1
|
Dragoš A, Priyadarshini B, Hasan Z, Strube ML, Kempen PJ, Maróti G, Kaspar C, Bose B, Burton BM, Bischofs IB, Kovács ÁT. Pervasive prophage recombination occurs during evolution of spore-forming Bacilli. ISME JOURNAL 2020; 15:1344-1358. [PMID: 33343000 DOI: 10.1038/s41396-020-00854-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Phages are the main source of within-species bacterial diversity and drivers of horizontal gene transfer, but we know little about the mechanisms that drive genetic diversity of these mobile genetic elements (MGEs). Recently, we showed that a sporulation selection regime promotes evolutionary changes within SPβ prophage of Bacillus subtilis, leading to direct antagonistic interactions within the population. Herein, we reveal that under a sporulation selection regime, SPβ recombines with low copy number phi3Ts phage DNA present within the B. subtilis population. Recombination results in a new prophage occupying a different integration site, as well as the spontaneous release of virulent phage hybrids. Analysis of Bacillus sp. strains suggests that SPβ and phi3T belong to a distinct cluster of unusually large phages inserted into sporulation-related genes that are equipped with a spore-related genetic arsenal. Comparison of Bacillus sp. genomes indicates that similar diversification of SPβ-like phages takes place in nature. Our work is a stepping stone toward empirical studies on phage evolution, and understanding the eco-evolutionary relationships between bacteria and their phages. By capturing the first steps of new phage evolution, we reveal striking relationship between survival strategy of bacteria and evolution of their phages.
Collapse
Affiliation(s)
- Anna Dragoš
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - B Priyadarshini
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Zahraa Hasan
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701, Hungary
| | - Charlotte Kaspar
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | | | - Briana M Burton
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Castilla-Llorente V, Meijer WJJ, Salas M. Differential Spo0A-mediated effects on transcription and replication of the related Bacillus subtilis phages Nf and phi29 explain their different behaviours in vivo. Nucleic Acids Res 2009; 37:4955-64. [PMID: 19528067 PMCID: PMC2731898 DOI: 10.1093/nar/gkp504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Members of groups 1 (e.g. ϕ29) and 2 (e.g. Nf) of the ϕ29 family of phages infect the spore forming bacterium Bacillus subtilis. Although classified as lytic phages, the lytic cycle of ϕ29 can be suppressed and its genome can become entrapped into the B. subtilis spore. This constitutes an alternative infection strategy that depends on the presence of binding sites for the host-encoded protein Spo0A in the ϕ29 genome. Binding of Spo0A to these sites represses ϕ29 transcription and prevents initiation of DNA replication. Although the Nf genome can also become trapped into B. subtilis spores, in vivo studies showed that its lytic cycle is less susceptible to spo0A-mediated suppression than that of ϕ29. Here we have analysed the molecular mechanism underlying this difference showing that Spo0A differently affects transcription and replication initiation of the genomes of these phages. Thus, whereas Spo0A represses all three main early promoters of ϕ29, it only represses one out of the three equivalent early promoters of Nf. In addition, contrary to ϕ29, Spo0A does not prevent the in vitro initiation of Nf DNA replication. Altogether, the differences in Spo0A-mediated regulation of transcription and replication between ϕ29 and Nf explain their different behaviours in vivo.
Collapse
Affiliation(s)
- Virginia Castilla-Llorente
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
3
|
Castilla-Llorente V, Salas M, Meijer WJJ. Different responses to Spo0A-mediated suppression of the related Bacillus subtilis phages Nf and phi29. Environ Microbiol 2009; 11:1137-49. [PMID: 19207565 DOI: 10.1111/j.1462-2920.2008.01845.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The phi29 family of phages is divided in three groups. Members of groups 1 and 2 infect the spore-forming bacterium Bacillus subtilis. Previous studies showed that group 1 phage phi29 adapts its infection strategy to the physiological state of the host. Thus, the lytic cycle of phi29 is suppressed when cells are infected during the early stages of sporulation and the infecting genome becomes trapped into the spore. A major element of this adaptive strategy is a very sensitive response to the host-encoded Spo0A protein, the key regulator for sporulation activation, which is directly responsible for suppression of phi29 development. Here we analysed if this adaptation is conserved in phage Nf belonging to group 2. The results obtained show that although Nf also possesses the alternative infection strategy, it is clearly less sensitive to Spo0A-mediated suppression than phi29. Sequence determination of the Nf genome revealed striking differences in the number of Spo0A binding site sequences. The results provide evidence that the life style of two highly related phages is distinctly tuned by differences in binding sites for a host-encoded regulatory protein, being a good example of how viruses have evolved to optimally exploit features of their host.
Collapse
Affiliation(s)
- Virginia Castilla-Llorente
- Instituto de Biología Molecular Eladio Viñuela, CSIC, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | | |
Collapse
|
4
|
Castilla-Llorente V, Salas M, Meijer WJJ. kinC/D-mediated heterogeneous expression of spo0A during logarithmical growth in Bacillus subtilis is responsible for partial suppression of phi 29 development. Mol Microbiol 2008; 68:1406-17. [PMID: 18410285 DOI: 10.1111/j.1365-2958.2008.06234.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The host of the lytic bacteriophage phi 29 is the spore-forming bacterium Bacillus subtilis. When infection occurs during early stages of sporulation, however, phi 29 development is suppressed and the infecting phage genome becomes trapped into the developing spore. Recently, we have shown that Spo0A, the key transcriptional regulator for entry into sporulation, is directly responsible for suppression of the lytic phi 29 cycle in cells having initiated sporulation. Surprisingly, we found that phi 29 development is suppressed in a subpopulation of logarithmically growing culture and that spo0A is heterogeneously expressed during this growth stage. Furthermore, we showed that kinC and, to a minor extent, kinD, are responsible for heterogeneous expression levels of spo0A during logarithmical growth that are below the threshold to activate sporulation, but sufficient for suppression of the lytic cycle of phi 29. Whereas spo0A was known to be heterogeneously expressed during the early stages of sporulation, our findings show that this also occurs during logarithmical growth. These insights are likely to have important consequences, not only for the life cycle of phi 29, but also for B. subtilis developmental processes.
Collapse
Affiliation(s)
- Virginia Castilla-Llorente
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
5
|
Abstract
A recent study explains how bacterial spores capture and protect phage DNA, which remains free in the host cytoplasm but is unable to initiate the virulence pathway that leads to lysis of actively growing bacterial cells.
Collapse
Affiliation(s)
- Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts Unversity School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
6
|
Meijer WJJ, Castilla-Llorente V, Villar L, Murray H, Errington J, Salas M. Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage phi29. EMBO J 2005; 24:3647-57. [PMID: 16193065 PMCID: PMC1276709 DOI: 10.1038/sj.emboj.7600826] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 09/01/2005] [Indexed: 11/09/2022] Open
Abstract
Phage phi29 is a virulent phage of Bacillus subtilis with no known lysogenic cycle. Indeed, lysis occurs rapidly following infection of vegetative cells. Here, we show that phi29 possesses a powerful strategy that enables it to adapt its infection strategy to the physiological conditions of the infected host to optimize its survival and proliferation. Thus, the lytic cycle is suppressed when the infected cell has initiated the process of sporulation and the infecting phage genome is directed into the highly resistant spore to remain dormant until germination of the spore. We have also identified two host-encoded factors that are key players in this adaptive infection strategy. We present evidence that chromosome segregation protein Spo0J is involved in spore entrapment of the infected phi29 genome. In addition, we demonstrate that Spo0A, the master regulator for initiation of sporulation, suppresses phi29 development by repressing the main early phi29 promoters via different and novel mechanisms and also by preventing activation of the single late phi29 promoter.
Collapse
Affiliation(s)
- Wilfried J J Meijer
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Ackermann HW, Azizbekyan RR, Emadi Konjin HP, Lecadet MM, Seldin L, Yu MX. New Bacillus bacteriophage species. Arch Virol 1994; 135:333-44. [PMID: 7979971 DOI: 10.1007/bf01310018] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nine new species of tailed Bacillus phages, based on morphological and physicochemical properties, are defined. Phage P10 is one of the largest viruses known. The total number of tailed Bacillus phage species is presently 33.
Collapse
Affiliation(s)
- H W Ackermann
- Félix d'Hérelle Reference Center for Bacterial Viruses, Department of Microbiology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Fucík V, Grünnerová H, Zadrazil S. Restriction and modification in Bacillus subtilis 168. Regulation of hsrM(nonB) expression in spoOA mutants and effects on permissiveness for phi15 and phi105 phages. MOLECULAR & GENERAL GENETICS : MGG 1982; 186:118-21. [PMID: 6810062 DOI: 10.1007/bf00422922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gene hsr M (nonB) of Bacillus subtilis 168, causing non-permissiveness to phage SP10 (Saito et al. 1979) and reduced plating efficiency of unmodified phage phi105, is responsible for non-permissiveness of B. subtilis 168 for phages phi15 and PZA. Upon transformation to sporulation deficiency (allele spoOA) B. subtilis 168 becomes permissive for phi15 and PZA and loses the ability to restrict phi105. spoOA str-1 double transformants of B. subtilis 168, however, retain the restriction 168 and non-permissiveness for phi15 and PZA phages, in spite of their Spo- phenotype. Therefore it appears that a functional product of the spoOA gene is required for expression of gene hsrM in wild-type bacteria, but is not essential in streptomycin-resistant bacteria. Phage genomes (PZA) were trapped in spores of the restriction deficient strain with much higher efficiency than in the wild-type.
Collapse
|