1
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Kharas MG, Daley GQ. From Hen House to Bedside: Tracing Hanafusa's Legacy from Avian Leukemia Viruses to SRC to ABL and Beyond. Genes Cancer 2011; 1:1164-9. [PMID: 21779439 DOI: 10.1177/1947601911407327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The discovery of the Src oncogene was the first step on a long journey toward improved cancer chemotherapy. In this review, we explore Src and BCR-ABL, signal transduction, and recent advances in oncogene addiction and celebrate Hidesaboro Hanafusa and the many researchers who ushered in the age of target-directed therapy against tyrosine kinase oncoproteins.
Collapse
Affiliation(s)
- Michael G Kharas
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
3
|
Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, Salah E, Neudecker P, Kay LE, Turk BE, Superti-Furga G, Pawson T, Knapp S. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 2008; 134:793-803. [PMID: 18775312 PMCID: PMC2572732 DOI: 10.1016/j.cell.2008.07.047] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/23/2008] [Accepted: 07/29/2008] [Indexed: 11/05/2022]
Abstract
The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase αC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.
Collapse
Affiliation(s)
- Panagis Filippakopoulos
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
When connective tissue undergoes malignant transformation, glioblastomas and sarcomas arise. However, the ancient biochemical mechanisms, which are now operational in sarcomas distorted by mutations and gene fusions in misaligned chromosomes, were originally acquired by those cells that emerged during the Cambrian explosion. Preserved throughout evolution up to the genus Homo, these mechanisms dictate the apoptosis- and senescence-resistant immortality of malignant cells. A 'retroviral paradox' distinguishes human sarcomas from those of the animal world. In contrast to the retrovirally induced sarcomatous transformation of animal (avian, murine, feline and simian) cells, human sarcomas have so far failed to yield a causative retroviral isolate. However, the proto-oncogenes/oncogenes transduced from their host cells by retroviruses of animals are the same that are active in human sarcomas. Since the encoded oncoproteins arise after birth, they are recognized frequently by the immune system of the host. Immune lymphocytes that kill autologous sarcoma cells in vitro commonly fail to do so in vivo. Sarcoma vaccines generate immune T- and natural killer cell reactions; even when vaccinated patients do not show a clinical response, their tumors become more sensitive to chemotherapy. The aim of this review is to lay a solid molecular biological foundation for the conclusion that targeting the sarcoma oncogenes will result in regression of the disease.
Collapse
Affiliation(s)
- Joseph G Sinkovics
- Cancer Institute of St. Joseph's Hospital Affiliated with the HL Moffitt Cancer Center, The University of South Florida College of Medicine, Department of Medical Microbiology and Immunology, Tampa, Florida, USA.
| |
Collapse
|
5
|
Delfino F, Shaffer J, Smithgall T. The KRAB-associated co-repressor KAP-1 is a coiled-coil binding partner, substrate and activator of the c-Fes protein tyrosine kinase. Biochem J 2006; 399:141-50. [PMID: 16792528 PMCID: PMC1570157 DOI: 10.1042/bj20060194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The c-Fes protein tyrosine kinase is implicated in the differentiation of a number of cell types including neuronal, endothelial and myeloid cells. Structurally, Fes consists of a unique N-terminal region, followed by SH2 (Src homology domain 2) and kinase domains. Two coiled-coil (CC) domains (CC1 and CC2) located within the unique N-terminal region are critical regulators of Fes activity in vivo and may function to recruit Fes activators and/or substrates. A yeast two-hybrid screen, utilizing a K-562 cell cDNA library and the Fes CC2 domain as bait, identified an interacting clone encoding the CC domain and B-box motifs (residues 114-357) of the transcriptional co-repressor KRAB-associated protein (KAP)-1. KAP-1(114-357) interacted with full-length Fes in yeast, and the KAP-1 CC domain was sufficient to bind the Fes N-terminal region in Sf-9 cells. Co-expression of Fes with full-length KAP-1 in human 293T cells stimulated Fes autophosphorylation and led to KAP-1 tyrosine phosphorylation. Association of endogenous Fes and KAP-1 was also observed in HL-60 myeloid leukaemia cells. Together, these data identify a novel Fes-KAP-1 interaction, and suggest a dual role for KAP-1 as both a Fes activator and downstream effector.
Collapse
Affiliation(s)
- Frank J. Delfino
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| | - Jonathan M. Shaffer
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| | - Thomas E. Smithgall
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
6
|
Hackenmiller R, Simon MC. Truncation of c-fes via gene targeting results in embryonic lethality and hyperproliferation of hematopoietic cells. Dev Biol 2002; 245:255-69. [PMID: 11977979 DOI: 10.1006/dbio.2002.0643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The c-fes protooncogene encodes a nonreceptor tyrosine kinase (Fes) implicated in cytokine receptor signal transduction, granulocyte survival, and myeloid differentiation. To study the role of c-fes during myelopoiesis, we generated embryonic stem (ES) cells with a targeted disruption of the c-fes locus. Targeted mutagenesis deletes the C-terminal SH2 and tyrosine kinase domains of c-fes (referred to as c-fes(Delta c/Delta c)). We demonstrate that the c-fes(Delta c/Delta c) allele results in a truncated Fes protein that retains the N-terminal oligomerization domain, but lacks both the SH2 and the tyrosine kinase domain. In vitro differentiation of c-fes(Delta c/Delta c) ES cells results in hyperproliferation of an early myeloid cell. Generation of c-fes(Delta c/Delta c) mutant chimeric mice causes lethality by E13.5 with embryos exhibiting pleiotropic defects, the most striking being cardiovascular abnormalities. These results establish that c-fes is an important regulator of myeloid cell proliferation and embryonic development.
Collapse
Affiliation(s)
- Renee Hackenmiller
- Committee on Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
7
|
Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21:3314-33. [PMID: 12032772 DOI: 10.1038/sj.onc.1205317] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tyrosine kinase oncogenes are formed as a result of mutations that induce constitutive kinase activity. Many of these tyrosine kinase oncogenes that are derived from genes, such as c-Abl, c-Fes, Flt3, c-Fms, c-Kit and PDGFRbeta, that are normally involved in the regulation of hematopoiesis or hematopoietic cell function. Despite differences in structure, normal function, and subcellular location, many of the tyrosine kinase oncogenes signal through the same pathways, and typically enhance proliferation and prolong viability. They represent excellent potential drug targets, and it is likely that additional mutations will be identified in other kinases, their immediate downstream targets, or in proteins regulating their function.
Collapse
Affiliation(s)
- Blanca Scheijen
- Department of Adult Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
8
|
Abstract
Fps/Fes and Fer are the only known members of a distinct subfamily of the non-receptor protein-tyrosine kinase family. Recent studies indicate that these kinases have roles in regulating cytoskeletal rearrangements and inside out signalling that accompany receptor ligand, cell matrix and cell cell interactions. Genetic analysis using transgenic mouse models also implicates these kinases in the regulation of inflammation and innate immunity.
Collapse
MESH Headings
- Animals
- Biological Evolution
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 5/genetics
- Fusion Proteins, gag-onc/chemistry
- Fusion Proteins, gag-onc/genetics
- Fusion Proteins, gag-onc/physiology
- Humans
- Inflammation/physiopathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Models, Molecular
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Receptor Cross-Talk
- Receptors, Platelet-Derived Growth Factor/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Peter Greer
- Division of Cancer Research and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
9
|
Zirngibl RA, Senis Y, Greer PA. Enhanced endotoxin sensitivity in fps/fes-null mice with minimal defects in hematopoietic homeostasis. Mol Cell Biol 2002; 22:2472-86. [PMID: 11909942 PMCID: PMC133716 DOI: 10.1128/mcb.22.8.2472-2486.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The fps/fes proto-oncogene encodes a cytoplasmic protein tyrosine kinase implicated in growth factor and cytokine receptor signaling and thought to be essential for the survival and terminal differentiation of myeloid progenitors. Fps/Fes-null mice were healthy and fertile, displayed slightly reduced numbers of bone marrow myeloid progenitors and circulating mature myeloid cells, and were more sensitive to lipopolysaccharide (LPS). These phenotypes were rescued using a fps/fes transgene. This confirmed that Fps/Fes is involved in, but not required for, myelopoiesis and that it plays a role in regulating the innate immune response. Bone marrow-derived Fps/Fes-null macrophages showed no defects in granulocyte-macrophage colony-stimulating factor-, interleukin 6 (IL-6)-, or IL-3-induced activation of signal transducer and activator of transcription 3 (Stat3) and Stat5A or LPS-induced degradation of I kappa B or activation of p38, Jnk, Erk, or Akt.
Collapse
Affiliation(s)
- Ralph A Zirngibl
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario K7L-3N6, Canada
| | | | | |
Collapse
|
10
|
Cheng H, Rogers JA, Dunham NA, Smithgall TE. Regulation of c-Fes tyrosine kinase and biological activities by N-terminal coiled-coil oligomerization domains. Mol Cell Biol 1999; 19:8335-43. [PMID: 10567558 PMCID: PMC84918 DOI: 10.1128/mcb.19.12.8335] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cytoplasmic protein-tyrosine kinase Fes has been implicated in cytokine signal transduction, hematopoiesis, and embryonic development. Previous work from our laboratory has shown that active Fes exists as a large oligomeric complex in vitro. However, when Fes is expressed in mammalian cells, its kinase activity is tightly repressed. The Fes unique N-terminal sequence has two regions with strong homology to coiled-coil-forming domains often found in oligomeric proteins. Here we show that disruption or deletion of the first coiled-coil domain upregulates Fes tyrosine kinase and transforming activities in Rat-2 fibroblasts and enhances Fes differentiation-inducing activity in myeloid leukemia cells. Conversely, expression of a Fes truncation mutant consisting only of the unique N-terminal domain interfered with Rat-2 fibroblast transformation by an activated Fes mutant, suggesting that oligomerization is essential for Fes activation in vivo. Coexpression with the Fes N-terminal region did not affect the transforming activity of v-Src in Rat-2 cells, arguing against a nonspecific suppressive effect. Taken together, these findings suggest a model in which Fes activation may involve coiled-coil-mediated interconversion of monomeric and oligomeric forms of the kinase. Mutation of the first coiled-coil domain may activate Fes by disturbing intramolecular coiled-coil interaction, allowing for oligomerization via the second coiled-coil domain. Deletion of the second coiled-coil domain blocks fibroblast transformation by an activated form of c-Fes, consistent with this model. These results provide the first evidence for regulation of a nonreceptor protein-tyrosine kinase by coiled-coil domains.
Collapse
Affiliation(s)
- H Cheng
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | |
Collapse
|
11
|
Rogers JA, Read RD, Li J, Peters KL, Smithgall TE. Autophosphorylation of the Fes tyrosine kinase. Evidence for an intermolecular mechanism involving two kinase domain tyrosine residues. J Biol Chem 1996; 271:17519-25. [PMID: 8663427 DOI: 10.1074/jbc.271.29.17519] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human c-fes proto-oncogene encodes a cytoplasmic tyrosine kinase (Fes) that is associated with multiple hematopoietic cytokine receptors. Fes tyrosine autophosphorylation sites may regulate kinase activity and recruit downstream signaling proteins with SH2 domains. To localize the Fes autophosphorylation sites, full-length Fes and deletion mutants lacking either the unique N-terminal or SH2 domain were autophosphorylated in vitro and analyzed by CNBr cleavage. Identical phosphopeptides of 10 and 4 kDa were produced with all three proteins, localizing the tyrosine autophosphorylation sites to the C-terminal kinase domain. Substitution of kinase domain tyrosine residues 713 or 811 with phenylalanine resulted in a loss of the 10- and 4-kDa phosphopeptides, respectively, identifying these tyrosines as in vitro autophosphorylation sites. CNBr cleavage analysis of Fes isolated from 32PO4-labeled 293T cells showed that Tyr-713 and Tyr-811 are also autophosphorylated in vivo. Mutagenesis of Tyr-713 reduced both autophosphorylation of Tyr-811 and transphosphorylation of Bcr, a recently identified Fes substrate, supporting a major regulatory role for Tyr-713. Wild-type Fes transphosphorylated a kinase-inactive Fes mutant on Tyr-713 and Tyr-811, suggesting that Fes autophosphorylation occurs via an intermolecular mechanism analogous to receptor tyrosine kinases.
Collapse
Affiliation(s)
- J A Rogers
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | |
Collapse
|
12
|
He Y, Borellini F, Koch WH, Huang KX, Glazer RI. Transcriptional regulation of c-Fes in myeloid leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1306:179-86. [PMID: 8634335 DOI: 10.1016/0167-4781(96)00005-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The c-Fes proto-oncogene encodes a myeloid-specific protein-tyrosine kinase that is expressed preferentially in differentiated myeloid cells, but not in early myeloblast progenitor cells. To examine the basis for the phenotypic expression of c-Fes, the transcription initiation sites of the human c-Fes gene were mapped in myeloid leukemia cells and regulatory elements in the genomic c-Fes sequence were characterized. Two major transcription initiation sites were found in the myeloid leukemia cell line THP-1 which delineated exon 1 to be 72-83 bp. When the activity of the CAT reporter gene under the control of the c-Fes promoter region, untranslated exon 1 and intron 1 was measured in TF-1, K562 and MCF-7 cells, only TF-1 cells exhibited chloramphenicol acetyltransferase activity. In contrast, all cell lines supported reporter gene activity when intron 1 was deleted. Deletion analyses revealed a negative regulatory region in intron 1, which was localized by Southwestern analysis and DNA footprinting to a 14 bp region. This negative regulatory region suppressed reporter CAT activity in K562 and TF-1 cells when inserted downstream to the SV40 early promoter. These results suggest that the tissue-specific expression of c-Fes may result, in part, from the negative regulation of transcription in myeloid and nonmyeloid cells.
Collapse
Affiliation(s)
- Y He
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
13
|
Maru Y, Peters KL, Afar DE, Shibuya M, Witte ON, Smithgall TE. Tyrosine phosphorylation of BCR by FPS/FES protein-tyrosine kinases induces association of BCR with GRB-2/SOS. Mol Cell Biol 1995; 15:835-42. [PMID: 7529874 PMCID: PMC231961 DOI: 10.1128/mcb.15.2.835] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The human bcr gene encodes a protein with serine/threonine kinase activity, CDC24/dbl homology, a GAP domain, and an SH2-binding region. However, the precise physiological functions of BCR are unknown. Coexpression of BCR with the cytoplasmic protein-tyrosine kinase encoded by the c-fes proto-oncogene in Sf-9 cells resulted in stable BCR-FES protein complex formation and tyrosine phosphorylation of BCR. Association involves the SH2 domain of FES and a novel binding domain localized to the first 347 amino acids of the FES N-terminal region. Deletion of the homologous N-terminal BCR-binding domain from v-fps, a fes-related transforming oncogene, abolished transforming activity and tyrosine phosphorylation of BCR in vivo. Tyrosine phosphorylation of BCR in v-fps-transformed cells induced its association with GRB-2/SOS, the RAS guanine nucleotide exchange factor complex. These data provide evidence that BCR couples the cytoplasmic protein-tyrosine kinase and RAS signaling pathways.
Collapse
Affiliation(s)
- Y Maru
- Department of Genetics, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase known to be highly expressed in hematopoietic cells. To investigate fps/fes biological function, an activating mutation was introduced into the human fps/fes gene which directs amino-terminal myristylation of the Fps/Fes protein. This mutant, myristylated protein induced transformation of Rat-2 fibroblasts. The mutant fps/fes allele was incorporated into the mouse germ line and was found to be appropriately expressed in transgenic mice, in a tissue-specific pattern indistinguishable from that of the endogenous mouse gene. These mice displayed widespread hypervascularity, progressing to multifocal hemangiomas. High levels of both the transgenic human and endogenous murine fps/fes transcripts were detected in vascular tumors by using RNase protection, and fps/fes transcripts were localized to endothelial cells of both the vascular tumors and normal blood vessels by in situ RNA hybridization. Primary human umbilical vein endothelial cultures were also shown to express fps/fes transcripts and the Fps/Fes tyrosine kinase. These results indicate that fps/fes expression is intrinsic to cells of the vascular endothelial lineage and suggest a direct role of the Fps/Fes protein-tyrosine kinase in the regulation of angiogenesis.
Collapse
|
15
|
Greer P, Haigh J, Mbamalu G, Khoo W, Bernstein A, Pawson T. The Fps/Fes protein-tyrosine kinase promotes angiogenesis in transgenic mice. Mol Cell Biol 1994; 14:6755-63. [PMID: 7523858 PMCID: PMC359206 DOI: 10.1128/mcb.14.10.6755-6763.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase known to be highly expressed in hematopoietic cells. To investigate fps/fes biological function, an activating mutation was introduced into the human fps/fes gene which directs amino-terminal myristylation of the Fps/Fes protein. This mutant, myristylated protein induced transformation of Rat-2 fibroblasts. The mutant fps/fes allele was incorporated into the mouse germ line and was found to be appropriately expressed in transgenic mice, in a tissue-specific pattern indistinguishable from that of the endogenous mouse gene. These mice displayed widespread hypervascularity, progressing to multifocal hemangiomas. High levels of both the transgenic human and endogenous murine fps/fes transcripts were detected in vascular tumors by using RNase protection, and fps/fes transcripts were localized to endothelial cells of both the vascular tumors and normal blood vessels by in situ RNA hybridization. Primary human umbilical vein endothelial cultures were also shown to express fps/fes transcripts and the Fps/Fes tyrosine kinase. These results indicate that fps/fes expression is intrinsic to cells of the vascular endothelial lineage and suggest a direct role of the Fps/Fes protein-tyrosine kinase in the regulation of angiogenesis.
Collapse
Affiliation(s)
- P Greer
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
James G, Olson EN. Fatty acylated proteins as components of intracellular signaling pathways. Biochemistry 1990; 29:2623-34. [PMID: 2189494 DOI: 10.1021/bi00463a001] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
From the studies presented above, it is obvious that fatty acylation is a common modification among proteins involved in cellular regulatory pathways, and in certain cases mutational analyses have demonstrated the importance of covalent fatty acids in the functioning of these proteins. Indeed, certain properties provided by fatty acylation make it an attractive modification for regulatory proteins that might interact with many different substrates, particularly those found at or near the plasma membrane/cytosol interface. In the case of intracellular fatty acylated proteins, the fatty acyl moiety allows tight binding to the plasma membrane without the need for cotranslational insertion through the bilayer. For example, consider the tight, salt-resistant interaction of myristoylated SRC with the membrane, whereas its nonmyristoylated counterpart is completely soluble. Likewise for the RAS proteins, which associate weakly with the membrane in the absence of fatty acylation, while palmitoylation increases their affinity for the plasma membrane and their biological activity. Fatty acylation also permits reversible membrane association in some cases, particularly for several myristoylated proteins, thus conferring plasticity on their interactions with various signaling pathway components. Finally, although this has not been demonstrated, it is conceivable that covalent fatty acid may allow for rapid mobility of proteins within the membrane. Several questions remain to be answered concerning requirements for fatty acylation by regulatory proteins. The identity of the putative SRC "receptor" will provide important clues as to the pathways in which normal SRC functions, as well as into the process of transformation by oncogenic tyrosine kinases. The possibility that other fatty acylated proteins associate with the plasma membrane in an analogous manner also needs to be investigated. An intriguing observation that can be made from the information presented here is that at least three different families of proteins involved in growth factor signaling pathways encode both acylated and nonacylated members, suggesting that selective fatty acylation may provide a means of determining the specificity of their interactions with other regulatory molecules. Further studies of fatty acylated proteins should yield important information concerning the regulation of intracellular signaling pathways utilized during growth and differentiation.
Collapse
Affiliation(s)
- G James
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Houston 77030
| | | |
Collapse
|
18
|
Lymphoid and mesenchymal tumors in transgenic mice expressing the v-fps protein-tyrosine kinase. Mol Cell Biol 1990. [PMID: 2555699 DOI: 10.1128/mcb.9.12.5491] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
src, abl, and fps/fes are prototypes for a family of genes encoding nonreceptor protein-tyrosine kinases. The oncogenic potential of the v-fps protein-tyrosine kinase was investigated by introduction of the gag-fps coding sequence of Fujinami sarcoma virus into the mouse germ line. Transgenic mice with v-fps under the transcriptional control of a 5' human beta-globin promoter (GF) or with both 5' and 3' beta-globin regulatory sequences (GEF) were viable. Unexpectedly, both GF and GEF transgenes were expressed in a wide variety of tissues and induced a spectrum of benign and malignant tumors. These tumors, which included lymphomas, thymomas, fibrosarcomas, angiosarcomas, hemangiomas, and neurofibrosarcomas, developed with various frequencies after latent periods of 2 to 12 months. The majority of lymphoid neoplasms appeared to be of T-cell origin and were monoclonal, as judged by rearrangements of the T-cell receptor beta or immunoglobulin genes. Some tissues that expressed the v-fps oncogene, such as heart, brain, lung, and testes, developed no malignant tumors. The v-fps protein-tyrosine kinase therefore has a broad but not unrestricted range of oncogenic activity in cells of lymphoid and mesenchymal origin. The incomplete penetrance of the neoplastic phenotype and the monoclonality of lymphoid tumors suggest that tumor formation in v-fps mice requires genetic or epigenetic events in addition to expression of the P130gag-fps protein-tyrosine kinase.
Collapse
|
19
|
Yee SP, Mock D, Greer P, Maltby V, Rossant J, Bernstein A, Pawson T. Lymphoid and mesenchymal tumors in transgenic mice expressing the v-fps protein-tyrosine kinase. Mol Cell Biol 1989; 9:5491-9. [PMID: 2555699 PMCID: PMC363719 DOI: 10.1128/mcb.9.12.5491-5499.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
src, abl, and fps/fes are prototypes for a family of genes encoding nonreceptor protein-tyrosine kinases. The oncogenic potential of the v-fps protein-tyrosine kinase was investigated by introduction of the gag-fps coding sequence of Fujinami sarcoma virus into the mouse germ line. Transgenic mice with v-fps under the transcriptional control of a 5' human beta-globin promoter (GF) or with both 5' and 3' beta-globin regulatory sequences (GEF) were viable. Unexpectedly, both GF and GEF transgenes were expressed in a wide variety of tissues and induced a spectrum of benign and malignant tumors. These tumors, which included lymphomas, thymomas, fibrosarcomas, angiosarcomas, hemangiomas, and neurofibrosarcomas, developed with various frequencies after latent periods of 2 to 12 months. The majority of lymphoid neoplasms appeared to be of T-cell origin and were monoclonal, as judged by rearrangements of the T-cell receptor beta or immunoglobulin genes. Some tissues that expressed the v-fps oncogene, such as heart, brain, lung, and testes, developed no malignant tumors. The v-fps protein-tyrosine kinase therefore has a broad but not unrestricted range of oncogenic activity in cells of lymphoid and mesenchymal origin. The incomplete penetrance of the neoplastic phenotype and the monoclonality of lymphoid tumors suggest that tumor formation in v-fps mice requires genetic or epigenetic events in addition to expression of the P130gag-fps protein-tyrosine kinase.
Collapse
Affiliation(s)
- S P Yee
- Division of Molecular and Developmental Biology, Mt. Sinai Hospital Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Using v-abl probes, we have identified and cloned a novel fes/fps-homologous human cDNA, which we have designated FER (pronounced "fair"). This apparently full-length cDNA of 3.0 kilobases has an open reading frame of 2,466 base pairs and the capacity to encode a protein of 94,000 molecular weight. The cDNA contains regions homologous to the highly conserved tyrosine protein kinase domain of other oncogenes and growth factor receptors but lacks a clear transmembrane region, indicating that it encodes a tyrosine kinase of the nonreceptor type. The deduced amino acid sequence of FER resembles that of c-fes/fps. Our data indicate that the protein product of FER, p94FER, corresponds to a previously reported cellular phosphoprotein, NCP94, detected with a v-fps-specific antipeptide antiserum.
Collapse
|
21
|
Hao QL, Heisterkamp N, Groffen J. Isolation and sequence analysis of a novel human tyrosine kinase gene. Mol Cell Biol 1989; 9:1587-93. [PMID: 2725517 PMCID: PMC362575 DOI: 10.1128/mcb.9.4.1587-1593.1989] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using v-abl probes, we have identified and cloned a novel fes/fps-homologous human cDNA, which we have designated FER (pronounced "fair"). This apparently full-length cDNA of 3.0 kilobases has an open reading frame of 2,466 base pairs and the capacity to encode a protein of 94,000 molecular weight. The cDNA contains regions homologous to the highly conserved tyrosine protein kinase domain of other oncogenes and growth factor receptors but lacks a clear transmembrane region, indicating that it encodes a tyrosine kinase of the nonreceptor type. The deduced amino acid sequence of FER resembles that of c-fes/fps. Our data indicate that the protein product of FER, p94FER, corresponds to a previously reported cellular phosphoprotein, NCP94, detected with a v-fps-specific antipeptide antiserum.
Collapse
Affiliation(s)
- Q L Hao
- Division of Medical Genetics, Childrens Hospital of Los Angeles, California 90027
| | | | | |
Collapse
|
22
|
The human c-fps/fes gene product expressed ectopically in rat fibroblasts is nontransforming and has restrained protein-tyrosine kinase activity. Mol Cell Biol 1988. [PMID: 3352601 DOI: 10.1128/mcb.8.2.578] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 13-kilobase EcoRI genomic restriction fragment containing the human c-fps/fes proto-oncogene locus was expressed transiently in Cos-1 monkey cells and stably in Rat-2 fibroblasts. In both cases, human c-fps/fes directed synthesis of a 92-kilodalton protein-tyrosine kinase (p92c-fes) indistinguishable from a tyrosine kinase previously identified with anti-fps antiserum which is specifically expressed in human myeloid cells. Transfected Rat-2 cells containing approximately 50-fold more human p92c-fes than is found in human leukemic cells remained morphologically normal and failed to grow in soft agar. Synthesis of p92c-fes in this phenotypically normal line exceeded that of the P130gag-fps oncoprotein in a v-fps-transformed Rat-2 line. Despite this elevated expression, human p92c-fes induced no substantial increase in cellular phosphotyrosine and was not itself phosphorylated on tyrosine. In contrast, p92c-fes immunoprecipitated from these Rat-2 cells or expressed as an enzymatically active fragment in Escherichia coli from a c-fps/fes cDNA catalyzed tyrosine phosphorylation with an activity similar to that of v-fps/fes polypeptides. Thus, p92c-fes is not transforming when ectopically overexpressed in Rat-2 fibroblasts. This lack of transforming activity correlates with a restriction imposed on the kinase activity of the normal c-fps/fes product in vivo which is apparently lifted for v-fps/fes oncoproteins, suggesting that regulatory interactions within the host cell modify fps/fes protein function and normally restrain its oncogenic potential.
Collapse
|
23
|
Greer PA, Meckling-Hansen K, Pawson T. The human c-fps/fes gene product expressed ectopically in rat fibroblasts is nontransforming and has restrained protein-tyrosine kinase activity. Mol Cell Biol 1988; 8:578-87. [PMID: 3352601 PMCID: PMC363183 DOI: 10.1128/mcb.8.2.578-587.1988] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A 13-kilobase EcoRI genomic restriction fragment containing the human c-fps/fes proto-oncogene locus was expressed transiently in Cos-1 monkey cells and stably in Rat-2 fibroblasts. In both cases, human c-fps/fes directed synthesis of a 92-kilodalton protein-tyrosine kinase (p92c-fes) indistinguishable from a tyrosine kinase previously identified with anti-fps antiserum which is specifically expressed in human myeloid cells. Transfected Rat-2 cells containing approximately 50-fold more human p92c-fes than is found in human leukemic cells remained morphologically normal and failed to grow in soft agar. Synthesis of p92c-fes in this phenotypically normal line exceeded that of the P130gag-fps oncoprotein in a v-fps-transformed Rat-2 line. Despite this elevated expression, human p92c-fes induced no substantial increase in cellular phosphotyrosine and was not itself phosphorylated on tyrosine. In contrast, p92c-fes immunoprecipitated from these Rat-2 cells or expressed as an enzymatically active fragment in Escherichia coli from a c-fps/fes cDNA catalyzed tyrosine phosphorylation with an activity similar to that of v-fps/fes polypeptides. Thus, p92c-fes is not transforming when ectopically overexpressed in Rat-2 fibroblasts. This lack of transforming activity correlates with a restriction imposed on the kinase activity of the normal c-fps/fes product in vivo which is apparently lifted for v-fps/fes oncoproteins, suggesting that regulatory interactions within the host cell modify fps/fes protein function and normally restrain its oncogenic potential.
Collapse
Affiliation(s)
- P A Greer
- Department of Molecular and Developmental Biology, Mount Sinai Hospital Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
24
|
Pawson T, Greer P, Moran M, Meckling-Hansen K, Brooks-Wilson A, Sadowski I. Structure-function relationships in cellular and viral fps/fes cytoplasmic protein-tyrosine kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 234:55-64. [PMID: 3063089 DOI: 10.1007/978-1-4757-1980-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- T Pawson
- Division of Molecular and Developmental Biology, Mt. Sinai Hospital Research Institute, Toronto, Ont., Canada
| | | | | | | | | | | |
Collapse
|
25
|
Rowley PT, Skuse GR. Oncogene expression in myelopoiesis. INTERNATIONAL JOURNAL OF CELL CLONING 1987; 5:255-66. [PMID: 3305725 DOI: 10.1002/stem.5530050402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oncogenes are a class of genes hypothesized to be causally related to neoplasia. To date, specific oncogenes have been recognized chiefly by their ability to transform test cells to a neoplastic phenotype. This has been accomplished largely through mutational analysis of the genotype of retroviruses or through the analysis of tumor cell DNA by in vitro transfection of rodent fibroblasts. Oncogenes are believed to arise by some genetic alteration from normal cellular genes called proto-oncogenes. Although the normal function of most proto-oncogenes is unknown, it has been proposed that they may function as tissue-specific and temporally specific regulators of differentiation. The role of oncogenes in lymphoid malignancies has been extensively analyzed. Less is known about their role in myeloid leukemias and especially in normal myelopoiesis. Space limitations permit discussion of only salient features of a limited number of oncogenes; we have arbitrarily selected myc, myb, fos, fms, fes, sis, and abl.
Collapse
|
26
|
Roebroek AJ, Schalken JA, Onnekink C, Bloemers HP, Van de Ven WJ. Structure of the feline c-fes/fps proto-oncogene: genesis of a retroviral oncogene. J Virol 1987; 61:2009-16. [PMID: 3553615 PMCID: PMC254210 DOI: 10.1128/jvi.61.6.2009-2016.1987] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The nucleotide sequence of the feline c-fes/fps proto-oncogene was analyzed. Comparison with v-fes and v-fps revealed that all v-fes/fps homologous sequences were dispersed over 11 kilobase pairs in 19 interspersed segments. All segments, numbered exon 1 to exon 19 as in the chicken and human loci, were flanked by consensus splice junctions. The putative promoter region contained a CATT sequence and three CCGCCC motifs which were also found in the human locus at similar positions. About 200 nucleotides downstream of a translational stop codon in exon 19, a putative poly(A) addition signal was identified. Using the putative translation initiation codon in exon 2, a 93,000-molecular-weight protein could be deduced. This protein resembled very well the putative protein of the human c-fes/fps proto-oncogene (94% overall homology) and, although less well, the putative protein of the chicken c-fes/fps proto-oncogene (70% overall homology). As far as the feline c-fes/fps proto-oncogene sequences transduced to the Gardner-Arnstein (GA) and Snyder-Theilen (ST) strains of feline sarcoma virus (FeSV) are concerned, homology in deduced amino acid sequences between the GA- and ST-v-fes viral oncogenes and the proto-oncogene was 99%. Analysis of the recombination junctions between feline leukemia virus and v-fes sequences in GA- and ST-FeSV proviral DNA revealed for the left-hand junction the involvement of homologous recombination, presumably at the DNA level. The right-hand junction, which appeared identical in the GA-FeSV and ST-FeSV genomes, could have been the result of a site-specific recombination at the RNA level.
Collapse
|
27
|
Abstract
The nucleotide sequence of seven exons of the human c-fgr gene, a cellular homolog of the oncogene of Gardner-Rasheed feline sarcoma virus, was determined. Twenty-six independent genomic clones were obtained from a human gene library with a DNA clone of Y73 avian sarcoma virus oncogene, v-yes, as a probe under relaxed hybridization conditions. Restriction mapping and partial sequence analyses revealed that two of these clones were derived from the c-fgr gene, distinct from the c-yes gene. Interestingly, the splicing points of the c-fgr gene were identical with those of the c-src gene throughout the seven exons, suggesting that the two proto-oncogenes were generated by gene duplication of an ancestral gene containing intervening sequences. On RNA blot hybridization the major transcript was found to be 2.6 kilobase long. Two additional transcripts of 3.5 and 4.7 kilobases were also detected. Furthermore, karyotype analysis of several human-mouse hybrid cells and Southern blot analyses of DNAs of the hybrids with a human c-fgr locus-specific probe showed that this gene is located on chromosome 1.
Collapse
|
28
|
Expression of the mammalian c-fes protein in hematopoietic cells and identification of a distinct fes-related protein. Mol Cell Biol 1986. [PMID: 2426571 DOI: 10.1128/mcb.5.10.2543] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The avian c-fps and mammalian c-fes proto-oncogenes are cognate cellular sequences. Antiserum raised against the P140gag-fps transforming protein of Fujinami avian sarcoma virus specifically recognized a 92,000-Mr protein in human and mouse hematopoietic cells which was closely related in structure to Snyder-Theilen feline sarcoma virus P87gag-fes. This polypeptide was apparently the product of the human c-fes gene and was therefore designated p92c-fes. Human p92c-fes was associated with a tyrosine-specific protein kinase activity in vitro and was capable of both autophosphorylation and phosphorylation of enolase as an exogenous protein substrate. The synthesis of human and mouse p92c-fes was largely, though not entirely, confined to myeloid cells. p92c-fes was expressed to relatively high levels in a multipotential murine myeloid cell line, in more mature human and mouse granulocyte-macrophage progenitors, and in differentiated macrophage like cells as well as in the mononuclear fraction of normal and leukemic human peripheral blood. p92c-fes was not found in erythroid cells, with the exception of a human erythroleukemia line which retains the capacity to differentiate into macrophage like cells. These results suggest a normal role for the p92c-fes tyrosine kinase in hematopoiesis, particularly in granulocyte-macrophage differentiation. In addition, a distinct 94,000-Mr polypeptide, antigenically related to p92c-fes, was identified in a number of hematopoietic and nonhematopoietic human and mouse cells and was also found to be associated with a tyrosine-specific protein kinase activity.
Collapse
|
29
|
Nishizawa M, Semba K, Yoshida MC, Yamamoto T, Sasaki M, Toyoshima K. Structure, expression, and chromosomal location of the human c-fgr gene. Mol Cell Biol 1986; 6:511-7. [PMID: 3023853 PMCID: PMC367540 DOI: 10.1128/mcb.6.2.511-517.1986] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequence of seven exons of the human c-fgr gene, a cellular homolog of the oncogene of Gardner-Rasheed feline sarcoma virus, was determined. Twenty-six independent genomic clones were obtained from a human gene library with a DNA clone of Y73 avian sarcoma virus oncogene, v-yes, as a probe under relaxed hybridization conditions. Restriction mapping and partial sequence analyses revealed that two of these clones were derived from the c-fgr gene, distinct from the c-yes gene. Interestingly, the splicing points of the c-fgr gene were identical with those of the c-src gene throughout the seven exons, suggesting that the two proto-oncogenes were generated by gene duplication of an ancestral gene containing intervening sequences. On RNA blot hybridization the major transcript was found to be 2.6 kilobase long. Two additional transcripts of 3.5 and 4.7 kilobases were also detected. Furthermore, karyotype analysis of several human-mouse hybrid cells and Southern blot analyses of DNAs of the hybrids with a human c-fgr locus-specific probe showed that this gene is located on chromosome 1.
Collapse
|
30
|
|
31
|
Hunter T, Cooper JA. 6 Viral Oncogenes and Tyrosine Phosphorylation. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/s1874-6047(08)60431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
32
|
MacDonald I, Levy J, Pawson T. Expression of the mammalian c-fes protein in hematopoietic cells and identification of a distinct fes-related protein. Mol Cell Biol 1985; 5:2543-51. [PMID: 2426571 PMCID: PMC366988 DOI: 10.1128/mcb.5.10.2543-2551.1985] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The avian c-fps and mammalian c-fes proto-oncogenes are cognate cellular sequences. Antiserum raised against the P140gag-fps transforming protein of Fujinami avian sarcoma virus specifically recognized a 92,000-Mr protein in human and mouse hematopoietic cells which was closely related in structure to Snyder-Theilen feline sarcoma virus P87gag-fes. This polypeptide was apparently the product of the human c-fes gene and was therefore designated p92c-fes. Human p92c-fes was associated with a tyrosine-specific protein kinase activity in vitro and was capable of both autophosphorylation and phosphorylation of enolase as an exogenous protein substrate. The synthesis of human and mouse p92c-fes was largely, though not entirely, confined to myeloid cells. p92c-fes was expressed to relatively high levels in a multipotential murine myeloid cell line, in more mature human and mouse granulocyte-macrophage progenitors, and in differentiated macrophage like cells as well as in the mononuclear fraction of normal and leukemic human peripheral blood. p92c-fes was not found in erythroid cells, with the exception of a human erythroleukemia line which retains the capacity to differentiate into macrophage like cells. These results suggest a normal role for the p92c-fes tyrosine kinase in hematopoiesis, particularly in granulocyte-macrophage differentiation. In addition, a distinct 94,000-Mr polypeptide, antigenically related to p92c-fes, was identified in a number of hematopoietic and nonhematopoietic human and mouse cells and was also found to be associated with a tyrosine-specific protein kinase activity.
Collapse
|
33
|
Tronick SR, Popescu NC, Cheah MS, Swan DC, Amsbaugh SC, Lengel CR, DiPaolo JA, Robbins KC. Isolation and chromosomal localization of the human fgr protooncogene, a distinct member of the tyrosine kinase gene family. Proc Natl Acad Sci U S A 1985; 82:6595-9. [PMID: 2995972 PMCID: PMC391256 DOI: 10.1073/pnas.82.19.6595] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The cell-derived domain of Gardner-Rasheed feline sarcoma virus (GR-FeSV) consists of a gamma-actin- and a tyrosine-specific protein kinase-encoding sequence designated v-fgr. By utilizing a v-fgr probe, it was possible to detect related sequences present at low copy number in DNAs of a variety of mammalian species and to isolate a human fgr homologue. Comparative studies revealed that this human DNA clone represented all but 200 base pairs of v-fgr. Analysis of human genomic DNA demonstrated that the fgr protooncogene was distinct from the cellular homologues of other retrovirus onc genes. In addition, the fgr protooncogene was localized to the distal portion of the short arm of human chromosome 1 at p36.1-36.2 by in situ hybridization. Taken together, our findings establish that the fgr protooncogene is a unique member of the tyrosine kinase gene family.
Collapse
|
34
|
Hutchins CJ, Keese P, Visvader JE, Rathjen PD, McInnes JL, Symons RH. Comparison of multimeric plus and minus forms of viroids and virusoids. PLANT MOLECULAR BIOLOGY 1985; 4:293-304. [PMID: 24310879 DOI: 10.1007/bf02418248] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In order to investigate the mechanism of replication of viroids and virusoids, we have compared the replication intermediates of three members of each group in nucleic acid extracts of infected plants. Viroids were avocado sunblotch viroid (ASBV), citrus exocortis viroid (CEV) and coconut cadang cadang viroid (CCCV). Virusoids were from velvet tobacco mottle virus (VTMoV), solanum nodiflorum mottle virus (SNMV) and lucerne transient streak virus (LTSV). Analysis of intermediates was by the Northern hybridization technique with single-strand DNA and RNA probes prepared from recombinant DNA clones. The results obtained are discussed in terms of current models of viroid and virusoid replication.The plus RNA species consisted of an oligomeric series up to decamers based on the unit of full-length viroid or virusoid, which was always the major component, except for CEV where only monomer and dimer species were found. In the case of ASBV and the virusoids of VTMoV and SNMV, a minor, multimeric series of components (X-bands) was superimposed on the main oligomeric series.The complementary minus species proved more difficult to detect and characterise, with each viroid and virusoid exhibiting a unique pattern on Northern hybridization. However, they all had greater than unit-length minus species. In addition, minus species analogous to the plus X-bands were found in ASBV and CEV. The experimental difficulties encountered in this work are discussed in terms of the problem of detecting minus species by Northern analysis in the presence of excess complementary plus species.
Collapse
Affiliation(s)
- C J Hutchins
- Adelaide University Centre for Gene Technology, Department of Biochemistry, University of Adelaide, 5000, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Specific expression of the human cellular fps/fes-encoded protein NCP92 in normal and leukemic myeloid cells. Proc Natl Acad Sci U S A 1985; 82:2379-83. [PMID: 2986115 PMCID: PMC397561 DOI: 10.1073/pnas.82.8.2379] [Citation(s) in RCA: 114] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have found that both an antibody directed against a synthetic peptide representing an amino acid sequence of the conserved kinase domain of transforming protein P140 of Fujinami sarcoma virus and a regressing tumor antiserum recognized the products of the c-fps/fes genes of both avian and mammalian cells. The anti-peptide antibody also recognized a 94-kilodalton protein that was related to but distinct from the c-fps/fes product in structure and in tissue distribution. A 92-kilodalton protein, NCP92, was found to be the mammalian counterpart of the previously identified avian c-fps/fes protein NCP98 by its structural similarity to NCP98, its associated tyrosine kinase activity, and its similar tissue distribution. The highest levels of NCP92 were found in tissue macrophages and in bone marrow. In bone marrow NCP92 expression was restricted to cells of the monocyte/macrophage and granulocyte lineages. That the expression of NCP92 is limited to these cell types was confirmed by the analysis of murine and human hematopoietic tumors representing different cell lineages: NCP92 was positive in leukemic cells of granulocytic and monocytic origin but not in B-lymphocytic, T-lymphocytic, or erythroid tumor cells. The expression of NCP92 seems to be related to the capacity of myeloid cells to differentiate and to respond to certain colony-stimulating factors.
Collapse
|
36
|
Oncogenes and the Genetic Dissection of Human Cancer: Implications for Basic Research and Clinical Medicine. PROGRESS IN CLINICAL BIOCHEMISTRY AND MEDICINE 1985. [DOI: 10.1007/978-3-642-70570-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
|
38
|
Verbeek JS, van den Ouweland AM, Schalken JA, Roebroek AJ, Onnekink C, Bloemers HP, van de Ven WJ. Molecular cloning of the feline c-fes proto-oncogene and construction of a chimeric transforming gene. Gene 1985; 35:33-43. [PMID: 2993104 DOI: 10.1016/0378-1119(85)90155-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The feline c-fes proto-oncogene, different parts of which were captured in feline leukemia virus (FeLV) to generate the transforming genes (v-fes) of the Gardner-Arnstein (GA) strain of feline sarcoma virus (FeSV) and the Snyder-Theilen strain (ST) of FeSV, was cloned and its genetic organization determined. Southern blot analysis revealed that the c-fes genetic sequences were distributed discontinuously and colinearly with the v-fes transforming gene over a DNA region of around 12.0 kb. Using cloned c-fes sequences, complementation of GA-FeSV transforming activity was studied. Upon replacement of the 3' half of v-fesGA with homologous feline c-fes sequences and transfection of the chimeric gene, morphological transformation was observed. Immunoprecipitation analysis of these transformed cells revealed expression of high Mr fusion proteins. Phosphorylation of these proteins was observed in an in vitro protein kinase assay, and tyrosine residues appeared to be involved as acceptor amino acid.
Collapse
|
39
|
Sodroski JG, Goh WC, Haseltine WA. Transforming potential of a human protooncogene (c-fps/fes) locus. Proc Natl Acad Sci U S A 1984; 81:3039-43. [PMID: 6328490 PMCID: PMC345216 DOI: 10.1073/pnas.81.10.3039] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The protooncogene c-fps/fes is a single vertebrate locus homologous to both the fps transforming gene of Fujinami avian sarcoma virus and the fes transforming gene of two feline sarcoma virus isolates. The human c-fps/fes locus has been previously cloned and characterized. We report that a recombinant gene in which 3' human c-fps/fes sequences replace over 80% of the feline sarcoma virus fes sequences transforms NIH 3T3 mouse fibroblasts and encodes a protein kinase. Cells transformed by this recombinant possess increased phosphotyrosine levels. These observations demonstrate that a large carboxyl portion of a human c-fps/fes protein product can functionally complement a retroviral transforming protein.
Collapse
|
40
|
Carlberg K, Chamberlin ME, Beemon K. The avian sarcoma virus PRCII lacks 1020 nucleotides of the fps transforming gene. Virology 1984; 135:157-67. [PMID: 6328746 DOI: 10.1016/0042-6822(84)90126-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fujinami sarcoma virus (FSV) and PRCII avian sarcoma virus both encode gag-fps transforming proteins associated with tyrosine-specific protein kinase activity; however, PRCII has a lower oncogenic potential than does FSV. In this study, the genomes of PRCII and FSV have been compared. By hybridization of PRCII [32P]RNA to FSV DNA on Southern blots, a large internal deletion in the 5' half of the fps gene in PRCII has been mapped. To determine the exact size and location of the deletion in PRCII, dideoxy sequencing of PRCII RNA with FSV DNA fragments as primers was used. The FSV sequence corresponding to the deletion in PRCII was flanked by 6-base direct repeats ( AGCTGG ) at 1614-1619 and 2634-2639 nucleotides. One copy of the direct repeat was retained in the PRCII genome. The length of the deleted region was 1020 nucleotides. The deletion in fps did not alter the kinase domain or ATP-binding site of the P105 transforming protein of PRCII. It was shown that the specific kinase activity of P105 was as high as that of FSV P130 . The sequence deleted from PRCII was found to encode part of a large hydrophilic domain. In the accompanying paper [J. Woolford and K. Beemon (1984) Virology 135, 168-180], evidence that the PRCII and FSV proteins have different subcellular locations and solubility properties, possibly due to the loss of this domain, is presented. These alterations in the structure and location of the PRCII protein may prevent it from phosphorylating certain substrates involved in oncogenic transformation.
Collapse
|
41
|
|
42
|
Sheer D, Hiorns LR, Stanley KF, Goodfellow PN, Swallow DM, Povey S, Heisterkamp N, Groffen J, Stephenson JR, Solomon E. Genetic analysis of the 15;17 chromosome translocation associated with acute promyelocytic leukemia. Proc Natl Acad Sci U S A 1983; 80:5007-11. [PMID: 6576373 PMCID: PMC384177 DOI: 10.1073/pnas.80.16.5007] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Somatic cell hybrids have been constructed between a thymidine kinase-deficient mouse cell line and blood leukocytes from a patient with acute promyelocytic leukemia showing the 15q+;17q- chromosome translocation frequently associated with this disease. One hybrid contains the 15q+ translocation chromosome and very little other human material. We have shown that the c-fes oncogene, which has been mapped to chromosome 15, is not present in this hybrid and, therefore, probably is translocated to the 17q- chromosome. Analysis of the genetic markers present in this hybrid has enabled a more precise localization of the translocation breakpoints on chromosomes 15 and 17. Our experiments also have enabled an ordering and more precise mapping of several genetic markers on chromosomes 15 and 17.
Collapse
|
43
|
Groffen J, Heisterkamp N, Reynolds FH, Stephenson JR. Homology between phosphotyrosine acceptor site of human c-abl and viral oncogene products. Nature 1983; 304:167-9. [PMID: 6191223 DOI: 10.1038/304167a0] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The human homologues of several independent viral oncogenes, each of which encodes tyrosine-specific protein kinases, have been identified. Of these, three (v-src, v-yes and v-fes/fps) are known to exhibit considerable sequence homology, particularly in the regions of their phosphorylation acceptor sites. In the present study, sequences encoding the tyrosine phosphorylation acceptor sites of the Abelson murine leukaemia virus oncogene, v-abl, and its human cellular homologue, c-abl, have been identified and their nucleic acid sequences determined. Our results establish extensive homology between this region of c-abl and acceptor domains of the v-src, v-yes and v-fes/fps family of viral oncogenes, as well as more distant relatedness to the catalytic chain of the mammalian cyclic AMP-dependent protein kinase. These findings suggest that, of the homologues of retroviral oncogenes with tyrosine protein kinase activity examined to date, all were probably derived from a common progenitor and may represent members of a diverse family of cellular protein kinases.
Collapse
|