1
|
Huang B, Zhao Z, Zhao Y, Huang S. Protein arginine phosphorylation in organisms. Int J Biol Macromol 2021; 171:414-422. [PMID: 33428953 DOI: 10.1016/j.ijbiomac.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Protein arginine phosphorylation (pArg), a novel molecular switch, plays a key role in regulating cellular processes. The intrinsic acid lability, hot sensitivity, and hot-alkali instability of "high-energy" phosphoamidate (PN bond) in pArg, make the investigation highly difficult and challenging. Recently, the progress in identifying prokaryotic protein arginine kinase/phosphatase and assigning hundreds of pArg proteins and phosphosites has been made, which is arousing scientists' interest and passions. It shows that pArg is tightly connected to bacteria stress response and pathogenicity, and is probably implied in human diseases. In this review, we highlight the strategies for investigation of this mysterious modification and its momentous physiological functions, and also prospect for the potentiality of drugs development targeting pArg-relative pathways.
Collapse
Affiliation(s)
- Biling Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Zhixing Zhao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
2
|
Sağlam T, Yaman M, Ertürk Ö. Distribution and Occurrence of Vairimorpha plodiae (Opisthokonta: Microspora) in the Indian Meal Moth, Plodia interpunctella (Lepidoptera: Pyralidae) Populations: An Extensive Field Study. ACTA PROTOZOOL 2021. [DOI: 10.4467/16890027ap.21.004.14064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae) is one of the most important stored product pests. Fumigation plays a significant role in the management of insect pests in stored-products. However, the use of fumigants is problematic because of their effects on the environment and high costs. Entomopathogenic organisms are environmentally friendly control agents and suppress pest populations under natural conditions. In this study, distribution and occurrence of a microsporidian pathogen, Vairimorpha plodiae (Opisthokonta: Microspora) in the populations of P. interpunctella from 12 localities representing Turkey between 2019 and 2020 are presented for the first time by confirming its effectiveness on natural populations. The presence of the microsporidian pathogen was found in 11 of 12 (91.7%) populations. In total, 863 of 3,044 samples were infected by the pathogen. Infection mean was 28.4% for all populations. Our results showed that V. plodiae infection reached to a considerably high prevalence (88.77%) in P. interpunctella populations and varied from 5.1 to 88.7% between the populations. In addition, microsporidia infections have been identified throughout Turkey. We found that V. plodiae can infect all life stages of P. interpunctella. Totally, 623 (28.5%) of 2187 larvae, 14 (37.8%) of 37 pupae, 226 (27%) of 820 adults were found to be infected by the pathogen. There were considerable differences between the dead and living larvae. The microsporidian infection was found in 26 (11.6%) of 225 living larvae, whereas it was found in 595 (30.5%) of 1,952 dead larvae. These results confirm that the microsporidia pathogen has a high spreading potential in P. interpunctella populations and can be a natural biological suppression factor on pest populations.
Collapse
Affiliation(s)
- Tuğba Sağlam
- Department of Biology, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, Turkey
| | - Mustafa Yaman
- Department of Biology, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, Turkey
| | - Ömer Ertürk
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu University, Turkey
| |
Collapse
|
3
|
Huang B, Liu Y, Yao H, Zhao Y. NMR-based investigation into protein phosphorylation. Int J Biol Macromol 2020; 145:53-63. [DOI: 10.1016/j.ijbiomac.2019.12.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
|
4
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
5
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
The 38K-Mediated Specific Dephosphorylation of the Viral Core Protein P6.9 Plays an Important Role in the Nucleocapsid Assembly of Autographa californica Multiple Nucleopolyhedrovirus. J Virol 2018; 92:JVI.01989-17. [PMID: 29444944 PMCID: PMC5899202 DOI: 10.1128/jvi.01989-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/07/2018] [Indexed: 02/02/2023] Open
Abstract
Encapsidation of the viral genomes, leading to the assembly of the nucleocapsids to form infectious progeny virions, is a key step in many virus life cycles. Baculovirus nucleocapsid assembly is a complex process that involves many proteins. Our previous studies showed that the deletion of the core gene 38K (ac98) interrupted the nucleocapsid assembly by producing capsid sheaths devoid of viral genomes by an unknown mechanism. All homologs of 38K contain conserved motifs of the haloacid dehalogenase superfamily, which are involved in phosphoryl transfer. The requirements of these motifs for nucleocapsid assembly, confirmed in the present study, suggest that 38K may be a functioning haloacid dehalogenase. P6.9 is also encoded by a core gene (ac100) and is required for viral genome encapsidation. It has been reported that multiple phosphorylated species of P6.9 are present in virus-infected cells, while only an unphosphorylated species is detected in the budded virus. Therefore, whether 38K mediates the dephosphorylation of P6.9 was investigated. An additional phosphorylated species of P6.9 in 38K-deleted or -mutated virus-transfected cells was detected, and the dephosphorylated sites mediated by 38K were determined by mass spectrometry. To assess the effects of dephosphorylation of P6.9 mediated by 38K on virus replication, these sites were mutated to glutamic acids (phosphorylation-mimic mutant) or to alanines (phosphorylation-deficient mutant). Studies showed that the nucleocapsid assembly was interrupted in phosphorylation-mimic mutant virus-transfected cells. Taken together, our findings demonstrate that 38K mediates the dephosphorylation of specific sites at the C terminus of P6.9, which is essential for viral genome encapsidation.IMPORTANCE Genome packaging is a fundamental process in the virus life cycle, and viruses have different strategies to perform this step. For several double-stranded DNA (dsDNA) viruses, the procapsid is formed before genome encapsidation, which may require basic proteins that help to neutralize the nucleic acid charge repulsion to facilitate the compaction of the genome within the confined capsid space. Baculovirus encodes a small basic protein, P6.9, which is required for a variety of processes in the virus infection cycle. The phosphorylation of P6.9 is thought to result in nucleocapsid uncoating, while the dephosphorylation of P6.9 is involved in viral DNA encapsidation during nucleocapsid assembly. Here, we demonstrate that a haloacid dehalogenase homolog encoded by baculovirus core gene 38K is involved in nucleocapsid assembly by mediating the dephosphorylation of 5 specific sites at the C terminus of P6.9. This finding contributes to the understanding of the mechanisms of virus nucleocapsid assembly.
Collapse
|
7
|
Zhang J, Feng M, Fan Y, Xu W, Zheng Q, Wu X. Networks of protein-protein interactions among structural proteins of budded virus of Bombyx mori nucleopolyhedrovirus. Virology 2018; 518:163-171. [PMID: 29510333 DOI: 10.1016/j.virol.2018.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
Abstract
The structural proteins of baculovirus are well studied, but the interactions between them remain unclear. In order to reveal protein-protein interactions among viral structural proteins and their associated proteins of the budded virus of Bombyx mori nucleopolyhedrovirus (BmNPV), the yeast two hybrid (Y2H) system was used to evaluate the interactions of 27 viral genes products. Fifty-seven interactions were identified with 51 binary interactions and 6 self-associations. Among them, 10 interactions were further confirmed by co-immunoprecipitation assays. Five interaction networks were formed based on the direct-cross Y2H assays. VP39, 38 K, and FP were identified to interact with most of the viral proteins, and may form major structural elements of the viral architecture. In addition, each envelope protein was detected to interact with more than one capsid protein. These results suggest how viral structural and structural associated proteins may assemble to form a complete virus through interacting with each other.
Collapse
Affiliation(s)
- Jianjia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Feng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Fan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weifan Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qin Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Ouyang H, Fu C, Fu S, Ji Z, Sun Y, Deng P, Zhao Y. Development of a stable phosphoarginine analog for producing phosphoarginine antibodies. Org Biomol Chem 2016; 14:1925-9. [DOI: 10.1039/c5ob02603b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
pAIE is designed and synthesized as a stable analog and bioisostere of acid-labile pArg, to produce pArg specific antibodies, facilitating the detection of protein arginine phosphorylation.
Collapse
Affiliation(s)
- Han Ouyang
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Chuan Fu
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Songsen Fu
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Zhe Ji
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Ying Sun
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Peiran Deng
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Yufen Zhao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
9
|
Posttranslational Modifications of Baculovirus Protamine-Like Protein P6.9 and the Significance of Its Hyperphosphorylation for Viral Very Late Gene Hyperexpression. J Virol 2015; 89:7646-59. [PMID: 25972542 DOI: 10.1128/jvi.00333-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/07/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Many viruses utilize viral or cellular chromatin machinery for efficient infection. Baculoviruses encode a conserved protamine-like protein, P6.9. This protein plays essential roles in various viral physiological processes during infection. However, the mechanism by which P6.9 regulates transcription remains unknown. In this study, 7 phosphorylated species of P6.9 were resolved in Sf9 cells infected with the baculovirus type species Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Mass spectrometry identified 22 phosphorylation and 10 methylation sites but no acetylation sites in P6.9. Immunofluorescence demonstrated that the P6.9 and virus-encoded serine/threonine kinase PK1 exhibited similar distribution patterns in infected cells, and coimmunoprecipitation confirmed the interaction between them. Upon pk1 deletion, nucleocapsid assembly and polyhedron formation were interrupted and the transcription of viral very late genes was downregulated. Interestingly, we found that the 3 most phosphorylated P6.9 species vanished from Sf9 cells transfected with the pk1 deletion mutant, suggesting that PK1 is involved in the hyperphosphorylation of P6.9. Mass spectrometry suggested that the phosphorylation of the 7 Ser/Thr and 5 Arg residues in P6.9 was PK1 dependent. Replacement of the 7 Ser/Thr residues with Ala resulted in a P6.9 phosphorylation pattern similar to that of the pk1 deletion mutant. Importantly, the decreases in the transcription level of viral very late genes and viral infectivity were consistent. Our findings reveal that P6.9 hyperphosphorylation is a precondition for the maximal hyperexpression of baculovirus very late genes and provide the first experimental insights into the function of the baculovirus protamine-like protein and the related protein kinase in epigenetics. IMPORTANCE Diverse posttranslational modifications (PTMs) of histones constitute a code that creates binding platforms that recruit transcription factors to regulate gene expression. Many viruses also utilize host- or virus-induced chromatin machinery to promote efficient infections. Baculoviruses encode a protamine-like protein, P6.9, which is required for a variety of processes in the infection cycle. Currently, P6.9's PTM sites and its regulating factors remain unknown. Here, we found that P6.9 could be categorized as unphosphorylated, hypophosphorylated, and hyperphosphorylated species and that a virus-encoded serine/threonine kinase, PK1, was essential for P6.9 hyperphosphorylation. Abundant PTM sites on P6.9 were identified, among which 7 Ser/Thr phosphorylated sites were PK1 dependent. Mutation of these Ser/Thr sites reduced very late viral gene transcription and viral infectivity, indicating that the PK1-mediated P6.9 hyperphosphorylation contributes to viral proliferation. These data suggest that a code exists in the sophisticated PTM of viral protamine-like proteins and participates in viral gene transcription.
Collapse
|
10
|
Makkonen KE, Airenne K, Ylä-Herttulala S. Baculovirus-mediated gene delivery and RNAi applications. Viruses 2015; 7:2099-125. [PMID: 25912715 PMCID: PMC4411692 DOI: 10.3390/v7042099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022] Open
Abstract
Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism.
Collapse
Affiliation(s)
- Kaisa-Emilia Makkonen
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Kari Airenne
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Seppo Ylä-Herttulala
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
- Gene Therapy Unit, Kuopio University Hospital, Kuopio 70211, Finland.
- Science Service Center, Kuopio University Hospital, Kuopio 70211, Finland.
| |
Collapse
|
11
|
Ni F, Fu C, Gao X, Liu Y, Xu P, Liu L, Lv Y, Fu S, Sun Y, Han D, Li Y, Zhao Y. N-phosphoryl amino acid models for P-N bonds in prebiotic chemical evolution. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5321-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Hofmann FT, Lindemann C, Salia H, Adamitzki P, Karanicolas J, Seebeck FP. A phosphoarginine containing peptide as an artificial SH2 ligand. Chem Commun (Camb) 2011; 47:10335-7. [DOI: 10.1039/c1cc13341a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Abstract
Phosphorylation represents one the most abundant and important posttranslational modifications of proteins, including viral proteins. Virus-encoded serine/threonine protein kinases appear to be a feature that is unique to large DNA viruses. Although the importance of these kinases for virus replication in cell culture is variable, they invariably play important roles in virus virulence. The current review provides an overview of the different viral serine/threonine protein kinases of several large DNA viruses and discusses their function, importance, and potential as antiviral drug targets.
Collapse
|
14
|
Specificity of baculovirus P6.9 basic DNA-binding proteins and critical role of the C terminus in virion formation. J Virol 2010; 84:8821-8. [PMID: 20519380 DOI: 10.1128/jvi.00072-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The majority of double-stranded DNA (dsDNA) viruses infecting eukaryotic organisms use host- or virus-expressed histones or protamine-like proteins to condense their genomes. In contrast, members of the Baculoviridae family use a protamine-like protein named P6.9. The dephosphorylated form of P6.9 binds to DNA in a non-sequence-specific manner. By using a p6.9-null mutant of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), we demonstrate that P6.9 is not required for viral DNA replication but is essential for the production of infectious virus. Virion production was rescued by P6.9 homologs from a number of Alphabaculovirus species and one Gammabaculovirus species but not from the genus Betabaculovirus, comprising the granuloviruses, or by the P6.9 homolog VP15 from the unrelated white spot syndrome virus of shrimp. Mutational analyses demonstrated that AcMNPV P6.9 with a conserved 11-residue deletion of the C terminus was not capable of rescuing p6.9-null AcMNPV, while a chimeric Betabaculovirus P6.9 containing the P6.9 C-terminal region of an Alphabaculovirus strain was able to do so. This implies that the C terminus of baculovirus P6.9 contains sequence elements essential for virion formation. Such elements may possibly interact with species- or genus-specific domains of other nucleocapsid proteins during virus assembly.
Collapse
|
15
|
Wilson ME, Consigli RA. Functions of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology 2008; 143:526-35. [PMID: 18639856 DOI: 10.1016/0042-6822(85)90391-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1984] [Accepted: 02/20/1985] [Indexed: 10/26/2022]
Abstract
Activation of a protein kinase associated with purified capsids of the granulosis virus of Plodia interpunctella resulted in release of the DNA from the nucleocapsid as determined by electron microscopy. Heat treatment of the virions (65 degrees for 10 min) inactivated the kinase and prevented this uncoating event. The basic viral core protein, VP12, is the predominant phosphate acceptor for the protein kinase and was the only DNA-binding protein present in nucleocapsids. VP12 binding to 32P-nick-translated granulosis virus DNA was determined by the hybridization of the nick-translated DNA to nucleocapsid proteins transferred electrophoretically to nitrocellolose after separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Profiles obtained when nick-translated DNA was added to sucrose gradients in the absence and presence of VP12 substantiated the DNA-binding capability of VP12. Comparison of the DNA-binding capability of phosphorylated and nonphosphorylated VP12 using sucrose gradient sedimentation provided evidence that phosphorylation of the basic protein reduced its capability to bind DNA. We propose the endogenous protein kinase activity of the granulosis virus may function in two ways: release of the DNA from the nucleocapsid (uncoating), and decondensation of the DNA due to phosphorylation of the basic core protein, VP12.
Collapse
Affiliation(s)
- M E Wilson
- Division of Biology, Section of Virology and Oncology, Kansas State University, Manhattan, Kansas 66506, USA
| | | |
Collapse
|
16
|
Katou Y, Ikeda M, Kobayashi M. Abortive replication of Bombyx mori nucleopolyhedrovirus in Sf9 and High Five cells: defective nuclear transport of the virions. Virology 2006; 347:455-65. [PMID: 16412489 DOI: 10.1016/j.virol.2005.11.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/07/2005] [Accepted: 11/21/2005] [Indexed: 11/20/2022]
Abstract
Despite close genetic relationship, Bombyx mori nucleopolyhedrovirus (BmNPV) and Autographa californica multicapsid NPV (AcMNPV) display a distinct host range property. Here, BmNPV replication was examined in Sf9 and High Five cells that were nonproductive for BmNPV infection but supported high titers of AcMNPV replication. Recombinant BmNPV, vBm/gfp/lac, containing bm-ie1 promoter-driven egfp showed that few Sf9 and High Five cells infected with vBm/gfp/lac expressed EGFP, while large proportion of EGFP-expressing cells was observed when transfected with vBm/gfp/lac DNA. Immunocytochemical analysis showed that BmNPV was not imported into the nucleus of these two cell lines, while recombinant BmNPV, vBmDelta64/ac-gp64 possessing AcMNPV gp64 was imported into the nucleus, yielding progeny virions in High Five cells, but not Sf9 cells. These results indicate that the defective nuclear import of infected virions due to insufficient BmNPV GP64 function is involved in the restricted BmNPV replication in Sf9 and High Five cells.
Collapse
Affiliation(s)
- Yasuhiro Katou
- Laboratory of Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
17
|
Broussard DR, Guarino LA, Jarvis DL. Dynamic phosphorylation of Autographa californica nuclear polyhedrosis virus pp31. J Virol 1996; 70:6767-74. [PMID: 8794314 PMCID: PMC190720 DOI: 10.1128/jvi.70.10.6767-6774.1996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Autographa californica nuclear polyhedrosis virus (AcMNPV) pp31 is a nuclear phosphoprotein that accumulates in the virogenic stroma, which is the viral replication center in the infected-cell nucleus, binds to DNA, and serves as a late expression factor. Considering that reversible phosphorylation could influence its functional properties, we examined phosphorylation and dephosphorylation of pp31 in detail. Our results showed that pp31 is posttranslationally phosphorylated by both cellular and virus-encoded or -induced kinases. Threonine phosphorylation of pp31 by the virus-specific kinase activity was sensitive to aphidicolin, indicating that it requires late viral gene expression. We also found that pp31 is dephosphorylated by a virus-encoded or -induced phosphatase(s), indicating that phosphorylation of pp31 is a dynamic process. Analysis of pp31 fusion proteins showed that pp31 contains at least three phosphorylation sites. The amino-terminal 100 amino acids of pp31 include at least one serine residue that is phosphorylated by a cellular kinase(s). The C-terminal 67 amino acids of pp31 include at least one threonine residue that is phosphorylated by the virus-specific kinase(s). Finally, this C-terminal domain of pp31 includes at least one serine that is phosphorylated by either a host or viral kinase(s). Interestingly, site-directed mutagenesis of the consensus threonine phosphorylation sites in the C-terminal domain of pp31 failed to prevent threonine phosphorylation, suggesting that the virus-specific kinase is unique and has an undetermined recognition site.
Collapse
Affiliation(s)
- D R Broussard
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
18
|
Abstract
Baculovirus interactions with host cells range from the physical interactions that occur during viral binding and entry, to the complex and subtle mechanisms that regulate host gene expression and modify and regulate cellular and organismal physiology and defenses. Fundamental studies of baculovirus biochemistry and molecular biology have yielded many interesting and important discoveries on the mechanisms of these virus-host interactions. Information from such studies has also resulted in exciting new strategies for environmentally sound insect pest control, and in the development and improvement of a valuable eukaryotic expression vector system. In addition a number of important and valuable model biological systems have emerged from studies of baculoviruses. These include robust systems for studies of eukaryotic transcription, viral DNA replication, membrane fusion, and apoptosis. Because functions have been identified for only a small number of baculovirus genes, we can expect many exciting new discoveries in the future and an unfolding of the complex and intricate relationship between baculoviruses and insect cells.
Collapse
Affiliation(s)
- G W Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853-1801, USA
| |
Collapse
|
19
|
Williams GV, Faulkner P. Replication patterns and cytopathology of cells infected with baculoviruses. Cytotechnology 1996; 20:95-110. [DOI: 10.1007/bf00350391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
20
|
Abstract
Whole cell extracts from rat liver or spinach leaves contain divalent ion-independent protein histidine phosphatase activity due to phosphatases of the PP1/PP2A family. In the rat liver extract, almost all the activity was found in the PP1, PP2A1 and PP2A2 peaks. In the spinach leaf extract, four phosphorylase phosphatase activity peaks were resolved--three containing PP1 and one containing PP2A--and all showed histidine phosphatase activity. Thus, protein histidine phosphatase activity is expressed in the cytosolic forms of protein phosphatases of the PP1/PP2A family in mammalian and plant cells.
Collapse
Affiliation(s)
- H R Matthews
- Biochemistry Department, The University, Dundee, UK
| | | |
Collapse
|
21
|
Matthews HR. Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Pharmacol Ther 1995; 67:323-50. [PMID: 8577821 DOI: 10.1016/0163-7258(95)00020-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phosphohistidine goes undetected in conventional studies of protein phosphorylation, although it may account for 6% of total protein phosphorylation in eukaryotes. Procedures for studying protein N- kinases are described. Genes whose products are putative protein histidine kinases occur in a yeast and a plant. In rat liver plasma membranes, activation of the small G-protein, Ras, causes protein histidine phosphorylation. Cellular phosphatases dephosphorylate phosphohistidine. One eukaryotic protein histidine kinase has been purified, and specific proteins phosphorylated on histidine have been observed. There is a protein arginine kinase in mouse and protein lysine kinases in rat. Protein phosphohistidine may regulate the mitogen-activated protein kinase cascade.
Collapse
Affiliation(s)
- H R Matthews
- Department of Biological Chemistry, University of California at Davis 95616, USA
| |
Collapse
|
22
|
Bischoff DS, Slavicek JM. Identification and characterization of a protein kinase gene in the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus. J Virol 1994; 68:1728-36. [PMID: 8107234 PMCID: PMC236633 DOI: 10.1128/jvi.68.3.1728-1736.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Lymantria dispar multinucleocapsid nuclear polyhedrosis virus (LdMNPV) gene encoding vPK has been cloned and sequenced. LdMNPV vPK shows a 24% amino acid identity to the catalytic domains of the eucaryotic protein kinases nPKC from rabbits, HSPKCE from humans, APLPKCB from Aplysia californica, and dPKC98F from Drosophila melanogaster, and homology to several other protein kinases from yeasts, mice, and bovines. The homology suggests that vPK is a serine/threonine protein kinase as defined by Hanks et al. (S.K. Hanks, A.M. Quinn, and T. Hunter, Science 241:42-52, 1988). Temporal expression studies indicate that vPK is expressed throughout the infection cycle beginning at 4 h postinfection, first as a delayed-early gene and subsequently as a late gene. Sequence analysis and primer extension reactions confirm the presence of distinct early and late transcription initiation regions. Expression of vPK with a rabbit reticulocyte system generated a 31-kDa protein, which is in close agreement with the predicted size of 32 kDa from the amino acid sequence. Phosphorylation activity of in vitro-expressed vPK was demonstrated by using calf thymus histones.
Collapse
Affiliation(s)
- D S Bischoff
- Forestry Sciences Laboratory, Northeastern Forest Experimental Station, USDA Forest Service, Delaware, Ohio 43015
| | | |
Collapse
|
23
|
Kuba M, Ohmori H, Kumon A. Characterization of N omega-phosphoarginine hydrolase from rat liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:747-52. [PMID: 1327768 DOI: 10.1111/j.1432-1033.1992.tb17243.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
N omega-Phosphoarginine hydrolase from rat liver hydrolyzed N omega-phosphoarginine into arginine and inorganic phosphate, whereas it did not release inorganic phosphate from 19 other phosphorylated compounds containing a N-P bond, an O-P bond or a C-P bond. In addition, it was not able to transfer the phosphoryl moiety from N omega-phosphoarginine to ADP. These results indicated that this enzyme was distinct from both phosphoamidase and arginine kinase. Its properties were as follows: thiol compounds were essential for its activity; it was stimulated by 1.5-2-fold in the presence of 0.001% Lubrol, Tween 20, poly(oxyethylene) 9-lauryl ether and Nonidet P-40, while 0.004% sodium lauryl sulfate inhibited the activity completely; concentrations of sodium molybdate and sodium vanadate necessary for 50% inhibition were 7 microM and 12 microM, respectively; some proteins stimulated the activity, while lysophosphatidic acid, lysophosphatidylinositol, and phosphatidic acid suppressed the activity even in the presence of poly(oxyethylene) 9-lauryl ether.
Collapse
Affiliation(s)
- M Kuba
- Department of Biochemistry, Saga Medical School, Japan
| | | | | |
Collapse
|
24
|
Levy-Favatier F, Tichnonicky L, Kruh J, Delpech M. The protein kinases tightly bound to DNA are present in normal tissues and in regenerating liver, but strongly decreased in hepatomas. Biochimie 1989; 71:1157-61. [PMID: 2517476 DOI: 10.1016/0300-9084(89)90018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously described in rat liver two protein kinases tightly bound to DNA, one is serine-specific, the other arginine-specific. In this work we show that both enzymes are present in various rat tissues and in liver from various species. Both kinase specific activities are strongly decreased in methyl-DBA-induced hepatomas and in HTC cells but not in regenerating liver after hepatectomy. This decrease is then not related to cell proliferation.
Collapse
Affiliation(s)
- F Levy-Favatier
- Institut de Pathologie Moléculaire, Unité de Recherches Associée au CNRS URA 1147, Faculté de Médecine Cochin-Port-Royal, Paris, France
| | | | | | | |
Collapse
|
25
|
Wilson ME, Price KH. Association of Autographa californica nuclear polyhedrosis virus (AcMNPV) with the nuclear matrix. Virology 1988; 167:233-41. [PMID: 3055664 DOI: 10.1016/0042-6822(88)90073-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nuclear matrices from uninfected Spodoptera frugiperda cells and those infected with Autographa californica nuclear polyhedrosis virus (AcMNPV) were isolated and their protein constituents were compared. Proteins were characterized according to size and several different antibodies to Drosophila nuclear proteins were employed in an attempt to identify the proteins comprising this nuclear substructure. Three species of lamins were identified as major constituents of the nuclear matrix of Spodoptera cells. Two DNA-binding proteins having molecular weights of 54 and 36 kDa were also identified as components of the nuclear matrix of uninfected cells. Infection resulted in a superimposition of viral proteins upon the nuclear matrix of the host cell. Polyhedrin, the basic viral DNA-binding protein (p6.9), and the major capsid protein of AcMNPV were identified immunologically as components of the nuclear matrix fraction of infected cells. Infection also resulted in the increased association of cellular histones with the nuclear matrix. DNA-binding assays demonstrated histones and p6.9 were the predominant DNA-binding proteins associated with the nuclear matrix of infected cells. Nuclear matrices from uninfected cells and cells infected with AcMNPV for 10 and 24 hr were examined using transmission electron microscopy. Morphologically, the nuclear matrix of the uninfected cell consists of the outer nuclear lamina (including nuclear pore complexes), an internal fibrogranular protein constituent, and a residual nucleolar structure. Numerous viral capsids were observed associated with the nuclear matrix in cells infected with either wild-type AcMNPV or a polyhedrin-deletion mutant by 10 hr p.i. The capsids appeared to be attached in an end-on association with the internal fibrogranular protein network of the nuclear matrix. The matrix-associated capsids were similar in width and length to those packaged within the polyhedra. In addition to the capsids, polyhedra in various stages of maturation were seen at 24 hr following infection of the cells with the wild-type virus. The nuclear matrix of the infected cell appears to play an important role in baculovirus assembly.
Collapse
Affiliation(s)
- M E Wilson
- Department of Entomology, University of Kentucky, Lexington 40546-0091
| | | |
Collapse
|
26
|
Levy-Favatier F, Delpech M, Kruh J. Characterization of an arginine-specific protein kinase tightly bound to rat liver DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 166:617-21. [PMID: 3609029 DOI: 10.1111/j.1432-1033.1987.tb13558.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new protein kinase has been characterized among the proteins tightly bound to rat liver DNA and released by DNase I and RNase A treatment. This enzyme was separated by gel filtration from this released material. Its apparent molecular mass was found to be 34 kDa and it is made of a single unit. The main characteristic of this protein kinase is that it is arginine-specific. Isolation of phosphoarginine required the use of proteolytic enzymes at alkaline pH since the phosphate bond is highly acid-labile. This protein kinase is able to autophosphorylate and to phosphorylate a single chromosomal protein of 11 kDa also tightly bound to DNA. It uses ATP and dATP as phosphate donors and is cAMP-independent. Its optimal activity requires Mn2+ ions. Vanadate, spermine and heparin have no effect on its activity.
Collapse
|
27
|
Consigli RA, Russell DL, Wilson ME. The biochemistry and molecular biology of the granulosis virus that infects Plodia interpunctella. Curr Top Microbiol Immunol 1986; 131:69-101. [PMID: 3545695 DOI: 10.1007/978-3-642-71589-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Faulkner P, Carstens EB. An overview of the structure and replication of baculoviruses. Curr Top Microbiol Immunol 1986; 131:1-19. [PMID: 3545691 DOI: 10.1007/978-3-642-71589-1_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|