1
|
Mwaipopo B, Nchimbi-Msolla S, Njau P, Tairo F, William M, Binagwa P, Kweka E, Kilango M, Mbanzibwa D. Viruses infecting common bean ( Phaseolus vulgaris L.) in Tanzania: A review on molecular characterization, detection and disease management options. AFRICAN JOURNAL OF AGRICULTURAL RESEARCH 2017; 12:AJAR-12-18-1486. [PMID: 33282144 PMCID: PMC7691756 DOI: 10.5897/ajar2017.12236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
Abstract
Common bean (Phaseolus vulgaris L.) is a major legume crop, serving as a main source of dietary protein and calories and generating income for many Tanzanians. It is produced in nearly all agro-ecological zones of Tanzania. However, the average yields are low (<1000 kg/ha), which is attributed to many factors including virus diseases. The most important viruses of common bean in Tanzania are Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV) but other viruses have also been reported. There has never been a review of common bean virus diseases in the country, and the lack of collated information makes their management difficult. Therefore, this review focuses on (1) occurrence of different viruses of common bean in Tanzania, (2) molecular characterization of these viruses, (3) detection tools for common bean viruses in Tanzania and (4) available options for managing virus diseases in the country. Literature and nucleotide sequence database searches revealed that common bean diseases are inadequately studied and that their causal viruses have not been adequately characterized at the molecular level in Tanzania. Increased awareness on common bean virus diseases in Tanzania is expected to result into informed development of strategies for management of the same and thus increased production, which in turn has implication on nutrition and income.
Collapse
Affiliation(s)
- Beatrice Mwaipopo
- Mikocheni Agricultural Research Institute, P. O. Box 6226, Dar es Salaam, Tanzania
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, P. O. Box 3005, Morogoro, Tanzania
| | - Susan Nchimbi-Msolla
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, P. O. Box 3005, Morogoro, Tanzania
| | - Paul Njau
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, P. O. Box 3005, Morogoro, Tanzania
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, P. O. Box 6226, Dar es Salaam, Tanzania
| | - Magdalena William
- Agricultural Research Institute -Maruku, P. O. Box 127, Bukoba, Tanzania
| | - Papias Binagwa
- Agricultural Research Institute -Selian, P. O. Box 6024, Arusha, Tanzania
| | - Elisiana Kweka
- Mikocheni Agricultural Research Institute, P. O. Box 6226, Dar es Salaam, Tanzania
| | - Michael Kilango
- Agricultural Research Institute -Uyole, P. O. Box 400, Mbeya, Tanzania
| | - Deusdedith Mbanzibwa
- Mikocheni Agricultural Research Institute, P. O. Box 6226, Dar es Salaam, Tanzania
| |
Collapse
|
2
|
Wang L, Tan H, Wu M, Jimenez-Gongora T, Tan L, Lozano-Duran R. Dynamic Virus-Dependent Subnuclear Localization of the Capsid Protein from a Geminivirus. FRONTIERS IN PLANT SCIENCE 2017; 8:2165. [PMID: 29312406 PMCID: PMC5744400 DOI: 10.3389/fpls.2017.02165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/08/2017] [Indexed: 05/13/2023]
Abstract
Viruses are intracellular parasites with a nucleic acid genome and a proteinaceous capsid. Viral capsids are formed of at least one virus-encoded capsid protein (CP), which is often multifunctional, playing additional non-structural roles during the infection cycle. In animal viruses, there are examples of differential localization of CPs associated to the progression of the infection and/or enabled by other viral proteins; these changes in the distribution of CPs may ultimately regulate the involvement of these proteins in different viral functions. In this work, we analyze the subcellular localization of a GFP- or RFP-fused CP from the plant virus Tomato yellow leaf curl virus (TYLCV; Fam. Geminiviridae) in the presence or absence of the virus upon transient expression in the host plants Nicotiana benthamiana and tomato. Our findings show that, in agreement with previous reports, when the CP is expressed alone it localizes mainly in the nucleolus and weakly in the nucleoplasm. Interestingly, the presence of the virus causes the sequential re-localization of the CP outside of the nucleolus and into discrete nuclear foci and, eventually, into an uneven distribution in the nucleoplasm. Expression of the viral replication-associated protein, Rep, is sufficient to exclude the CP from the nucleolus, but the localization of the CP in the characteristic patterns induced by the virus cannot be recapitulated by co-expression with any individual viral protein. Our results demonstrate that the subcellular distribution of the CP is a dynamic process, temporally regulated throughout the progression of the infection. The regulation of the localization of the CP is determined by the presence of other viral components or changes in the cellular environment induced by the virus, and is likely to contribute to the multifunctionality of this protein. Bearing in mind these observations, we suggest that viral proteins should be studied in the context of the infection and considering the temporal dimension in order to comprehensively understand their roles and effects in the interaction between virus and host.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Huang Tan
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Mengshi Wu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tamara Jimenez-Gongora
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Rosa Lozano-Duran,
| |
Collapse
|
3
|
Villanueva-Alonzo HJ, Us-Camas RY, López-Ochoa LA, Robertson D, Guerra-Peraza O, Minero-García Y, Moreno-Valenzuela OA. A new virus-induced gene silencing vector based on Euphorbia mosaic virus-Yucatan peninsula for NPR1 silencing in Nicotiana benthamiana and Capsicum annuum var. Anaheim. Biotechnol Lett 2013; 35:811-23. [PMID: 23546940 DOI: 10.1007/s10529-013-1146-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Virus-induced gene silencing is based on the sequence-specific degradation of RNA. Here, a gene silencing vector derived from EuMV-YP, named pEuMV-YP:ΔAV1, was used to silence ChlI and NPR1 genes in Nicotiana benthamiana. The silencing of the ChlI transcripts was efficient in the stems, petioles and leaves as reflected in tissue bleaching and reduced transcript levels. The silencing was stable, reaching the flowers and fruits, and was observed throughout the life cycle of the plants. Additionally, the silencing of the NPR1 gene was efficient in both N. benthamiana and Capsicum annuum. After silencing, the plants' viral symptoms increased to levels similar to those seen in wild-type plants. These results suggest that NPR1 plays a role in the compatible interactions of EuMV-YP N. benthamiana and EuMV-C. annum var. anaheim.
Collapse
Affiliation(s)
- Hernan J Villanueva-Alonzo
- Unidad de Bioquimica y Biologia Molecular de Plantas, Centro de Investigacion Cientifica de Yucatan AC, Calle 43 No. 130, Chuburna de Hidalgo, C.P. 97200 Merida, Yucatan, Mexico.
| | | | | | | | | | | | | |
Collapse
|
4
|
Rentería-Canett I, Xoconostle-Cázares B, Ruiz-Medrano R, Rivera-Bustamante RF. Geminivirus mixed infection on pepper plants: synergistic interaction between PHYVV and PepGMV. Virol J 2011; 8:104. [PMID: 21385390 PMCID: PMC3061938 DOI: 10.1186/1743-422x-8-104] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/08/2011] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND PHYVV and PepGMV are plant viruses reported in Mexico and Southern US as causal agents of an important pepper disease known as "rizado amarillo". Mixed infections with PHYVV and PepGMV have been reported in several hosts over a wide geographic area. Previous work suggested that these viruses might interact at the replication and/or movement level in a complex manner. The aim of present report was to study some aspects of a synergistic interaction between PHYVV and PepGMV in pepper plants. These include analyses of symptom severity, viral DNA concentration and tissue localization of both viruses in single and mixed infections. RESULTS Mixed infections with PepGMV and PHYVV induced symptoms more severe than those observed in single viral infections. Whereas plants infected with either virus (single infection) presented a remission stage with a corresponding decrease in viral DNA levels, double-infected plants did not present symptom remission and both viral DNA concentrations dramatically increased. In situ hybridization experiments revealed that both viruses are restricted to the vascular tissue. Interestingly, the amount of viral DNA detected was higher in plants inoculated with PepGMV than that observed in PHYVV-infected plants. During mixed infections, the location of both viruses remained similar to the one observed in single infections, although the number of infected cells increases. Infections with the tripartite mixture PHYVV (A+B) + PepGMV A produced a similar synergistic infection to the one observed after inoculation with both full viruses. On the contrary, tripartite mixture PepGMV (A+B) + PHYVV A did not produce a synergistic interaction. In an attempt to study the contribution of individual genes to the synergism, several mutants of PHYVV or PepGMV were inoculated in combination with the corresponding wild type, second virus (wt PepGMV or wt PHYVV). All combinations tested resulted in synergistic infections, with exception of the TrAP mutant of PepGMV (PepGMV TrAP-) + PHYVV. CONCLUSION In this report, we have demonstrated that synergistic interaction between PHYVV and PepGMV during a mixed infection is mainly due to an increased DNA concentration of both viruses, without any noticeable effect on the localization of either virus on infected plant tissue. Our results have shown that the viral component A from PepGMV is important for synergism during PHYVV-PepGMV mixed infections.
Collapse
Affiliation(s)
- Ilenia Rentería-Canett
- Departamento de Ingeniería Genética. Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Irapuato, Km. 9.6 Libramiento Norte, 36821 Irapuato, Guanajuato
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Cinvestav-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 México, DF
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Cinvestav-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 México, DF
| | - Rafael F Rivera-Bustamante
- Departamento de Ingeniería Genética. Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Irapuato, Km. 9.6 Libramiento Norte, 36821 Irapuato, Guanajuato
| |
Collapse
|
5
|
Kleinow T, Tanwir F, Kocher C, Krenz B, Wege C, Jeske H. Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells. Virology 2009; 391:212-20. [PMID: 19628237 DOI: 10.1016/j.virol.2009.06.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/31/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
The geminivirus Abutilon mosaic virus (AbMV) encodes two proteins which are essential for viral spread within plants. The nuclear shuttle protein (NSP) transfers viral DNA between the nucleus and cytoplasm, whereas the movement protein (MP) facilitates transport between cells through plasmodesmata and long-distance via phloem. An inducible overexpression system for epitope-tagged NSP and MP in plants yielded unprecedented amounts of both proteins. Western blots revealed extensive posttranslational modification and truncation for MP, but not for NSP. Ultrastructural examination of Nicotiana benthamiana tissues showed characteristic nucleopathic alterations, including fibrillar rings, when epitope-tagged NSP and MP were simultaneously expressed in leaves locally infected with an AbMV DNA A in which the coat protein gene was replaced by a green fluorescent protein encoding gene. Immunogold labelling localized NSP in the nucleoplasm and in the fibrillar rings. MP appeared at the cell periphery, probably the plasma membrane, and plasmodesmata.
Collapse
Affiliation(s)
- Tatjana Kleinow
- Institute of Biology, Department of Molecular Biology and Plant Virology, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Qazi J, Amin I, Mansoor S, Iqbal MJ, Briddon RW. Contribution of the satellite encoded gene betaC1 to cotton leaf curl disease symptoms. Virus Res 2007; 128:135-9. [PMID: 17482706 DOI: 10.1016/j.virusres.2007.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Cotton leaf curl disease (CLCuD) is caused by one of seven begomoviruses in conjunction with a specific satellite; CLCuD DNA beta. Associated with some monopartite begomoviruses, DNA beta components encode a single gene (betaC1) which mediates satellite functions. We have investigated the contribution the satellite, specifically betaC1, makes to CLCuD symptoms in the absence of the helper begomovirus. Systemic expression of CLCuD-betaC1 from a Potato virus X (PVX) vector induces bona fide CLCuD disease symptoms in Nicotiana tabacum plants, including enations, swollen veins and vein darkening. These contrast with the mild symptoms of PVX in this host. Analysis of thin sections across enations induced by PVX expressing betaC1 shows the structure of the enation to be identical to those induced by CLCuD DNA beta in conjunction with a helper begomovirus. These results demonstrate that CLCuD betaC1 is the major determinant of symptoms for the CLCuD complex.
Collapse
Affiliation(s)
- Javaria Qazi
- National Institute of Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | | | | | | | | |
Collapse
|
7
|
Abutilon mosaic virus DNA B component supports mechanical virus transmission, but does not counteract begomoviral phloem limitation in transgenic plants. Virology 2007; 365:173-86. [PMID: 17462695 DOI: 10.1016/j.virol.2007.03.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/13/2007] [Accepted: 03/20/2007] [Indexed: 11/27/2022]
Abstract
Different Nicotiana benthamiana lines stably transformed with Abutilon mosaic virus (AbMV) dimeric DNA B were capable of systemically spreading complete bipartite AbMV genomes, following agroinoculation of DNA A alone. Constitutively expressed viral movement protein (BC1) did not induce any persistent disease phenotype, but plants developed transient morphological abnormalities such as radially symmetric leaves after kanamycin withdrawal. Systemic AbMV infection produced symptoms and virus titers indistinguishable from those in non-transgenic plants. In systemically invaded leaves, the begomovirus remained phloem-limited, whereas the plants' susceptibility to mechanical transmission of AbMV was enhanced by a factor of three to five, as compared to non-transgenic controls. Hence, DNA B-encoded movement functions can complement local movement to the phloem after mechanical transmission, but fail to support viral invasion of non-phloem cells in systemically infected organs, indicating that the phloem restriction of AbMV does not result predominantly from a lack of transport competence in mesophyll tissues.
Collapse
|
8
|
Rojas MR, Jiang H, Salati R, Xoconostle-Cázares B, Sudarshana MR, Lucas WJ, Gilbertson RL. Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 2001; 291:110-25. [PMID: 11878881 DOI: 10.1006/viro.2001.1194] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional properties of proteins [capsid protein (CP), V1, and C4] potentially involved with movement of the monopartite begomovirus, Tomato yellow leaf curl virus (TYLCV), were investigated using microinjection of Escherichia coli expressed proteins and transient expression of GFP fusion proteins. The TYLCV CP localized to the nucleus and nucleolus and acted as a nuclear shuttle, facilitating import and export of DNA. Thus, the CP serves as the functional homolog of the bipartite begomovirus BV1. The TYLCV V1 localized around the nucleus and at the cell periphery and colocalized with the endoplasmic reticulum, whereas C4 was localized to the cell periphery. Together, these patterns of localization were similar to that of the bipartite begomovirus BC1, known to mediate cell-to-cell movement. However, in contrast to BC1, V1 and C4, alone or in combination, had a limited capacity to move and mediate macromolecular trafficking through mesophyll or epidermal plasmodesmata. Immunolocalization and in situ PCR experiments, conducted with tomato plants at three stages of development, established that TYLCV infection was limited to phloem cells of shoot apical, leaf, stem, and floral tissues. Thus, the V1 and/or C4 may be analogs of the bipartite begomovirus BC1 that have evolved to mediate TYLCV movement within phloem tissue.
Collapse
Affiliation(s)
- M R Rojas
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Más P, Sánchez-Pina MA, Balsalobre JM, Pallás V. Subcellular localisation of cherry leaf roll virus coat protein and genomic RNAs in tobacco leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 153:113-124. [PMID: 10717317 DOI: 10.1016/s0168-9452(99)00253-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The in vivo subcellular location of the coat protein and RNAs of cherry leaf roll nepovirus (CLRV) was studied in infected tobacco plants by two different approaches and it was correlated with the cytopathic structures induced by the virus. Subcellular fractions were obtained by differential centrifugation, visualised by electron microscopy and analysed for their viral RNA and coat protein content by Northern blot and Western blot analysis, respectively. Results indicate that viral RNAs accumulated preferentially at the microsomal fraction. Immunocytochemical studies revealed a clear association of the coat protein of CLRV with the virus-induced cytopathological structures. In situ hybridisation studies confirmed the cytoplasmic location of the virus and allowed one to elucidate the distribution of the CLRV genomic RNAs in the different cell types of infected tissue.
Collapse
Affiliation(s)
- P Más
- Departamento de Mejora y Patología Vegetal, CEBAS (CSIC), Apartado de Correos 4195, 30080, Murcia, Spain
| | | | | | | |
Collapse
|
10
|
Bass HW, Nagar S, Hanley-Bowdoin L, Robertson D. Chromosome condensation induced by geminivirus infection of mature plant cells. J Cell Sci 2000; 113 ( Pt 7):1149-60. [PMID: 10704366 DOI: 10.1242/jcs.113.7.1149] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tomato golden mosaic virus (TGMV) is a geminivirus that replicates its single-stranded DNA genome through double-stranded DNA intermediates in nuclei of differentiated plant cells using host replication machinery. We analyzed the distribution of viral and plant DNA in nuclei of infected leaves using fluorescence in situ hybridization (FISH). TGMV-infected nuclei showed up to a sixfold increase in total volume and displayed a variety of viral DNA accumulation patterns. The most striking viral DNA patterns were bright, discrete intranuclear compartments, but diffuse nuclear localization was also observed. Quantitative and spatial measurements of high resolution 3-dimensional image data revealed that these compartments accounted for 1-18% of the total nuclear volume or 2-45% of the total nuclear FISH signals. In contrast, plant DNA was concentrated around the nuclear periphery. In a significant number of nuclei, the peripheral chromatin was organized as condensed prophase-like fibers. A combination of FISH analysis and indirect immunofluorescence with viral coat protein antibodies revealed that TGMV virions are associated with the viral DNA compartments. However, the coat protein antibodies failed to cross react with some large viral DNA inclusions, suggesting that encapsidation may occur after significant viral DNA accumulation. Infection by a TGMV mutant with a defective coat protein open reading frame resulted in fewer and smaller viral DNA-containing compartments. Nevertheless, nuclei infected with the mutant virus increased in size and in some cases showed chromosome condensation. Together, these results established that geminivirus infection alters nuclear architecture and can induce plant chromatin condensation characteristic of cells arrested in early mitosis.
Collapse
Affiliation(s)
- H W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA.
| | | | | | | |
Collapse
|
11
|
Tomato Yellow Leaf Curl Virus, a Whitefly-Borne Geminivirus of Tomatoes. ADVANCES IN DISEASE VECTOR RESEARCH 1994. [DOI: 10.1007/978-1-4612-2590-4_10] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
12
|
Horns T, Jeske H. Localization of abutilon mosaic virus (AbMV) DNA within leaf tissue by in situ hybridization. Virology 1991; 181:580-8. [PMID: 2014637 DOI: 10.1016/0042-6822(91)90891-e] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abutilon mosaic virus (AbMV) is a whitefly-transmitted geminivirus with a a bipartite genome. Using in situ hybridization AbMV DNA was detected exclusively in the phloem of infected Abutilon sellovianum leaves and intracellularly predominant in the nuclei. No AbMV DNA was found in cells from palisade and spongy parenchyma, the tissues which show the predominant cytopathological effects. A hypothesis is discussed to account for the finding that, while AbMV accumulates in the phloem, symptoms are observed in other tissues. Shoot tips were analyzed by in situ hybridization to determine the earliest stage of leaf development in which AbMV is detectable. We found the first hybridization signals in the sixth to seventh leaf of the shoot tip, whereas we could not detect any viral DNA in younger leaves and meristems. These results are discussed with reference to the relation of AbMV multiplication to the cell cycle.
Collapse
Affiliation(s)
- T Horns
- Institut für Allgemeine Botanik, Angewandte Molekularbiologie der Pflanzen, Hamburg, Germany
| | | |
Collapse
|
13
|
Steffensen DM, Wilson HJ, Goodman RM. In situ detection of early replication phases of a gemini virus in legume protoplasts. PLANT CELL REPORTS 1987; 6:462-465. [PMID: 24248933 DOI: 10.1007/bf00272783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/1984] [Revised: 09/22/1987] [Indexed: 06/02/2023]
Abstract
Protoplasts of Phaseolus vulgaris L. (Top Crop), infected with bean golden mosaic virus, were isolated and fixed by various methods for in situ hybridization. An iodine-125 labeled probe was made from the replicative form of the virus. The localization and quantitation was done by autoradiography. Cell wall removal lowered the background and allowed a more accurate analysis. RNase was used to eliminate the possibility of hybrids to RNA. The evidence suggests a sequence of virus movements starting from rough endoplasm reticulum, moving to the nuclear membrane, and finally with the highest concentration inside the nucleus.
Collapse
Affiliation(s)
- D M Steffensen
- Department of Genetics and Development, University of Illinois, 61801, Urbana, IL, USA
| | | | | |
Collapse
|
14
|
|
15
|
Guilfoyle TJ. Propagation of DNA viruses. Methods Enzymol 1986. [DOI: 10.1016/0076-6879(86)18110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Ikegami M, Yazaki K, Honda Y, Iwaki M, Fujii H, Morinaga T, Miura K. Single-stranded DNA in mung bean yellow mosaic virus. Microbiol Immunol 1985; 29:783-9. [PMID: 4069018 DOI: 10.1111/j.1348-0421.1985.tb00881.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
|
18
|
|
19
|
Stanley J. Infectivity of the cloned geminivirus genome requires sequences from both DNAs. Nature 1983. [DOI: 10.1038/305643a0] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
|
21
|
Hamilton W, Sanders R, Coutts R, Buck K. Characterisation of tomato golden mosaic virus as a geminivirus. FEMS Microbiol Lett 1981. [DOI: 10.1111/j.1574-6968.1981.tb06977.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|