HSV has a similar structure to the conserved region found in all viroids sequenced so far except for avocado sunblotch viroid. The sequence homologous to the 5'-end of U1a RNA is also found in the sequence of HSV but not in the central conserved region.
Collapse
|
20
|
|
21
|
|
22
|
|
23
|
Haseloff J, Symons RH. Comparative sequence and structure of viroid-like RNAs of two plant viruses. Nucleic Acids Res 1982; 10:3681-91. [PMID: 7111020 PMCID: PMC320743 DOI: 10.1093/nar/10.12.3681] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A newly discovered group of spherical plant viruses contains a bipartite genome consisting of a single-strand linear RNA molecule (RNA 1, Mr 1.5 x 10(6) ), and a single-strand, covalently closed circular viroid-like RNA molecule (RNA 2, Mr approximately 125,000). The nucleotide sequences of the RNA 2 of two of these, velvet tobacco mottle virus and solanum nodiflorum mottle virus, have been determined. RNA 2 of solanum nodiflorum mottle virus consists of 377 residues whereas that of velvet tobacco mottle virus consists of two approximately equimolar species, one of 366 residues and the other, with a single nucleotide deletion, of 365 residues. There is 92-95% sequence homology between the RNA 2 species of the two viruses. The predicted secondary structures possess extensive intramolecular base pairing to give rod-like structures similar to those of viroids. The structural similarities between the RNAs 2 of velvet tobacco mottle virus and solanum nodiflorum mottle virus and viroids may reflect functional similarities.
Collapse
|
24
|
Camacho Henriquez A, Sänger HL. Gelelectrophoretic analysis of phenol-extractable leaf proteins from different viroid/host combinations. Arch Virol 1982; 74:167-80. [PMID: 7165507 DOI: 10.1007/bf01314710] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The phenol-soluble proteins from leaves of healthy and viroid-infected plants were compared after separation on SDS-polyacrylamide gels. After staining with Coomassie blue, alterations in the protein patterns of infected plants were found which resulted from an increase or decrease of certain protein bands. After infection with the same viroid, different hosts show characteristic changes in the protein pattern which suggest that these alterations are host-specific rather than pathogenspecific. After infection of tomato plants with different viroid "species" a protein with the apparent MW of 14,000 (p14 tom) was found to accumulate dramatically. This protein also accumulates in tomato plants after viral and fungus infections and the rate of its accumulation is directly related to the severity of symptoms developed by the diseased plants. It is assumed, therefore, that it is a response of tomato plants to infection in general.
Collapse
|
25
|
Gross HJ, Krupp G, Domdey H, Raba M, Jank P, Lossow C, Alberty H, Ramm K, Sänger HL. Nucleotide sequence and secondary structure of citrus exocortis and chrysanthemum stunt viroid. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 121:249-57. [PMID: 7060550 DOI: 10.1111/j.1432-1033.1982.tb05779.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The complete nucleotide sequence of citrus exocortis viroid (CEV, propagated in Gymura) and chrysanthemum stunt viroid (CSV, propagated in Cineraria) has been established, using labelling in vitro and direct RNA sequencing methods and a new screening procedure for the rapid selection of suitable RNA fragments from limited digests. The covalently closed circular single-stranded viroid RNAs consist of 371 (CEV) and 354 (CSV) nucleotides, respectively. As previously shown for potato spindle tuber viroid (PSTV, 359 nucleotides), CEV and CSV also contain a long polypurine sequence. Maximal base-pairing of the established CEV and CSV sequences results in an extended rod-like secondary structure similar to that previously established for PSTV and as predicted from detailed physicochemical studies of all these viroids. Although the three viroid species sequenced to date differ in size and nucleotide sequence, there is 60--73% homology between them. As PSTV, CEV and CSV also contain conserved complementary sequences which are separated from each other in the native secondary structure. We postulate that the resulting 'secondary' hairpins, being formed and observed in vitro during the complex process of thermal denaturation of viroid RNA, must have a vital, although yet unknown, function in vivo. The possible origin and function of viroids are discussed on the basis of the characteristic structural features and of a considerable homology with U1a RNA found for a region highly conserved in the three viroids.
Collapse
|
26
|
|
27
|
Abstract
The sequence of the 247 nucleotide residues of the single strand circular RNA of avocado sunblotch viroid (ASBV) was determined using partial enzymic cleavage methods on overlapping viroid fragments obtained by partial ribonuclease digestion followed by 32p-labelling in vitro at their 5'-ends. ASBV is much smaller than potato spindle tuber viroid (PSTV; 359 residues) and chrysanthemum stunt viroid (CSV; 356 residues). A secondary structure model for ASBV is proposed and contains 67% of its residues base paired. In contrast to the extensive (69%) sequence homology of CSV with PSTV, only 18% of the ASBV sequence is homologous to PSTV and CSV. There are eight potential polypeptide translation products with chain lengths from 4 to 63 amino acid residues coded for by the plus (infectious) strand and four potential translation products (2 to 60 residues) coded for by the minus strand. An improved method is described for the synthesis of gamma-32p-ATP of high specific activity.
Collapse
|
28
|
Haseloff J, Symons RH. Chrysanthemum stunt viroid: primary sequence and secondary structure. Nucleic Acids Res 1981; 9:2741-52. [PMID: 7279660 PMCID: PMC326889 DOI: 10.1093/nar/9.12.2741] [Citation(s) in RCA: 128] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The sequence of the 356 nucleotide residues of chrysanthemum stunt viroid (CSV) has been determined. Overlapping linear viroid fragments were obtained by partial ribonuclease digestion, radiolabelled in vitro at their 5'-ends, and sequenced using partial enzymic cleavage methods. Of the CSV sequence, 69% is contained in the published sequence of potato spindle tuber viroid (PSTV). Differences in the primary sequence of CSV and PSTV suggest that neither the positive nor putative negative strands of these two viroids code for functional polypeptide products. However, the two viroids can form similar secondary structures, implicating a role for viroid structure in replication.
Collapse
|
29
|
Zelcer A, Adelsberg JV, Leonard DA, Zaitlin M. Plant cell suspension cultures sustain long-term replication of potato spindle tuber viroid. Virology 1981; 109:314-22. [DOI: 10.1016/0042-6822(81)90502-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/1980] [Indexed: 11/28/2022]
|
30
|
Gross HJ, Liebl U, Alberty H, Krupp G, Domdey H, Ramm K, Sänger HL. A severe and a mild potato spindle tuber viroid isolate differ in three nucleotide exchanges only. Biosci Rep 1981; 1:235-41. [PMID: 6271277 DOI: 10.1007/bf01114910] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fingerprint analyses of two potato spindle tuber viroid (PSTV) isolates causing severe and mild symptoms, respectively, in tomato exhibited defined differences in the RNase T1 and RNase A fingerprints. The complete sequencing of the mild isolate and the comparison of its primary structure with the previously established one of the pathogenic type strain revealed that oligonucleotides CAAAAAAG, CUUUUUCUCUAUCUUACUUG, and AAAAAAGGAC in the 'severe' strain are replaced by CAAUAAG, CUUUUUCUCUAUCUUUCUUUG, AAU, and AAGGAC in the 'mild' strain. Thus, three nucleotide exchanges at different sites of the molecule may change a pathogenic viroid to a practically non-pathogenic isolate. The possible correlation between the secondary structure in a defined region of the PSTV molecule and its pathogenicity for tomato is discussed.
Collapse
|
31
|
|
32
|
Grill L, Negruk V, Semancik J. Properties of the complementary RNA sequences associated with infection by the citrus exocortis viroid. Virology 1980; 107:24-33. [DOI: 10.1016/0042-6822(80)90269-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/1980] [Indexed: 01/18/2023]
|
33
|
Irvine WM, Leschine SB, Schloerb FP. Thermal history, chemical composition and relationship of comets to the origin of life. Nature 1980. [DOI: 10.1038/283748a0] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Citrus exocortis viroid (CEV): Protein alterations in different hosts following viroid infection. Virology 1979; 97:454-6. [DOI: 10.1016/0042-6822(79)90355-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/1979] [Indexed: 01/26/2023]
|
35
|
Abstract
Viroids are nucleic acid species of relatively low molecular weight and unique structure that cause several important diseases of cultivated plants. Similar nucleic acid species may be responsible for certain diseases of animals and humans. Viroids are the smallest known agents of infectious disease. Unlike viral nucleic acids, viroids are not encapsidated. Despite their small size, viroids replicate autonomously in cells of susceptible plant species. Known viroids are single-stranded, covalently closed circular, as well as linear, RNA molecules with extensive regions of intramolecular complementarity; they exist in their native state as highly base-paired rods.
Collapse
|
36
|
|
37
|
|
38
|
Flores R, Chroboczek J, Semancik J. Some properties of the CEV-P1 protein from citrus exocortis viroid-infected Gynura aurantiaca DC. ACTA ACUST UNITED AC 1978. [DOI: 10.1016/0048-4059(78)90034-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|